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Abstract  

This article compares classical expected utility (EU) with the more general rank-dependent utility (RDU) 
models. The difference between the independence condition for preferences of EU and its comonotonic 
generalization in RDU provides the exact demarcation between EU and rank-dependent models. Other 
axiomatic differences are not essential. An experimental design is described that tests this difference between 
independence and comonotonic independence in its most basic form and is robust against violations of other 
assumptions that may confound the results, in particular the reduction principle and transitivity. It is well 
known that in the classical counterexamples to EU, comonotonic independence performs better than full-force 
independence. For our more general choice pairs, however, we find that comonoton~c independence does not 
perform better. This is contrary to our prior expectation and suggests that rank-dependent models, in full 
generality, do not provide a descriptive improvement over EU. For rank-dependent models to have a future, 
submodels and choice situations need to be identified for which rank-dependence does contribute descriptively. 
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R a n k - d e p e n d e n t  utility theory,  first in t roduced by Quiggin (1982), is present ly  perhaps  
the most  popula r  a l ternat ive to expected utility as a model  of  risky decisions. It permits  
not  only the t ransformat ion of  outcomes into utilities, as expected utility theory, but  also 
the t ransformat ion of  probabi l i t ies  into nonlinear ,  nonaddit ive,  decision weights. This 
provides a more  natura l  way of  model ing  risk at t i tudes,  because  probabi l i t ies  are more  
directly re la ted  to intuitive notions of  risk than outcomes.  Transformat ions  of  probabi l -  
ities have also been  adop ted  in o lder  theories  (e.g., Edwards,  1962), where  probabil i t ies  
for fixed outcomes  were  t ransformed ra ther  than "cumulat ive"  probabil i t ies  as in rank- 
d e p e n d e n t  utility. These  theor ies ,  however ,  had  the  p r o b l e m  of  implying vio la t ions  of  
s tochas t ic  dominance .  Quiggin  (1982) d e v e l o p e d  r a n k - d e p e n d e n t  util i ty to p rese rve  
the  idea  of  t r ans fo rming  p robab i l i t i e s  while  at the  same t ime satisfying s tochast ic  
dominance .  
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This article describes an experiment that critically tests rank-dependent utility (RDU) 
against expected utility (EU). We first describe the critical axiomatic difference between 
the two theories and then demonstrate that it is simple enough for experimental testing. 
Such a comparison that tests RDU against EU in full generality without confounding it 
with other assumptions has not been performed before. 

Section 2 demonstrates, in an informal manner, that the difference between EU and 
RDU is exactly the difference between the independence and the comonotonic indepen- 
dence assumption, which are defined below. We show that this is the only essential 
difference between the two theories, and that other axiomatic differences are nonessen- 
tial. Formal derivations of these assertions are provided in Wakker (1994b). 

Our experiment shows that, at least for the choice alternatives employed, the assump- 
tion of comonotonic independence does not describe people's choices better than the 
(stronger) assumption of independence. That is, this article reports a negative finding. 
To validate our experimental procedure, we included some classical Allais-type choices. 
Here our findings fully agreed with the well-established findings in the literature, namely, 
that comonotonic independence holds where general independence fails. However, the 
major part of our experiment consisted of gambles with only risky outcomes, which are not 
subject to the Allais certainty effect (Kahneman and Tversky, 1979), or other special biases. 
For these gambles, comonotonic independence did not improve upon independence. 

Our experiment employed simple choice alternatives with known probabilities. There 
was no ambiguity concerning probabilities. Our experimental results thus do not speak to 
decision making in situations of ambiguity. The theoretical results that the difference 
between independence and comonotonic independence provides the demarcation be- 
tween EU and RDU theory, do hold for ambiguous as well as risky choices. 

Let us briefly comment on prior experimental tests between EU and RDU models in 
the literature; more extensive comments are provided in section 6. Such tests have usu- 
ally been conducted on a domain of gambles consisting of all probability distributions 
over three fixed outcomes (referred to as the "probability triangle"). Observation 3 in 
section 6 will show that this domain does not provide a suitable structure for testing 
comonotonic independence. Another complication is that comonotonic independence is 
best tested in choice pairs that have a "states-of-nature-format," where the outcomes of 
both alternatives are related to the same set of underlying events (in our case, events with 
known probabilities), rather than each to a different set of events and probabilities. 

Previous experiments usually restrict RDU additionally, for example by assuming 
special parametric forms for the utility and weighting functions, and test only those 
restrictions (Camerer, 1989; Battallio, Kagel, and Jiranyakul, 1990; Starmer, 1992). An 
exception is Starmer and Sugden (1989, Theorem 1), who indeed test an implication of 
the general RDU model. The tested property, however, is more complicated than 
comonotonic independence, and is not critical in providing an exact demarcation. Thus, 
we will not describe it here. In summary, none of the evidence obtained so far can be 
considered conclusive on the issue of RDU versus EU. When comparing RDU with the 
other main stream of transitive nonexpected utility models, i.e., the "betweenness" mod- 
els, Camerer (1992) and Camerer and Ho (1994) strongly favor RDU. 1 
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The experiment reported in this article, where gambles were presented in a "states- 
of-nature-format," is robust against the often found violations of the "reduction princi- 
ple" (i.e., that gambles can be reduced to probability distributions over outcomes), and 
against possible violations of transitivity. This will be explained in further detail below. 
Our results are also not affected by possible "state-dependence" of the utilities, i.e., the 
phenomenon that an outcome obtained as the result of different events may be appreci- 
ated differently. Finally, the states-of-nature format may be more understandable and 
natural for respondents not used to dealing with numerical probabilities. 

1. History, motivation, and preview 

Von Neumann and Morgenstern (1947) and Savage (1954) laid the axiomatic founda- 
tion of EU by describing the preference conditions that are necessary and sufficient for 
EU maximization. In decision theory, preferences are taken as observable primitives; 
thus, axiomatizations describe the testable implications of a model of choice. Von Neu- 
mann and Morgenstern considered the case of decision under risk, where the probabil- 
ities with which outcomes occur are known and well specified. Savage considered the 
case of decision under uncertainty, where probabilities need not be known. 

In these and all subsequent alternative axiomatizations of EU, the most important 
axiom is an independence condition. It states that preferences between gambles should 
be independent of those events for which the gambles give the same outcome. Either 
independence is imposed explicitly, as in Savage's sure-thing principle (Postulate P2), or 
it is implied by the other conditions. 

Several axiomatizations have been developed for RDU, both for choice under risk and 
under uncertainty, weakening or modifying one or more of the EU axioms. While inde- 
pendence is implied in all EU models, only a weakened version, "comonotonic indepen- 
dence," is implied by all RDU models. We shall show that this weakening is the essential 
generalization of EU as provided by RDU. Given this difference, other differences in 
axioms found in the literature are, in an empirical sense, cosmetic and nonessential. The 
difference between independence and comonotonic independence is at the heart of the 
matter and therefore is the object of our experiment. 

The empirical test between independence and comonotonic independence, reported 
below, was designed to be as "pure" as possible. The experiment was devised to avoid all 
possible extraneous factors that may obscure the test. Only three-outcome gambles, the 
simplest kind of gambles for testing comonotonic independence, were used. The tests of 
patterns of indifference curves in the probability triangle, commonly found in the litera- 
ture, are based on many other assumptions such as transitivity, the reduction principle, 
and independence of utility from events. Any violations of these conditions, often con- 
firmed, disturb these tests of RDU. Our experiment does not invoke any of these as- 
sumptions, hence is more basic. 

The experiment was restricted to the simple case where uncertainty was generated by 
the drawing of a card from a deck, providing both states and probabilities. Therefore our 
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findings directly apply to both risk, where lack of information is described through prob- 
abilities, and uncertainty, where lack of information is described through states. The 
study of cases where no probabilities are given, or probabilities are vague or ambiguous, 
is a topic for future research. At present we make no empirical claims about such cases. 

2. Independence versus comonotonic independence as the demarcation between EU 
and RDU 

This section describes the EU and RDU theories, and describes in an informal manner 
the theoretical results derived in Wakker (1994b). In particular, this section shows how 
EU and RDU imply independence and comonotonic independence, respectively. 

A comment on terminology is in order. For decision under uncertainty, the term SEU 
(subjective expected utility) is often used; EU is then reserved for decision under risk. As 
decision under risk is a special case of decision under uncertainty, EU is a special case of 
SEU. Still, the term conventionally used to refer to both is EU, rather than SEU. Simi- 
larly, for the generalized utility theories, the term "Choquet expected utility" is often 
used for decision under uncertainty, and RDU is reserved for decision under risk. How- 
ever, we shall use RDU in this article as the common term to refer to both cases. 

The choices in our experiment were between gambles of the following type: subjects 
were told that a card would be drawn from a deck ofn numbered cards. Gambles yielded 
different outcomes, i.e., amounts of money, depending on the number of the card se- 
lected. We considered only gains to avoid effects of sign-dependence, i.e., the often 
confirmed finding that risk attitudes are different for gains than for losses. This was done 
to test rank-dependence in its purest form, with a minimum of other effects that might 
cause deviations from expected utility. Formalizations of sign-dependence, in addition to 
rank-dependence, can be found in Luce and Fishburn (1991), and in Tversky and Kah- 
neman's (1992) cumulative prospect theory. 

For decision under risk, it is assumed that all cards are equally likely to be drawn. Then 
each card has an (objective) probability of 1/n of being selected, and a given gamble can 
be described as a probability distribution over the outcomes. For decision under uncer- 
tainty the assumption of equal or known probabilities for the selection of cards is no 
longer imposed. Thus decision under risk is a special case of decision under uncertainty. 

In expected utility (EU), a gamble is valuated by ~ =  l pjU(xj). For our card-drawing 
scenario, pj is the probability that thej th  card is selected, xj is the resulting outcome if 
cardj is selected, and U(xj) denotes the utility of outcomexj. For decision under risk the 
probabilities pj are known to be 1In. For decision under uncertainty they may be dif- 
ferent, namely, the subjective probabilities that the decision maker assigns to the events. 

Both for decision under uncertainty and for decision under risk, let P(A) denote the 
probability of a subsetA C {1 . . . . .  n}, i.e., the probability that the selected card will be an 
element ofA. SubsetsA o f { l , . . . ,  n} are called events. The gamble considered above can 
be described by the n-tuple of its possible outcomes, (Xl . . . . .  xn), orx  for short. 
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To describe the independence condition, suppose thatx > y, i.e., gamblex is preferred 
to gambley. Under EU, this means that 

Z p je (x j )  >- 2 pjU(yj). (1) 
j=l j = l  

Then, ifxl - Yl, the inequality will not be affected if we replace Xl byx' 1 andyl  byy' 1 as 
long as stillx 1 = Yl' In other words, a preference between two gambles is not affected if a 
common outcome is replaced by another common outcome. By repeated application, 
preference is also not affected if we replace several common outcomes. This is what 
independence requires. 

In the literature on decision under risk, independence is mostly formulated in a way 
different from ours. In Machina (1989), our version is called replacement separability 
and the alternative condition is called mixture separability. Fishburn and Wakker (1992) 
show that replacement separability is somewhat weaker than mixture separability, but in 
the presence of usual continuity conditions they are equivalent. Chew and Wakker 
(1993) and Wakker (1994b) use the term comonotonic sure-thing principle instead of 
our term comonotonic independence. 

In the evaluation of gambles, EU uses a probability P that is additive. That is, for 
nonoverlapping setsA, B of cards, P(A tO B)  = P(A)  + P(B) .  This property is general- 
ized in RDU, which uses a nonadditive measure, called capacity, and denoted by W. W 
assigns capacity 0 to the empty set (W(0) = 0), capacity 1 to the universal event 
(W({1 , . . . ,  n}) = 1), and larger capacities to larger events (i.e., ifA contains B, then 
W ( A )  >_ W(B) ) .  While sharing these properties with probabilities, capacities need 
not be additive. 

For the calculation of the RDU value of a gamblex, the rank-ordering of the outcomes 
ofx is relevant. Suppose first thatxl -< ..- -< xn. Then the RDU value of the gamble is 
s  1 vjU(xj) ,  where U denotes utility as in EU and the vj are decision weights, derived 
frao-m W by v j  = W(I', �9 �9 �9 , n )  - W O" + 1, . . . , n).  This expression shows that the 
decision weight of cardj  is its marginal capacity contribution to all superior-outcome 
cards. 

In general, if the ordering of outcomes is not Xl -< ' -< x,,, then we determine the 
worst outcome Xl : n (where l:n denotes the number of the card giving the worst out- 
come), the second-worst outcomex2:~,. . . ,  and the best outcomexn:  n. The ranks of equal 
outcomes can be chosen arbitrarily. The RDU value of the gamble is 

n 

Z ~rjU(xj) (2) 
j=l 

where the decision weights ~rj are as follows. For i : n = j ,  rrj = W(i : n . . . .  , n : n)  - 

W((i  + 1) : n . . . . .  n : n). Therefore, again, the decision weight of cardj  is its marginal 
capacity contribution to all superior-outcome cards. 2 If W is a probability, i.e., is additive, 
then wj reduces to the probability W({/'}) for selecting thejth card and RDU reduces to EU. 

For decision under risk, where objective probabilities P(A)  are given for eventsA, it is 
assumed that the only relevant aspect of events is their probability. W(A)  then depends 
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only on P(A)  and can be written as a function of P(A), i.e., as w(P(A) )  for w:[0,1] ~ [0,1]. 
Capacities are now transformed objective probabilities. For the gamble x above, with xl 
<- "'" <- Xn, "try = w((n  - j + 1)/n) - w((n - j ) /n)  results. 

Two gambles that induce the same ranking of outcomes (i.e., generate the same 
numbers 1 : n , . . . ,  n : n), are called comonotonic.  In the calculation of their RDU value, 
the same decision weights "rrj are used. If comonotonic gambles have a common outcome 
(i.e., xj = yj), and this outcome is changed into another common outcome (xj = yj) 
without affecting the rank-order of the outcomes, then preference should not be 
affected, as illustrated in more detail below. This condition is called cornonotonic 
independence.  

To derive comonotonic independence from RDU, supposex > y, for two gamblesx, y 
withxj = yj. Suppose further that the gambles are comonotonic (e.g.,x1 -< "" < xn and 
Yl <- "'" <- Yn). A n  RDU evaluation for the preference results in 

2 Z (3) 
j=l j=l 

In this expression, the decision weights "rrj are the same for both gambles, because the 
gambles are comonotonic. 

In general, if we replace the common outcomesxj = yj by other common outcomesxj 
= yj, the effect of this replacement cannot be predicted. The reason is that the new 
common outcomes may change the relative rank-order of the outcomes of gamblex (e.g., 
xj < x j + b  butxj > x j+l )  and may also do so for gamble y. Because W m a p s A  into 
decision weights using the ranks of outcomes, a change in rank-order changes the deci- 
sion weights vj, which may affect the inequality and the preference. (Examples will be 
given below.) Hence independence need not hold under RDU. 

Suppose that the change in common outcomes does not alter the rank-ordering of the 
outcomes in eitherx ory. That is, ifxl -< -'- -< Xn, then the same holds withxj replaced by 
xj, sox j_  1 <- x I <- xj+ 1, with corresponding inequalities fory instead ofx. Then the same 
decision weights can be used in the calculation of RDU before and after the change in 
outcomes. In that case, the terms "rrjU(xj) = vjU(yj)  cancel, just as the terms vjU(xj) = 
"rrjU(yj) do in (3), and the other terms are the same both before and after the change of 
outcome. Thus the inequality is not affected, and neither is the preference. This shows 
that RDU implies comonotonic independence. 

The next observation presents, in a somewhat informal manner, the exact demarca- 
tion between EU and RDU. The presently existing axiomatizations, mentioned in the 
observation, are described in Wakker (1994b); there also a proof is provided. 

Observation 1. Suppose that RDU holds, in accordance with one of the presently 
existing axiomatizations. Then: 

(i) Comonotonic independence holds. 
(ii) Independence holds if and only if EU holds. [ ]  
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3. Experiment 

3.1. Subjects 

Eighty-four students in an introductory psychology course at the University of North 
Carolina at Chapel Hill participated in the study. They were randomly assigned to one of 
the four display conditions described below. 

3.Z Task 

Subjects' task was to choose the preferred member from each of 64 pairs of gambles. All 
gambles involved possible profits. To increase the realism of the choices and motivate the 
subjects, one of the 64 gambles which they chose was randomly selected at the conclusion 
of the experiment and played for real money. The effectiveness of this incentive method 
relies on the "isolation effect" (Kahneman and Tversky, 1979, p. 271), the finding that 
subjects evaluate each choice between gambles in isolation instead of evaluating their 
choices as subparts of one large joint gamble. 

3.3. Procedure 

Subjects were seated in front of a personal computer in a private booth. They read 
instructions and then performed the choice task on the computer. The order of the 64 
gamble pairs and the order of the two gambles within each pair were randomly 
determined. 

3.4. Display and instruction 

Subjects were instructed to choose that gamble in each presented pair that they would 
prefer to play. 3 It was emphasized that there were no right or wrong decisions, and that 
they should simply choose the gamble they preferred; indifference could not be ex- 
pressed. They were informed that one of the 64 pairs of gambles would be randomly 
selected at the end of the experiment by selecting one card from a deck of 64 cards. The 
gamble that they had chosen in that pair would be played by selecting a second card from 
a deck of 100 cards marked 1 to 100. The number written on that card would determine 
the outcome which they would receive, depending on their choice of gamble. Subjects 
were told that they would be paid the money amount won on that trial. 
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The display of gambles has been shown to affect choice behavior (Keller, 1985; Erev, 
Bornstein, and Wallstein, 1993). Therefore we used four distinct gamble displays. This 
manipulation was used to improve the generalizability of the result rather than to test 
specific hypotheses about the effects of display format. The display condition was a 
between subject variable to which each subject was randomly assigned. 

Figure 1 presents the display of one pair of gambles (the second pair in set 5) under 
the four display conditions. Twenty-two subjects were assigned to the collapsed display 
condition, in which events that lead to identical outcomes were collapsed. This condition is 
similar to the commonly used display of gambles in behavioral decision-making research. 

Twenty-one subjects were assigned to the noncollapsed display, which was identical to 
the collapsed display with the exception that identical outcomes were not collapsed. 
Twenty subjects were assigned to the verbal display, which was identical to the noncol- 
lapsed display, except that the probabilities of the described events were not provided 
numerically. The remaining 21 subjects were assigned to the graphical display condition, 
adopted from Camerer (1989). 

la Condition Collapsed: 

Prospect A: 
You earn Chances 
$2.00 if the card is #i-#i00 100% 

Prospect B: 
You earn 
$3.00 if the card is #61-#100 40% 
$0.00 if the card is #51-#60 10% 
$2.00 if the card is #1-#50 50% 

ib Condition Not collapsed: 

Prospect A: 
You earn Chances 
$2.00 if the card is #61-#100 40% 
$2.00 if the card is #51-#60 10% 
$2.00 if the card is #1-#50 50% 

Prospect B: 
You earn 
3.00 if the card is #61-#100 40% 
0.00 if the card is #51-#60 10% 
2.00 if the card is #1-#50 50% 

Ic Condition Verbal: 

Prospect A: 
You earn 
$2.00 if the card is #61-#100 
$2.00 if the card is #51-#60 
$2.00 if the card ks #1-#50 

Prospect B: 
You earn 
$3.00 if the card is #61-#100 
$0.00 if the card is #51-#60 
$2.00 if the card is #1-#50 

Id Condition Graphical: 

three colors on black background). 

A 

$i "~176 
Green 

S2.00 
Rea 

 iO0 

~ 

card number 

i00 I00 

61 61 

60 60 

51 51 

50 50 

1 1 

B 

$3.00 

Green 

$o.oo 

$2.[0 

Brown 

Figure 1. The four displays of gambles. 
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3.5. Stimufi 

The 64 pairs of gambles included two replications of the 24 experimental pairs described 
below and 16 "filler" pairs. The fillers were added, since the experimental questions 
required choices between gambles with similar expected values. A risk-neutral subject 
could have figured, after a few trials, that random choice would save time without a 
significant loss in utility. To motivate subjects to examine the choice alternatives care- 
fully, the 16 filler pairs of gambles with clearly distinct expected values were interspersed 
among the experimental pairs. 

The 24 experimental gambles consisted of six sets of four gamble pairs. Each gamble 
pair consisted of a safer gamble S, and a riskier gamble R. As an example, consider the 
first gamble pair of set 1, depicted in figure 3.1. 

The S-gamble yields $0.5 if the number of the card drawn is not above 55, $6.0 if the 
number is between 56 and 80, and $7.0 if the number is 81 or higher. The R-gamble yields 
$0.5 if the number of the card drawn is not above 55, $4.5 if the number is between 56 and 
80, and $9.0 if the number is 81 or higher. The general structure of outcomes in a gamble 
pair is depicted in figure 2. The S-gamble yields either common outcome CO, or St or Sh 
as outcome; these were 0.5, 6.0, and 7.0, respectively, in our example. The R-gamble 
yields either common outcome CO, or Rz or Rh as outcome; these were 0.5, 4.5, and 9.0, 
respectively, in the example. The CO outcomes are related to the same card numbers for 
S and R, and so are the St and RI outcomes and the Sh and Rh outcomes. This was clear to 
the subjects in all four displays. To avoid triviality of choice due to dominating alterna- 
tives, we always have Rt < Sl -< Sh < Rh. 

The common outcomes CO in a gamble pair were taken from the regions C0l, COrn, 
or COt., shown in figure 2, so that the gambles in a given choice pair always have the same 
rank-ordering of outcomes, i.e., are comonotonic. The other three pairs of set 1 were 
identical to the first pair, except for the common outcome CO, which took the values 
$3.50, $6.50, and $9.50, respectively. The gamble pairs of all sLx sets are illustrated in the 
upper part of figures 3.1-3.6 (and also in table 2). As described for set 1, the four pairs 
within each set are identical except for the CO outcome. 

The gambles were described by means of a "states-format," generated by the selection 
of a card. Given that all cards were known to be drawn with equal likelihood, the above 
states-format notation also provides information about the probabilities of each out- 
come. In the first two display conditions, this probability was additionally provided ex- 
plicitly, i.e., numerically (see figure 1, a and b). The first two choice situations in sets 5 
and 6 are versions of the Allais paradox, with the S-gamble in the second pair of each set 
a sure gain. 

R l Sl Sh R h 

CO/ CO m CO h 

J 

Figure 2. Outcomes of two gambles in a choice pair. 
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(1 st p~ir) 
1.55 56-80 81-100 

(0.5, 6.0, 7.0) 

(0 .5 ,4 .5 ,9 .0)  

(2rid oair) (3d oair) 
1-55 56-80 81-100 56-80 1-55 81-100 

(3.5, 6.0, 7.0) 

(3.5, 4.5, 9.0) 

(6.0, 6.5, 7.0 ) 

(4.5,6,5,9.0) 

(4th hair) 
56-80 81-1001-55 

(6.0, 7.0, 9.5) 

(4.5, 9.0, 9.5) 

cards # 

S-outcomes 

R-outcomes 

0.5 --> 3.5 -+ 6.5 --+ 9.5 common outcome 

>< x x EU 

>< + + RDU 
>< S~::~ ~ RDU, pesm 
• RDU, open 
X ~ ~ CPT 

Figure 3.1. Description of first set of gamble pairs, together with model predictions of excluded preference 
changes for changes in common outcome CO. EU (ind.) excludes any preference change if CO is changed ( • ). 
RDU (Com. ind.) excludes no preference changes if CO is changed from 3.5 to 6.5 ( + ). RDU with pessimism 
(w convex) excludes a change from S to R if CO is changed from 3.5 to 6.5 (but permits a chang~ from R to S). 

(1 st oair) 
1-65 66-85 86-100 

(0.5, 3.5, 5.5) 

(0.5, 3.0, 6.0 ) 

(2nd oair) 
1-65 66-85 86-100 

(2.5, 3.5, 5.5 ) 

(2.5, 3.0, 6.O) 

i (3d oair) 

i66-85 1-65 86-100 

(35, ~_5?, 55 ) 

i (3.0, 4.5, 6.0) 

(4th hair) 
66-85 86-1001-65 

(3.5, 5.5 , 6.5) 
§ 

(3.0, 6.0, 6.5) 

S-outcomes 

R-outcomes 

0.5 ---> 2.5 --> 4.5 --> 6.5 common outcome 

x x x EU 
x + + RDU 
x ~ ~ : ~  RDU, pesm 
>< ~-~-,,, RDU, optm 
X ~ ) ~  ~ CPT 

Figure 3.2. Description of second set of gamble pairs, together with mode1 predictions. EU (ind.) excludes any 
preference change if CO is changed ( x ). RDU (Com. ind.) excludes no preference changes if CO is changed 
from 2.5 to 4.5 ( + ). RDU with pessimism (w convex) excludes a change from S to R if CO is changed from 2.5 
to 4.5 (but permits a change from R to S). 

F r o m  Observa t ion  3 in sect ion 6 and  its p roof  in append ix  A, it can  be  infer red  that  ou r  
expe r imen t  tes ted c o m o n o t o n i c  i n d e p e n d e n c e  in the  s implest  possible  way. F u r t h e r  
cr i ter ia  for the  select ion of  the  s t imuli  used in our  expe r imen t  were:  

�9 A m o u n t s  should  be  nonnega t ive  (to avoid s i g n -dependence  effects, as well  as the  
possibil i ty of  losses for subjects).  

�9 A m o u n t s  should  be  high e n o u g h  to mot iva te  subjects  and  low e n o u g h  to be  payable.  
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(lst •air) 
1-40 41-80 81-i00 

(0.5, 2.5, 6.0) 
>-9 - < .  

(0.5, 1.5,7.5 ) 

(2nd oair) 
41-80 1-40 81-100 

(2.5,3,0, 6.0 ) 
>--9 - < .  

I L5 3,0,7.5 )____ 

1 (3d oair) (4th pair) 

~ 41-80 1-40 81-100 41-80 81-1001-40 

] (2.5,5.5,  6.0) 

I (1.5.555~5.5,7.5)_ 

(2.5, 6.0, 8.0) 

(1 .5 ,7 .5 ,  8.0) 

cards # 

S-outcomes 

R-outcomes 

0.5 ---> 3.0 --4 5.5 + 8.0 common outcome 

;~ x • EU 
+ x + RDU 

S ~  >< i ~  RDU, pesm 
R ~  x S ~ : ~  RDU, opnn 

X ~ CPT 

Figure 3.3. Description of third set of gamble pairs, together with model predictions. EU (ind.) excludes any 
preference change if CO is changed ( x ). RDU (Com. ind.) excludes no preference changes if CO is changed 
from 0.5 to 3.0 ( + ). RDU with pessimism (w convex) excludes a change from S to R if CO is changed from 0.5 
to 3.0 (but permits a change from R to S). 

(lst pair) i I (2nd oair) ] I  (~d pair) 

(2.5, ~5, 10.5) I { (5.5, 6.0, 10.5) ] { (5.5,9.5, 10.5) 

(2.5,3.5,12.5) ] [  (3.5,6.0,..!2.5) l i (3.5, 9 .5,12.5)_ 

(4th pair) 
71-80 81-1001-70 

(5.5, 10.5, 13.0) 

(3.5,12.5, 13.0) 

cards # 

S-outcomes 

R-outcomes 

2.5 --> 6.0 -'+ 9.5 --> 13.0 common outcome 

x x x EU 
+ • + RDU 

S ~  X ~ RDU, pesm 
• m u, 

• ~ CPT 

Figure 3.4. Description of fourth set of gamble pairs, together with model predictions. EU (ind.) excludes any 
preference change if CO is changed ( x ). RDU (Com. ind.) excludes no preference changes if CO is changed 
from 2.5 to 6.0 ( + ). RDU with pessimism (w convex) excludes a change from S to R if CO is changed from 2.5 
to 6.0 (but permits a change from R to S). 

�9 A m o u n t s  should be  mult iples  of 50 cents (to enhance  simplicity and  thus reduce  errors). 
�9 The  gambles  in expe r imen ta l  choice pairs  should  be  close in p re fe rence  to allow for 

p re fe rences  to be  switched after  a change  in  c o m m o n  ou tcome.  If  the  gambles  are too 
far apar t  in p re fe rence ,  choices are  n o t  likely to be  reversed  w h e n  the  c o m m o n  out-  
come  is changed,  even  if peop le  are  sensi t ive to changes  in r a n k  order .  T h e n  only  few 
violat ions  of  i n d e p e n d e n c e ,  e i ther  c o m o n o t o n i c  or  n o n c o m o n o t o n i c ,  would  result ,  and  
the  statistical power  would  be  low. 
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(lst pair) ] 
1-50 51-60 61-100 1 

(0.0, 2.0, 2.0) l 
~? 

(0.0, 0.0, 3.0) 

(2nd p a i r ) ] i  
51-60 1-50 6 1 - 1 ~ i  

(2.0, 2.0, 2.0) i ] 

§ I i _~0.0~2.0, 30) I 

(3doair) 
51-6061-1001-50 

(2.0,2.0,  4.0) 
~ 9  

( 0 . 0 , 3 . 0 , 4 . 0 )  

(4th pair) 
51-60 61-100 1-50 

[ (2.0, 2.0, 6 .0)  

(0.0, 3.0, 6.0 ) 

cards # 

S-outcomes 

R-outcomes 

0.0 --9 2.0 ---> 4.0 --> 6.0 common outcome 

x x x EU 
+ + x RDU 

I ~  X RDU, pesm 
s ) ~  • ~ u ,  opm~ 
~ • CPT 

Figure 3.5. Description of fifth set of gamble pairs, together with model predictions. EU (ind.) excludes any 
preference change if CO is changed ( • ). RDU (Com. ind.) excludes no preference changes if CO is changed 
from 0.0 to 2.0 ( + ). RDU with pessimism (w convex) excludes a change from S to R if CO is changed from 0.0 
to 2.0 (but permits a change from R to S). 

(1st oair) 
1-50 51-60 61-100 

(2.0, 4.0, 4.0) 
~7 

(2 .0 ,  2:o: . . .5.o ) ...... 

I (2nd pair) ] 
51-60 1-50 61-100~ 

(4.0 4.0, 4.0) i 

L~2:0,  4 , 0 ~ 1  

(3d pair) i 
51-60 6 1 - 1 0 0 ~  

(4o, ~o, 6.o) I 

(2.0, 5.0, 6.0) i 

(4th pair) 
51-60 61-100 1-50 

(4.0,4.0,  8.0) 

( 2 . 0 , 5 . 0 , 8 . 0 )  

cards # 

S-outcomes 

R-outcomes 

2.0 --~ 4.0 --> 6.0 --> 8.0 common outcome 

x x x EU 
+ + x RDU 

s ~  ~ • RDU, pesm 
R>4 s > 4  • RDU, op~ 
S ~ R  S ~  X CPT 

Figure 3.6. Description of sixth set of gamble pairs, together with model predictions. EU (ind.) excludes any 
preference change if CO is changed ( x ). RDU (Com. ind.) excludes no preference changes if CO is changed 
from 2.0 to 4.0 ( + ). RDU with pessimism (w convex) excludes a change from S to R if CO is changed from 2.0 
to 4.0 (but permits a change from R to S). 

�9 T h e  gambles  in "f i l ler"  choice  pa i r s  shou ld  differ  s t rongly  in pre fe rab i l i ty ,  to p r o m o t e  
d e l i b e r a t e  dec is ion  making .  

�9 T h e  e x p e c t e d  va lue  of  the  r i skier  g a mb le s  shou ld  no t  always b e  h ighe r  than  tha t  of  the  
safer  gambles .  

�9 T h e  change  in the  m a g n i t u d e  of  c o m m o n  o u t c o m e s  f rom choice  pa i r  to cho ice  pa i r  
shou ld  be  the  same,  so that ,  in this respec t ,  the  tes ts  of  c o m o n o t o n i c  i n d e p e n d e n c e  and  
gene ra l  i n d e p e n d e n c e  do  no t  differ.  
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�9 Comonotonic independence should be tested for increases in common outcome when 
the common outcome is the lowest outcome, when it is the middle outcome, as well as 
when it is the highest outcome. 

�9 Some safer gambles should have a more widespread distribution of outcomes, whereas 
others should have a narrower range of outcomes. 

�9 The probabilities should be such that both the common outcomes and the noncom- 
mon outcomes have impact. 

4. Predictions 

This section derives the predictions that EU and different versions of the RDU 
model make for the patterns of choices encountered in our experiment. As above, U 
denotes the utility function for outcomes. We only consider decision under risk, i.e., 
we assume that all cards are equally likely to be selected, with probability 1/100. For 
RDU, w : [0, 1] ~ [0, 1] denotes the probability transformation function. 4 However, 
all theoretical predictions below can be extended to decision under uncertainty with- 
out any difficulty. 

We analyze in detail the patterns of choices possible under the different utility theo- 
ries for the first set in our design. For this set, shown in figure 3.1, the three events were 
described by cards numbered between 1-55, 56-80, and 81-100, respectively, with corre- 
sponding probabilities of .55, .25, .20. The corresponding outcomes were 

R = ($C0, $4.5, $9) 

and 

S = ($C0, $6, $7), 

in the riskier (R) and safer (S) gambles, respectively. The common outcome CO takes 
the values of $0.50, $3.50, $6.50, and $9.50, respectively, in the four choice pairs of 
the set. 

Under EU, independence should be satisfied,i.e., preferences should be independent 
of the value of CO. If the independence assumption holds, we should either find four 
preferences for the R-gamble or four preferences for the S-gamble. 

Next we present the predictions under RDU. For each choice pair, the two gambles 
have the same rank-order of outcomes (i.e., are comonotonic), hence the decision 
weights wj are the same for the two gambles in their RDU evaluation. Leaving these 
decision weights unspecified for the moment, we write 

RDU(R) = "rrlU(CO) + "rr2U(4.5) + 'rr3U(9) 
RDU(S) = 7flU(CO) + "rr;U(6) + "rr3U(7). 
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Cancelling the common term 7rl U(CO), we have RDU(R) _ RDU(S) if and only if 

v3(U(9) - U(7)) > ~rz(U(6 ) - U(4.5)). (4) 

In other words, for R to be preferred to S, the "R-gain" of receiving $9 instead of $7 must 
outweigh the "S-gain" of receiving $6 instead of $4.5. 

Under RDU, the independence requirement should only be satisfied between pairs of 
gambles that are mutually comonotonic. Changing the common outcome CO from $0.50 
to $3.50 does not affect the rank-order of the outcomes. That is, the .20 probability outcome 
is still the best, the .25 probability outcome the second best, and the CO outcome the worst; 
for the new gambles. In other words, the two pairs of gambles with CO = $0.50 and with CO 
= $3.50 are mutually comonotonic. Thus, comonotonic independence applies, and the 
choices should be the same for both pairs, i.e., either two S or two R choices. In terms of 
(4), comonotonicity of the four gambles implies that the decision weights vz,w3 do not 
change as CO is changed from $0.50 to $3.50, thus resulting in the same choices. 

When the common outcome is changed from $3.50 to $6.50, on the other hand, RDU 
makes a different prediction because the change in CO results in a change in the rank- 
ordering of the outcomes. Now CO is preferred to the .25 probability outcomes, whereas 
before it was not. The new gambles are not comonotonic with the old gambles, and 
RDU no longer predicts the same preference. In terms of Formula (4), changing CO 
now has the potential to change the decision weights v2 and v3, which may affect the 
inequality. 

The nature of the change in preference depends on the shape of the weighting func- 
tion w. A convex w function 5 corresponds to pessimism. Predictions for this special case 
of RDU are also shown in the lower part of figure 3.1. The increase of CO from $3.50 to 
$6.50 changes the rank of the .25 probability outcomes from middle to worse. For a 
pessimist, this means, intuitively, that the .25 outcomes of both gambles now have more 
importance to the subject. Mathematically, due to the convexity of w, the new decision 
weight (rr2 = w(1) - w(.75)) associated with these outcomes is larger than the old 
decision weight "rr2 = w(.45) - w(.20), so that these outcomes play a more important 
role in the choice. As the .25 probability outcome for the S-gamble, i.e., $6, is greater 
than the corresponding $4.50 outcome for the R-gamble, this means that the utility of the 
S-gamble will increase more than the utility of the R-gamble. The decision weight "rr 3 of 
the .20 outcomes has not been altered by the increase of CO. These outcomes have 
remained the best throughout, and their decision weight has continued to be w(0.20). 
Therefore, for a pessimist, the change of CO from $3.50 to $6.50 enhances the safer 
choice. A choice of R when CO = $3.50 may be accompanied by a choice orS when CO 
= $6.50, but not the other way around: A choice of S when CO = $3.50, must imply a 
choice S when CO = $6.50. 

Analogously, if w is concave, then the increase of the common outcome from $3.50 to 
$6.50 enhances a risky choice. In other words, a preference reversal S ~ R is permitted 
and a preference reversal R ~ S is excluded. Concavity of w can be interpreted as 
optimism. 
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Finally, consider the effects of a change in CO from $6.50 to $9.50. Again, the change 
affects the rank-ordering of the outcomes, moving the ranks of the .20 probability out- 
comes from best to second best. Thus, again, RDU no longer predicts invariance of 
preference. In the case of pessimism, i.e., convexity of w, the increase of CO will increase 
the decision weight of the .20 probability outcome ('rr 3 in (4)) and thus will enhance a 
risky choice. So now a preference reversal S --~ R can occur, but a preference reversal R 

S is excluded. The converse holds if w is concave. 
We also derive the predictions of an S-shaped weighting function. This form was 

suggested by several authors, e.g., by Quiggin (1982), Karni and Safra (1990), and by 
Tversky and Kahneman (1992) in their "cumulative prospect theory" (CPT). We shall 
refer to it as the CPT prediction. Models very similar to CPT were introduced by Starmer 
and Sugden (1989, appendix) and Luce and Fishburn (1991); the latter differs mainly in 
its axiomatization, invoking conditions on a "joint receipt" operation. These models 
generalize RDU by incorporating "sign-dependence," which allows the weighting func- 
tion for probabilities associated with gains to be different from the weighting function for 
probabilities associated with losses. 6 As discussed above, our experiment was designed to 
avoid effects of sign-dependence by using gambles involving only gains. In that case, the 
general form of CPT coincides with RDU; therefore, our experiment is also a test of 
CPT. CPT assumes a weighting function w for gains that is convex for large probabilities, 
leading to the overweighting of certainty, and thus explaining phenomena such as the 
Allais paradox. At the same time, the weighting function is assumed to be concave for 
small probabilities, leading to the "long-shot" effect, where a person overappreciates a 
gamble that, with a small probability, gives a large gain, thus explaining the buying of 
lotteries. In short, this special case of w, and thus of RDU, assumed by CPT predicts that 
more attention and decision weight is attributed to extreme outcomes. 

The change in common outcome from $3.50 to $6.50 in set i makes the .25 probability 
outcomes more extreme for both gambles by making them the lowest outcomes after the 
change. According to CPT, this will increase the associated decision weight v2. Mathe- 
matically, the weight changes from w(.45) - w(.20) to w(1) - w(.75), resulting in an 
increase ifw is convex for high probabilities, as assumed by CPT. (This is also implied by 
dual subadditivity of w, as predicted by Tversky and Kahneman, 1992. Dual subadditivity 
means w(p) - w(p - r) -< w(1) - w(1 - r) and is somewhat less restrictive than 
convexity of w for high probabilities.) Increasing v2 leads to greater preference for the 
S-gamble. The predictions of CPT coincide in this case with those of "pessimistic" RDU 
with its convex weighting function. Shifts from R choices to S choices are predicted; shifts 
from S choices to R choices constitute a violation of CPT. 

The change in common outcome from $6.50 to $9.50 makes the .20 probability out- 
comes less extreme, thus decreasing their decision weight v3 and enhancing the safer 
choice. This prediction coincides with that of optimistic RDU with its concave weighting 
function. Shifts from R choices to S choices are predicted in this case, and shifts from S 
choices to R choices are violations of CPT. 

For sets 2 to 6, predictions can be derived in the same way as just outlined for set 1. In 
each set, there are two changes in the common outcome CO that make the resulting 
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two pairs of choice situations not mutually comonotonic. RDU in general allows changes 
in preference between these pairs. Special cases of RDU that assume particular shapes 
for the weighting function w make more specific predictions: For changes of CO that 
move it from lowest to middle-ranked outcome, CPT and pessimistic RDU enhance the 
safer choice and exclude a preference reversal S ~ R, whereas optimistic RDU excludes 
R ~ S. For changes of CO that move it from middle to highest ranked outcome, CPT and 
optimistic RDU enhance the safer choice and exclude S ~ R; whereas, pessimistic RDU 
excludes R ~ S. All RDU theories exclude violations of comonotonic independence. 
These predictions are detailed in the lower parts of figures 3.1-3.6. It is important to note 
that these predictions hold true regardless of the nature of the transformation of out- 
comes; that is, no assumptions about the shape of the utility have been made. 

Summarizing, pessimistic weighting in RDU (convex w) means that more attention is 
paid to events as they yield outcomes that are low in the rank-order of possible outcomes, 
optimistic weighting in RDU (concave w) means that more attention is paid to events as 
they yield outcomes that are high in the distribution of possible outcomes, and CPT 
(S-shaped w with concave lower portion and convex upper portion) means that more 
attention is paid to events as they yield outcomes that are relatively more extreme. 

4.1. Expectations prior to the experiment 

Prior to the experiment, our expectation was as follows: There are many causes for 
deviations from EU and the independence condition. One of these many causes is rank- 
dependence, i.e., the phenomenon that people let the importance attributed to events 
depend on the rank in relative favorability. Thus we expected that, ceteris paribus, the 
independence condition would be less frequently violated for comonotonic gambles than 
for noncomonotonic ones. This is to be expected for the Allais-type choices in sets 5 and 
6, as many experiments have demonstrated. We expected to find the effect also for the 
other sets, but less pronounced, because several studies have found violations of inde- 
pendence primarily when nonlinearity of the weighting function near 1 or 0 is involved 
(Cohen and Jaffray, 1988). In studies of indifference curves in the probability triangle, 
nonlinearities are also mainly found near the borders (Camerer, 1992, stylized fact 1). 
Estimations of the probability weighting function for RDU usually find that the function 
is relatively linear in the middle of its region (e.g., Tversky and Kahneman, 1992). 

5. Experimental results 

5.1. Consistency 

Each subject chose twice among the gambles of each experimental pair, allowing for an 
examination of the consistency of repeated choices. Over the 24 experimental gambles 
and across display formats, the average subject made consistent choices (two R's or two 
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S's) for only 67% of the pairs. The graphical display produced the highest consistency 
(69%), and the collapsed display the lowest (61%), with no significant difference in 
consistency between conditions. This proportion of consistent choices against a chance 
level of 50% may seem disappointingly low and may seem to argue against the assump- 
tion that choice is deterministic. However, other explanations are also possible; this is 
discussed further below. 

The results are similar to those of Camerer (1989) and Starmer and Sugden (1989), 
where the estimates of inconsistencies were based on one observation per subject, allow- 
ing only for an overall estimate across subjects. In our experiment, consistency could be 
examined as an individual difference characteristic that may vary from individual to 
individual. Low consistency could be due to some individuals who choose at random, 
while others are highly consistent. Figure 4 shows the distribution of inconsistent choice 
proportions in our sample of 84 subjects. While there is some variation, over 90% of all 
subjects were inconsistent at least 25% of the time. The observed degree of inconsis- 
tency is smaller than would be expected if subjects had simply chosen at random (z = 
2.93, p < .005). An analysis of variance showed that consistency also depends on the 
set of gamble pairs (F[5,3] = 8.93; p < .0001); it is considerably higher in set 5 than 
in the other sets. 

Part of the observed inconsistencies can be explained through indifference, or weak 
preference: If two gambles are truly indifferent to the subject, or very close in value, then 
it is rational that the subject will choose randomly between these gambles; repeated 
choices can then be mutually different. As pointed out at the end of section 3, the 
experimental gambles were designed to be close in preference, so true indifference is 
quite plausible. We found a high correlation between inconsistency and a measure for 

Inconsistencies 
Midpoint 

0.15 ******** 

0.25 

0.35 

0.45 

0.55 

0.65 

0.75 

Cum. Cum. 
Freq Freq Percent Percent 

8 8 9.52 9,52 

****************************** 30 38 35.71 45.24 

*********************** 23 61 27.38 72~ 

*************** 15 76 17.86 90.48 

****** 6 82 7.14 97.62 

* 1 83 1.19 98.81 

* 1 84 1.19 i00.00 

5 i0 15 20 25 30 

Frequency 

Figure 4. The distribution of inconsistent choice proportions in the sample of 84 subjects. 
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strength of preference, 7 i.e., p = - .78,p < .0001. The higher consistency rate for the filler 
gamble choices, i.e., 84%, further supports the indifference explanation for the inconsisten- 
cies in choice for the experimental pairs, which makes the inconsistencies less problematic. 

5.Z Violations of independence," descriptive analysis within subjects 

Our null hypothesis, H0, assumes that violations of independence will occur equally 
likely in all pairwise comparisons of choices in this study. EU predicts that, without 
inconsistencies and errors in choice, independence is satisfied for all comparisons. We 
first discuss the data descriptively, without committing to any specific error theory. All 
that we assume for now is that, under EU, factors that contribute to violations of inde- 
pendence are just as likely to operate when the two pairs of gambles are mutually 
comonotonic as when they are not. Later we shall assume a specific error theory and then 
present a statistical analysis. 

Each set of choices in our study provides one test of comonotonic independence (for 
the two CO values in the same region in figure 2) and two tests of noncomonotonic 
independence. H0 predicts that the proportion of violations of comonotonic indepen- 
dence will be equal to the proportion of violations of noncomonotonic independence. 
RDU, on the other hand, predicts that the proportion of violations of noncomonotonic 
independence will be greater. 

The choices made by a subject for a given set of four gamble pairs can be described by 
a quadruple of numbers between 0 and 2 that describe the number of R choices out of a 
total of two possible ones for each pair (i.e., for the two replications of each choice). For 
example, a quadruple (2,1,0,2) means that the subject, consistently, chose R both times 
from the first choice pair (with the lowest value of CO), chose R once and S once from 
the second choice pair (i.e., was inconsistent), chose S both times from the third choice 
pair, and R both times in the final choice. 

Independence of preference from the value of the common outcome is assessed by 
comparing pairs of choices within the set. Suppose we observe, in set 1, a quadruple 
(2,0,0,0). This is taken as one violation of independence, observed in the comparison of 
the first two choices, and two verifications of independence, one in the comparison of 
second and third choice, the other in the comparison of third and fourth choice. Com- 
parisons of the first and third, and first and fourth choice also show evidence for viola- 
tions of independence; however, these violations follow from the one already counted in 
the comparison of first and second choice. Furthermore, they concern larger increases in 
the common outcome and thus should not be compared with changes in preference 
between pairs with adjacent levels of CO. Therefore, to avoid double counting and to 
compare violations of comonotonic versus noncomonotonic independence under condi- 
tions that are as similar as possible, we only compare independence violations for choice 
pairs with adjacent levels in the common outcome. 

For quadruples with inconsistent choices, for example, (2,2,2,1), the scoring of inde- 
pendence violations was as follows. Assuming that the inconsistency in choice for the 
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fourth choice pair reflects greater indifference between the S and the R alternative than 
the consistent choice of two R selections in the previous three choice pairs, this pattern 
provides some evidence for a violation of independence, namely a preference reversal 
from strict preference to indifference. Since this is a weaker violation than a reversal 
from strict preference to strict dispreference, we refer to the following choice patterns in 
adjacent pairs: (0,1), (2,1), (1,2), and (1,0), as weak violations of independence, and to 
(2,0) and (0,2) choice patterns in adjacent pairs as strong violations of independence. 

As a further example, the quadruple choice pattern (1,0,2,1) for set 1 shows two weak 
violations and one strong violation of independence. In set 1 the first two gamble pairs 
are comonotonic, hence this quadruple gives one weak violation of comonotonic inde- 
pendence; there is also a weak violation of noncomonotonic independence and one 
strong violation of noncomonotonic independence. The quadruple (1,1,2,0) for set 1 
similarly reveals one strong violation of noncomonotonic independence, one weak viola- 
tion of noncomonotonic independence, and no violation of comonotonic independence. 
For set 5, where the four gambles of the last two choice situations are comonotonic, the 
quadruple (1,0,0,2) reveals one strong violation of comonotonic independence and one 
weak violation of noncomonotonic independence. 

Table 1 lists the number of observed violations of independence. For 84 subjects, 6 
sets, and 3 tests of independence per set, there were altogether 84 x 6 • 3 = 1512 
different tests; one-third of them, 504, concerned comonotonic independence. There 
were 95 strong violations of (EU-) independence and 613 weak violations. Under H0, 
one expects 95/3, i.e., 31.66, strong violations of comonotonic independence, and 613/3 
= 204.33 weak violations of independence. The observed numbers, 33 and 205 under the 
general RDU column, do not differ significantly from those expected under H0. We 
see that comonotonic independence is not significantly less violated than non- 
comonotonic independence. If anything, comonotonic independence was slightly 
more frequently violated than noncomonotonic independence! Thus, across all 
choice pairs, there was no evidence that a general version of RDU accommodated 
the data better than EU. 

For the Allais-type choices, however, comonotonic independence performed better, 
in agreement with previous observations in the literature. Let us give results for the 
collapsed presentation, the commonly used format in the literature, concerning sets 5 
and 6. In these sets, the first increase in common outcome gives the Allais-type test of 
independence. Here there were, altogether, 9 strong violations of independence, leading 

Table 1. Number of observed violations versus number of violations predicted by H0. 

RDU RDUw cvx [pess RDUw ccv ]optm CPTw s sh EU 

obsd pred. H~I obsd pred. H0 obsd pred. H0 obsd pred. H0 
STRONG 33 31.66 64 63.33 64 63.33 60 63.33 95 
WEAK 205 204.33 398 408.66 420 408.66 394 406.66 613 
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to a proportion of 9/44 = .205; the overall proportion of strong violations of indepen- 
dence was 95/1512 = .063. Only 1 (H0 predicts 9/3 = 3) concerned a violation of 
comonotonic independence, and 7 (H0 predicts 1.5) were in the Allais tests and in the 
direction predicted by the Allais paradox. The weak violations give less pronounced 
results: out of 55 weak violations, 17 (H0 predicts 18.33) concerned comonotonic 
independence and 16 (H0 predicts 9.17) were in the Allais tests and in the predicted 
direction. 

Let us next consider the special cases of RDU described in section 4. Just as the 
general version of RDU, the special cases of RDU prohibit any violations of comono- 
tonic independence; in addition, they also prohibit some of the violations of noncomono- 
tonic independence (see figures 3.1-3.6). For example, as can be inferred from the lower 
half of figure 3.1, a quadruple (0,0,2,2) in set 1 means a strong violation of RDU with 
pessimism, and so does the quadruple (2,2,2,0); quadruples (2,2,0,0) and (0,0,0,2) do not 
violate RDU with pessimism. Thus, under H0, two-thirds of the 95 strong violations of 
independence could be expected to constitute violations of RDU with pessimism. A 
similar reasoning applies to the special cases of RDU with an optimistic (concave) 
weighting function w and to CPT (RDU with an S-shaped weighting function). 

The data in table 1 show that, for strong violations, neither RDU with optimism nor 
RDU with pessimism perform better than the null hypothesis would predict. For the 
weak violations, RDU with pessimism performs a little better than predicted by the null 
hypothesis (only 398 violations instead of 408.66), whereas RDU with optimism per- 
forms a little worse. CPT with its S-shaped w-function provides the best description of 
the choice patterns observed in this experiment. However, the improvement in predic- 
tion does not reach statistical significance. 

The Allais-type choices, i.e., the first two in sets 5 and 6, make it possible to compare 
our experimental design to other studies in the literature. Allais-paradox experiments in 
the literature mostly presented the gamble pairs in a display format similar to the col- 
lapsed format of our experiment. In other studies, choices are usually not repeated. To 
compare our repeated choices with single choices, it seems reasonable to count scores 
for our repeated choices as follows: 

�9 (0,0) and (2,2) each count as no violation of independence. 
�9 (2,0) and (0,2) each count as two "single" violations of independence. 
�9 (0,1), (1,2), (2,1), and (1,0) each count as one violation of independence. 
�9 (1,1) also counts as one violation of independence. 

Only the (1,1) score may need some elucidation; here the subject once chose R and 
once chose S, both in the first and second choice of the set. These choices can either 
be grouped as choices (R,R) and (S,S), giving no single violation of independence, or 
as choices (R,S) and (S,R), giving two violations. Therefore it seems reasonable, 
when comparing our repeated choices with single choices, to count also a (1,1) score 
as one single violation. (Only two of the 22 subjects gave a (1,1) score on these 
questions.) 
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With 22 subjects in the collapsed display format, one test in set 5 and one in set 6, and 
all choices made twice by each subject, there are 88 possibilities for "single-choice- 
violations" of independence in an Allais setting. By the above way of counting, we found 
39 violations of independence, i.e., in 44% of the cases. This is quite comparable to other 
results in the literature (MacCrimmon and Larsson, 1979; Keller, 1985; Conlisk, 1989). 
Previous studies that examined conditions in which outcomes were not collapsed gener- 
ally found fewer violations (around 20% in Keller, 1985). 

5.3. Statistical analysis within subjects 

We formulate now RDU hypotheses concerning the degree of deviation from EU in the 
true preferences. We show that even weak deviations from EU can be rejected on the 
basis of our data. The hypotheses that we consider only specify the degree of deviation 
from EU towards RDU, and do not consider specifications of RDU such as CPT or 
RDU with pessimism. 8 

For the statistical analysis, we assume that, for each choice, a subject has a "true 
preference" that is strict and remains constant throughout the decision. In addition, we 
assume that there is a probabilitype that the subject makes an error and chooses contrary 
to her true preference. This probability is assumed to be the same for all subjects and 
gamble pairs, and each error is assumed to be independent of everything else in the 
experiment. Obviously, in reality, the probability of error does depend at least partly on 
strength of preference, as shown in our data, but our assumption is an approximation 
that makes the analysis tractable. 

With an inconsistency rate of 1/3, the probabilitype for a choice error is determined by 
the equality 1/3 = 2pe(1 - Pe) (an inconsistency occurs if there is a choice error on the 
first choice and not on the second, or vice versa). From this, pe = .2113 is derived (Pe -- 
.7887 is excluded becausepe < 1/2). This error probabilitype will be assumed henceforth. 
The analysis below uses the number X (62 in our experiment) of observed strong viola- 
tions of noncomonotonic independence as statistic. 9 

There are a total of 12 tests per subject • 84 subjects = 1008 tests of noncomonotonic 
independence in our experiment. We consider hypotheses that claim that there are n 
violations of noncomonotonic independence in the true preferences, and 1008 - n tests 
that conform to EU, for varying values of n; such hypotheses are denoted by Hn. H0 is the 
hypothesis that EU holds; H1008 claims that all individuals violate noncomonotonic inde- 
pendence on every possible occasion. 

Tversky and Kahneman (1992) suggest the weighting function 

p.61 
w ( p )  = [~.61 q_ (1 --p)'6111/'61 

as a plausible weighting function for the "average" subject. For the utility function they 
suggest R ~ ec 88. (For all choices in our experiment, the same predictions would follow if 
we take utility linear.) With these parameters for CPT, one violation of comonotonic 
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independence is predicted in each of the six sets in our experiment; to be precise, the 
predicted choice patterns are RRSS, RRSS, RSSS, RSSS, RSSS, and RSSS for the six sets. 
Hence, if all subjects were perfectly described by this representation, then Hs04 would 
hold true. 

"Configural weighting theory" is an early developed theory by Birnbaum (1974) that 
contains most of the ideas of RDU. With the parameters derived from the experiment 
for pricing judgments 1~ in Birnbaum et al. (1992), the predicted patterns are RRSS, 
SSSS, SSSS, RSSS, RSSS, and RSSS. Hence it predicts fewer violations of noncomono- 
tonic independence than CPT. If all subjects were perfectly described by this represen- 
tation, then H336 would be implied. Let us repeat here that the present analysis only tests 
the strength of deviation from EU predicted by RDU theories, and does not test specific 
predictions about the places where violations of noncomonotonic independence are to 
be expected. For such specific RDU theories, other tests statistics thanX should be used, 
and these theories may actually perform better than RDU-in-general. 

Appendix B explains that the number of strong violations of noncomonotonic inde- 
pendence, X, is approximately normally distributed, and that: 

Lemma 2. Under Hn, the expectation of X is 

E(X) = n/3 + 55.944, 

and an upper bound for the variance of X is given by 

VAR(X) _< .2595n + 63.1680. 

Our observation X = 62 leads to an estimate of n = 18. That is, given an inconsistency 
rate of 1/3 for choices among the same pair of gambles, we can estimate that 62 observed 
strong violations of noncomonotonic independence are indicative of only 18 true viola- 
tions of noncomonotonic independence among the 1008 tests. In the calculations below, 
we shall use the upper bound for the variance as given above; therefore, our results are 
actually slightly stronger than what is claimed below. 

Statistically, we can clearly reject H504 in favor of the one-sided alternative hypothesis 
that there are fewer than 504 true violations of noncomonotonic independence. Under 
H504, the observed value o f X  = 62 has a z-statistic of 

62 - (504/3 + 55.944) 
z = = - 11.6282, p < .0001. 

~/.2595(504) + 63.168 

Similarly, we can reject H336. Under H336, the observed value o fX  = 62 has a z-statistic 
of 

z = 62-(336/3+55.944) = -8.6399, p < .0001. 
V.2595(336) + 63.168 
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Even the hypothesis of an average of at least one violation of noncomonotonic indepen- 
dence per subject among the 12 tests, H84 , can be rejected at the .05 level. Then 

62 - (84/3 + 55.944) 
z = = - 2.3806, p < .01. 

'].2595(84) + 63.168 

The strongest prediction not rejected at the .05 level by our data is the prediction of 62 
or more violations across subjects and choice sets (H62), i.e., an average of slightly less 
than one violation per subject. 

Conclusion: The hypothesis that there are at least 63 violations of noncomonotonic 
independence among the true preferences is rejected at the .05 level to the favor of the 
hypothesis that there are fewer deviations from EU. [ ]  

Our data can also be analyzed by Bayesian methods; these assume that all statistical 
information is captured in the likelihood function. Appendix B demonstrates that the 
likelihood ratio of H0 against H63, with the observed valueX = 62, is about 3.41. Forn  > 
63, the likelihood ratio is larger than 3.41. The first value for which it is larger than 2 is n 
= 54, and for n = 84 it is 14.8. Therefore,  on the basis of our data, prior odds for EU 
(H0, n = 0) against the hypothesis of an average of at least one violation of non- 
comonotonic independence per individual (n >_ 84) should be increased by at least a 
factor 14.8. 

5.4. An  aggregated preference change score 

Next we present an alternative analysis, which allows us to incorporate weak violations of 
independence. 

The "preference change" columns in table 2 summarize the proportions of reversals in 
preferences for each increase in the common outcome. A preference reversal score was 
calculated for each subject and each increase in the common outcome as the mean 
absolute difference in the number of R choices. For example, if a subject made two R 
choices in the first pair of the set and only one R choice in the second, her preference 
reversal score was 12 - 1 I/2 = .5. This score vector does not distinguish between 
preference reversals from R to S and from S to R, so it does not provide information for 
or against the special cases of R D U  that were described above, such as CPT (such 
information is provided in table 3). Table 2 lists these scores (normalized to be 1 for 
maximal deviations from EU). 

The increases in common outcome that do not affect the rank-ordering of outcomes 
and thus give a test of comonotonic independence, are marked in table 2 by a line 
connecting the two relevant common outcomes. These increases yield a considerable 
amount of preference reversals, an average of .268 over gambles and display conditions, 
which was not significantly smaller than the average over the noncomonotonic increases 



Table 2. Aggregated preference change scores. 

Basic gambles R choices Preference Change 

Set CO C N V G M C N V G M 

1 P .55 .25 .20 

S CO 6.0 7.0 

R CO 4.5 9.0 6.5 

9.5 

2 P .65 .20 .15 0.5 

S CO 3.5 5.5 

R CO 3.0 6.0 

3 P .40 .40 .20 

S CO 2.5 6.0 

R CO 1.5 7.5 

0.5 .45 

3.5 .50 

.50 

.41 

.50 

2.5 .64 

4.5 .59 

6.5 .43 

0.5 .43 

3.0 .45 .31 

5.5 .43 .19 

8.0 .36 .14 

.62 .67 .74 ,62 

.32 .36 .38 .29 .33 

.40* .60 .60 .52 

.27 .43 .38 .36 .36 

.55 .63 .62 .57 

.27 .36 .22 .26 .28 

.57 .65 .64 .57 

.45 .47 .57 .50 

.41 .19 .38 .43 .35 

.55 .60 .52 .58 

.27 .24 .32 .33 .29 

.55 .52 .57 .56 

.30 .33 .27 .33 .31 
.50 .70* .57 .55 

.29 .47 .38 .39 

.25 .26 .27 .29 .27 

.35 .52 .41 

.16 .21 .30 .26 .23 

.25 .50 .35 

.30 .19 .32 .17 .24 

.22 .43 .29 

4 P .70 .10 .20 2.5 .70 .81 

S CO 5.5 10.5 6.0 1 .57"  .74 .47 

R CO 3.5 12.5 9.5 1 .70  .64 .52 

13.0 .66 .79 .63 

5 P .50 .10 .40 0.0 .57 .12 .02 

2.0 .34 * 

4.0 .23 

6.0 .20 

S CO 2.0 2.0 

R CO 0.0 3.0 

.21 .10 

.24 .07 

.26 

6 P .50 .10 .40 2.0 .66 .57 

S C O  4.0 4.0 

R CO 2.0 5.0 

4.0 .36* 

6.0 .23 

8.0 .32 

.48 

.43 

.43 

.63 .81 .74 

.18 .21 .35 .21 .24 

.79 .64* 

.23 .29 .30 .19 .25 

.83 .68 

.14 .29 .30 .14 .21 

.83 .73 

.10 .21 

.41 .24 .13 .17 .24 

.17 .21 

.16 .17 .07 .14 .14 

.21 .19 

.20 .12 .10 .24 .17 

.07 .12 .17 

.38 .60 .55 

.43 .33 .22 .29 .32 
.25 .50 .40* 

.23 .29 .27 .29 .27 
.38 .45 .37 

.23 .24 .30 .36 .28 

.38 .48 .4O 

**p < .01,*p < .05 
The basic gambles column presents the probabilities (P) of the different outcomes and the basic structure of 
gambles S and R. The value of the common outcome is presented in the CO column. Common outcomes with 
identical ranks are connected by a line. The R choices columns present the proportions of R choices in the 
condition collapsed (C), not collapsed (N), verbal (V), graphical (G), and mean over conditions (M). The 
preference change columns show the within-subject preference changes in the same format. 
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in common outcomes, i.e., .264 (t[83] = .36,p = .72). Comonotonic independence again 
does not provide for a better prediction of the response patterns. 

5.5. A between-subjects analysis 

In a between-subjects analysis, choices are aggregated across individuals. The greater 
the difference is between the number of R choices for one common outcome and for 
another common outcome, the more evidence this provides against independence. 
While this evidence is indirect, it has the advantage that it is less sensitive to random 
error operating at the individual level (Tversky and Kahneman, 1992, section 2.2). It 
is also closer to economic observations, where data are often only available at the 
macro-level. 

The five columns below "R choices" in table 2 present the proportion of risky (R) 
choices made in each choice situation under the four display conditions, as well as 
averaged over all four conditions (column M). The display condition did not have an 
overall significant effect on risk taking (F[3,80] = 2.16,p = .098), nor did the set (F[5,76] 
= 1.1,p = .37). We examined the effect of each of the increases in the common outcome 
on the proportion of R choices in each condition. Of the 72 tests (3 increases per set • 6 
sets x 4 display conditions), only one was significant at the .01 level. The significant 
increase, marked by two stars, occurred in the first increase of set 6 under the collapsed 
condition. Note that this is one of the two "Allais-type" increases, in agreement with the 
prediction of RDU with pessimism and of CPT, and contrary to the prediction of RDU 
with optimism. Five increases were significant at the .05 level: the two collapsed Allais 
problems and three of the other 70 increases. 

These results, again, fail to reject the null hypothesis, under which one can expect one 
rejection at the .01 level among 70 tests and 3.5 rejections at the .05 level. Of the three 
significant non-Allais increases, one involved comonotonic gambles. Given that one- 
third of all the increases involves comonotonic gambles, this observed proportion is again 
consistent with the null hypothesis. 

Of the four significant results for noncomonotonic independence, the three significant 
results in sets 4, 5, and 6 all concern the first increase in common outcome and all show a 
decrease in risk-taking. This agrees with pessimism-RDU and with CPT. The significant 
result in set 2 gives an increase in risk-taking for the last increase of the common 
outcome. This is in agreement with pessimism-RDU and contrary to CPT's predic- 
tion; however, when this result is taken together with the results from other sets 
concerning the last increase in common outcome, CPT performs slightly better than 
RDU with pessimism, as we shall see below, although this is not significant. 

Aggregated over the four display conditions, only the first increase in set 6 (the 
Allais problem) is significant at the .01 level. The first increase in set 4 is significant at 
the .05 level. Both of these results are consistent with RDU with pessimism and with 
CPT. Again, for Allais-type choices, our finding is consistent with the findings in the 
literature. Other than for the Allais-type choices, we find no positive results for 
RDU; for the Allais choices there exist, of course, many explanations other than 
rank-dependence. 
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The effect of pessimism when the common outcomes have low values, is more pro- 
nounced than the optimism effect when the common outcomes have higher values. Over 
conditions, in all six sets the first increase in common outcome led to more preference 
reversals than the last increase. This linear trend is significant (p < .02 in a sign-test 
using set as a unit of analysis, and in a traditional t-test with subject as a unit of analysis). 
There was no significant interaction between the magnitude of this trend and the display 
condition. 

Table 3 presents preference change scores similar to table 2, that, however, do distin- 
guish between different specifications of RDU, the specifications being pessimism (indi- 
cated in columns Cp ... Mp), optimism (indicated in columns Co ... Mo), and CPT 
(indicated by underlining). This shows how the specific theories performed in particular 
sets of gambles (high scores indicate many violations, therefore bad performance). For 
the score of a specific model, only those preference changes contribute that do violate 
the specific model. For example, for the first increase of the CO outcome in set 1, any 
preference change constitutes a violation of all the RDU theories, so that here the scores 
in table 2 coincide with all the scores in table 3. For the second increase of the CO 
outcome in set 1, each preference change is either a violation of RDU with optimism, or 
a violation of RDU with pessimism; hence, the score in table 2 is here the sum of the 
scores of RDU with optimism and RDU with pessimism in table 3. We see from this 
table that CPT's better performance occurs mainly in the collapsed presentations, and 
mainly in the Allais-type choices of sets 5 and 6. 

6. Comparison with other tests in the literature 

RDU has usually been tested in the domain of decision under risk, where gambles 
are probability distributions over outcomes. An underlying assumption of such tests, 
known under various names such as the "reduction principle," is that different gam- 
bles that induce the same probability distribution, are indifferent. For the context 
where multistage gambles are used, this also invokes the "reduction of compound 
lotteries" assumption. Usually properties of indifference curves in the probability 
triangle are derived and tested. The analysis of indifference curves also assumes 
some transitivity conditions. Sometimes conditions for derivatives of indifference 
curves have been considered, and predictions are valid only in the direct neighbor- 
hood of the edges of the probability triangle. Conlisk (1989), Camerer (1992), and 
Harless (1992) found that phenomena are quite different for gambles inside the 
triangle than for gambles on the edges, with the pronounced violations of indepen- 
dence occurring mainly near the edges. 

It is well known that the above assumptions are empirically problematic; see Kahne- 
man and Tversky (1979), Luce and Fishburn (1991) and Bernasconi and Loomes (1992) 
for critical discussions of the reduction of the reduction principle. The reduction principle 
for single-stage gambles and transitivity have been abandoned in regret theory, as is dis- 
cussed further below. Reduction also becomes problematic if utility is event-dependent. 

A test of independence versus comonotonic independence with these additional as- 
sumptions is more problematic. In this case, the actual test is between {independence + 
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Table 3. Aggregated preference change scores for specifications of RDU. 

221 

Violations 

Set CO Cp Co Np No Vp Vo Gp Go Mp Mo 

1 0.5 

3.5 .32 .32 

.14 .14 

6.5 

.18 .09 

9.5 

2 0.5 

2.5 .41 .41 

.11 .16 

4.5 

.23 .07 

6.5 

3 0.5 

.14 .11 

3.0 

5.5 .16 .16 

.18 .11 

8.0 

4 2.5 

.02 .16 

6.0 

9.5 .23 .23 

.09 .05 

13,0 

5 0.0 

.09 .32 

2.0 

.14 .02 

4.0 

6.0 .20 .20 

6 2.0 

.07 .36 .12 .21 

4.0 

.18 .05 .17 .12 

6.0 

8.0 .23 .23 .24 .24 

.36 .36 .38 .38 .29 .29 .33 .33 

.29 .14 .20 .18 .19 .17 .20 .15 

.17 .19 .10 .13 .12 .14 

.19 .19 .38 .38 .43 .43 

.14 .14 

.35 .35 

.12 .12 .13 .20 .19 .14 .14 .15 

.19 .14 .05 .23 .17 .17 .16 .15 

.14 .12 .08 .20 .21 .07 .14 .13 

.21 .21 .30 .30 .26 .26 .23 .23 

.12 .07 .18 .15 .12 .05 .15 .10 

.07 .14 .10 .25 .10 .12 .07 .17 

.29 .29 .30 .30 .19 .19 .25 .25 

.07 .21 .10 .20 .07 .07 .08 .13 

.17 .07 .10 .03 .12 .05 .12 .12 

.07 .10 .05 .03 .05 .10 .08 .06 

.12 .12 .10 .10 .24 .24 .17 .17 

.05 .18 .10 .19 .08 .24 

.08 .20 .17 .12 .15 .12 

.30 .30 .36 .36 .28 .28 

The headings Set and CO and the first letter in the violation columns names, C, N, V, G, and M, keep table 2's 
format. The second letter stands for R D U  with pessimism (p) or R D U  with optimism (o). The underlined 
scores measure violations of CPT. 
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reduction principle + transitivity} as opposed to {comonotonic independence + reduc- 
tion principle + transitivity}, and the obtained results may be disturbed by violations of 
the reduction or transitivity principle. Camerer and Ho (1994) discuss the desirability of 
disentangling principles that are to be tested from the confounding influence of assump- 
tions such as the reduction principle and transitivity. 

Our notion of independence can be tested in the common consequence version of the 
Allais paradox, when formulated in a state-format. It is not tested directly in the common 
ratio version of the Allais paradox; the latter involves more assumptions (including a 
kind of state-independence of utility). The common ratio test provides a direct test of 
mixture independence for decision under risk (P > O r kP + (1 - X)R > xO + (1 - 
X)R). Independence as defined and tested in this article is more basic than mixture 
independence for decision under risk. 

It can be seen that our test, for the context of uncertainty, is also robust against 
state-dependence of utility which in the context of rank-dependence is studied in Chew 
and Wakker (1993). 

The most well-known theory that does not assume the reduction principle or transitiv- 
ity is regret theory. However, regret theory still requires independence in the event- 
contingent presentation of gambles studied in this article. Thus, all violations of indepen- 
dence observed in our experiment also constitute violations of regret theory. The 
explanation of regret theory for violations of independence in decision under risk, which 
assumes that subjects perceive different gambles as statistically independent, does not 
apply to our experiment. In our experiment, the two gambles of each choice pair were 
related to the same events; thus, it was clear that they are correlated and hence not 
statistically independent. Starmer (1992), who found strong regret effects, also devised 
an experiment that was robust against regret effects. He tested implications of RDU with 
pessimism, as well as some other theories, and found that none of these theories de- 
scribed his findings well. None of his tests of independence, however, included tests of 
comonotonic independence. 

Nakamura (1992) provides a joint generalization of RDU and regret theory. It permits 
violations of noncomonotonic independence, but still implies comonotonic indepen- 
dence, without invoking the reduction principle or transitivity. Our experiment actually 
tested this nontransitive version of comonotonic independence and found that for our 
choice pairs the condition was not of descriptive value. 

Most empirical studies in the literature have simultaneously tested several non-EU 
theories, and questions have not been tailored to RDU as they have been in our experi- 
ment. Usually, the stimuli are gambles for which the probabilities are not related to 
underlying events; for such stimuli, an elementary test of comonotonic independence is 
not feasible. In addition, most tests have almost exclusively studied the probability trian- 
gle, which is not a suitable domain for testing RDU for the following two reasons. First, 
if outcomes are fixed and probabilities are varied, then RDU allows for much freedom. 
This is contrary to betweenness theories; the latter, for instance, imply linearity of indif- 
ference curves in the probability triangle, and thus can well be tested there. Second, the 
probability triangle considers no more than three fixed outcomes, whereas any test of 
comonotonic independence requires four or more distinct outcomes. Let us state this 
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formally; a proof is given in appendix A. "Nontrivial" means that the choice should not 
be determined by dominance. 

Observation 3. A nontrivial test of comonotonic independence requires at least four 
distinct outcomes. [ ]  

RDU provides predictions across different probability triangles, i.e., indifference 
curves should retain certain patterns. They were, however, found not to (Starmer and 
Sugden, 1989; Camerer, 1989, p. 94; Camerer, 1992, Stylized Fact 5). Since all prefer- 
ences considered in these references were between gambles from within the same trian- 
gle, a direct test of comonotonic independence was not possible. 

Tests of RDU have also been restricted mostly to testing the pessimistic or optimistic 
version, and have concerned themselves with specific pessimism or optimism 
implications. 11 Camerer and Weber (1992, end of section 4) suggested the testing of 
comonotonic independence. Our experiment adds to the evidence that neither the pes- 
simistic, nor the optimistic, version of RDU is empirically convincing. The mix of the two, 
as suggested by Tversky and Kahneman (1992), seems most promising. A mix of the 
two can also agree with the first proposal of RDU, by Quiggin (1982), that assumed 
w(1 /2 )  = 1/2. 

Wu (1993) tested "ordinal independence," a condition for decision under risk that 
under the reduction principle is somewhat weaker than comonotonic independence, but 
under continuity is equivalent (Chew and Wakker, 1993, Remark AI.1). For outcomesx 
> y > z, and probabilities p, q, r, s summing to one, Wu found, in choices between 
gambles R = ( CO, p; y, q; O, r; O, s) and S = (CO,p; z, q; z, r; O, s ), that for CO = x subjects 
would more often choose R, but for CO = y they would more often prefer S. This 
constitutes a systematic violation of RDU, thus casting further doubt on the theory. Wu 
used a collapsed presentation of gambles, and explained his results through a hypothesis 
about the editing of transparently common outcomes. Note that in our experiment 
no collapsing of outcomes occurred outside the "Allais-type" questions in sets five 
and six. 

7. Conclusion 

This article has shown that the critical test between RDU and EU is the validity of 
comonotonic independence of preference against full-force independence. This test is 
the most basic one possible and is not affected by violations of the reduction principle, 
transitivity, or independence of utility from events. The experiment reported here pro- 
vides the first pure test of RDU in its most general form. 

The finding of the experiment is negative. Comonotonic independence does not per- 
form better than full4orce independence; i.e., RDU does not improve upon EU. Strong 
degrees of deviation of EU into the direction of RDU can be rejected by our data. Given 
the current popularity of RDU-like theories as descriptive alternatives to EU, our nega- 
tive finding is noteworthy. We have not yet investigated the performance of comonotonic 
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independence for decision under uncertainty; this will be tested in Fennema and Wak- 
ker (in preparation). 

The negative empirical evidence about better performance of the general RDU 
form in our experiment does not, of course, invalidate the theory. RDU can still 
provide a convenient and flexible mathematical form, special cases of which may yet 
provide significant improvements over EU. This may be the future of RDU: the 
discovery of special forms and special cases where it is of value. Our results suggest 
that most of the descriptive effectiveness of current rank-dependent utility models 
and extensions thereof in the experimental investigations may derive from features 
other than rank-dependence as such. 

Appendices 

Appendix A proves Observation 3. Appendix B gives probability calculations for a statis- 
tical analysis in section 5. 

Appendix A. Comonotonic independence and the probability triangle 

The proof of Observation 3 provided here shows that a nontrivial test of comonotonic 
independence is not possible in the probability triangle, which contains only three dis- 
tinct outcomes. 

For a nontrivial choice between two gambles, it is necessary that, for one event, one 
gamble is strictly better, and for another event, the other gamble. For a test of comono- 
tonic independence, there must yet be another event for which the two gambles have a 
common outcome. In the simplest case, no other outcomes are involved. Therefore, 
suppressing events in the notation, we consider choices between gambles (Rh, Rl, CO) 
and (Sh, Sl, CO) and between gambles (Rh, RI, CO') and (Sh, St, CO'). For nontriviality, 
Rh > Sh, Sl > Rl, and CO' ~ CO and for comonotonicity Rh > Sh >- Si > Rl. Further, 
for comonotonicity, either {CO', CO} >_ Rh or Sh >-- {CO', CO} >_ S l or R l >_ {CO', CO}. 
These comparisons provide the simplest tests of comonotonic independence. 

If there are only three distinct outcomes in {Rh, Sh, St, Rl}, i.e., if Sh = Sl, then at least 
one of {CO, CO'} is not contained in {Rh, Sh, Sl, RI}. Therefore, a nontrivial test of 
comonotonic independence always requires at least four distinct outcomes. 

Appendix B. Statistical analysis based on an error theory 

This appendix gives the probability calculus needed for the within-subjects statistical 
analysis of section 5.3. Recall thatpe denotes the probability for a choice error. Table 4 
below gives the probabilities for all possible outcomes with two replications of a test of 
independence. A test of independence is defined as the choices of a given subject for two 
subsequent gamble pairs from a set. These gamble pairs differ only in the common 
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Table 4. Probability of observations, given state of true preferences, in pair of subsequent gambles in a set. 

Probability of observations in one test 

strong viol. weak viol. ( 1,1 ) strong verif. 

true prefs verify independence .0555 .4444 .1111 .3889 
true prefs violate independence .3889 .4444 .1111 .0555 

Strong violations correspond to (2,0) and (0,2) scores, weak violations to scores (1,2), (1,0), (2,1), (0,1), and 
strong verifications to scores (0,0) and (2,2). 

outcome value CO. Suppose first that  the true preferences of  the subject do not violate 
independence,  i.e., for both gamble pairs, either the riskier gamble is preferred,  or the 
safer gamble is preferred.  Then a strong verification of independence,  i.e., the observed 
pat tern (2,2) or (0,0), occurs if, for the choices in both gamble pairs and for the two 
replications of both choices, the subject made  no choice error, which occurs with proba-  
bility (1 - pc)  4 = .3869, or if the subject erred on all four choices, which occurs with 
probabi l i ty  Pe ~ = .0020. Al together ,  the probabi l i ty  for a s trong verification is thus 
.3889. The  probabi l i ty  for a s trong violation of i ndependence  (2,0 or 0,2), given that  
the t rue  p re fe rences  do not violate independence ,  is p2(1 - pc)  2 + (1 - pe)2p 2 = 

.0555. 
If  the true preferences  do violate independence,  i.e., in the first gamble pair R is 

preferred,  and in the second gamble pair  S or vice versa, then the probabilities of  a strong 
violation and a strong verification are reversed. 

Finally, the probabili ty for a weak violation of independence is the probability for one 
inconsistency and one consistency, i.e., it is 1 x 2 + 2 x 1 = 4/9 = .4444, and the 
probability for a (1,1) score is the probability for two inconsistencies, i.e., 1 x 1 = .1111. 
It may seem remarkable  that  weak violations are as probable  if true preferences violate 
independence,  as when they satisfy independence,  so that  an observed weak violation 
would not provide evidence against independence.  In practice, weak violations do pro- 
vide evidence against independence,  because they suggest a change from strict prefer- 
ence to indifference (or from stronger to weaker preference strength), a point ignored in the 
present analysis where only strict preference and inconsistency are assumed. 

Nei ther  E U  nor  R D U  predicts any t rue-preference violations for the comonotonic  
tests of  independence.  Hence  the expected number  of  observed strong violations in the 
504 comonotonic  tests is .0555 x 504 = 27.97, which does not deviate significantly f rom 
the 33 observed strong violations (p = .29). Since both theories predict the same for the 
comonotonic  tests of  independence,  and the observed value does not deviate signifi- 
cantly f rom this prediction, the statistical analysis in the text only considered the 1008 
noncomonotonic  tests of  independence.  

The  probability distribution of X, the total number  of  observed strong violations of  
noncomonotonic  independence,  depends  of course on the total number  n of  true- 
preference  violations. It, however, depends  also on the number  k of  ("individual") sets 12 
that contain two t rue-preference violations of  noncomonotonic  independence (leaving n 



226 PETER WAKKER/IDO EREV/ELKE WEBER 

- 2k sets that contain exactly one true-preference violation of independence). We 
denote by Hi, k the hypothesis that k sets contain two true-preference violations of 
noncomonotonic independence, and n - 2k sets contain exactly one true-preference 
violation of noncomonotonic independence. Hn, k is a subhypothesis of Hn. We shall 
derive upper bounds for variances, given Hn, that hold true for each hypothesis Hn, k, SO 
that our conclusions, given Hn, in the main text indeed hold true independently of the 
value of k.~3 We assume that choices differ from the true preferences only because of 
errors, and that errors in different choices are mutually independent. The contributions 
of the 504 different individual sets to X are then also mutually independent; further, the 
variances of these 504 contributions do not differ widely. Therefore, X is approximately 
normally distributed. 

Under Hn, the expectation of X is independent of k, and it is 

E(X) = .3889 x n + .0555 x (1008 - n) 
= .3334 x n + .0555 x 1008 = n B  + 55.944. 

Next we calculate an upper bound for the variance of X under Hn, i.e., an upper bound 
for all hypotheses Hn, k. Note that, for sets 3 and 4, the first test of noncomonotonic 
independence concerns the first two gamble pairs, and the second test concerns the third 
and fourth gamble pairs. These two tests concern different gambles, so are statistically 
independent. For sets 1 and 2, the two tests involve one same gamble pair, i.e., the third 
pair, and thus are not independent. Similarly, the two tests for sets 5 and 6 both involve 
the second gamble pair, and thus are also not independent. 

If a test of noncomonotonic independence shows a strong violation, then it contributes 
one count to the total number X of observed strong violations of independence, other- 
wise 0. Let us denote this contribution by Y; so Y = 1 or Y = 0. If the underlying true 
preferences satisfy independence, the variance of Yis .0555(1 - .0555) = .0524. If  the 
underlying true preferences violate independence, the variance of Yis .3889(1 - .3889) 
= .2377. These values are listed in tables 5 and 6, as individual variance components. Let 
us now turn to a detailed derivation and explanation of the two tables. 

We determine now the variance of the contribution to X of two tests of independence 
for a given subject in a set, when the two tests contain one gamble pair in common (e.g., 
in set 1, where the first test involves the second and third gamble pair, and the second test 
involves the third and fourth gamble pair). The contribution of the first test to X is 
denoted by Y, the contribution of the second test by Z. 

Table 5. Probability calculations for sets 1,2,5,6. 

Var(Y), Var(Z) P(2 strong viols) Covar. Var(Y + Z) 

ind. verified in true prefs .0524, .0524 .0185 .0154 .1356 
1 viol. ind. in true prefs .2377, .0524 .0185 -.0031 .2839 
2 viols, ind. in true prefs .2377, .2377 .2408 .0896 .6546 
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Table 6. Probability calculations for sets 3, 4. 

Var(Y), Var(Z) P(2 strong viols) Covar. Var(Y + Z) 

ind. verified in true prefs .0524, .0524 .0031 0 .1048 
1 viol. ind. in true prefs .2377, .0524 .0216 0 .2901 
2 viols, ind. in true prefs .2377, .2377 .1512 0 .4754 

First, suppose that the true preferences  satisfy independence,  e.g., the subject prefers 
R in all three choices. Then  the probability that Yand  Z are both 1 (i.e., that  the observed 
scores for the last three choice pairs of  set 1 are either (2,0,2) or (0,2,0)) is (1 - .2113) 2 
.21132(1 - .2113) 2 + .21132(1 - .2113)2.21132 = .0185. The  covariance of Y and Z is 
the expectatiop, of  their product  (which is the probability that both are 1) minus the 
product  of  their expectations, i.e., it is .0185 - (.0555) 2 = .0154. The  variance of Y + Z 
is the sum of the variances of  Y a n d  Z plus twice their covariance, i.e., it is .1356. 

Next, suppose that  the true preferences  contain one violation of independence.  Say 
the true preferences  are RSS for the last three choices of set 1 (the other  cases, SRR,  
RRS,  and SSR, are similar, and give the same results, except that in the latter two cases 
the individual variances of  Yand  Z are interchanged). Then  the probability that Yand  Z 
are both 1 (i.e., that  two strong violations of  independence are observed) is again (1 - 
.2113)4.21132 + .21134(1 - .2113) 2 = .0185. The  covariance of Y and Z is .0185 - 
(.3889 • .0555) = - .0031. The  variance of Y + Z is the sum of the individual variances 
plus twice the covariance, i.e., it is .2377 + .0524 - .0062 = .2839. 

Finally, suppose that  the true preferences  contain two violations of  independence.  Say 
the true preferences  are R S R  for the last three choices of  set 1. Then  the probability that  
Yand  Z are both 1 (i.e., that two strong violations of independence are observed) is (1 - 
.2113) 6 + .21136 = .2408. The  covariance of Y a n d  Z is .2408 - (.38892) = .0896. The  
variance of Y + Z is the sum of the individual variances plus twice the covariance, i.e., it 
is .2377 + .2377 + 2(.0896) = .6546. 

For  sets 3 and 4, the two tests of  noncomonotonic  independence are statistically 
independent .  Thus, the variance of Y + Z is computed  as above, except that  the covari- 
ance terms are zero. The  variance of Y + Z is equal to the variance of Yplus the variance 
of Z, i.e., it is. 1048 if the true preferences  satisfy independence,  .2901 if the true prefer-  
ences contain one violation of independence,  and .4754 if the true preferences  contain 
two violations of independence.  

To  find an upperbound  for the variance under  Hn, k, we shall maximize the difference 
of this variance with the variance under  H0, 0 (no t rue-preference violations of  indepen- 
dence). In sets 1, 2, 5, or 6, an individual set with two t rue-preference violations of 
independence generates  an increase in variance (as compared  to H0,0) of  .6546 - .1356 
-- .5190; in sets 3 or 4 the increase in variance is .4754 - .1048 = .3706 (that is, the 
genera ted increase in variance is highest in sets 1,2,5, or 6). 

In sets 1, 2, 5, and 6, an individual set with one t rue-preference violation of indepen- 
dence generates  an increase in variance (as compared  to H0,0) of.2839 - .1356 = .  1483; 
in sets 3,4 the increase in variance is .2901 - .1048 = .1853 (hence, this is highest in sets 
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3,4). Therefore, under H,j~, the maximal variance results if all k individual sets contain- 
ing two true-preference violations of independence are in the sets 1, 2, 5, 6, and all n - 
2k individual sets containing one true-preference violation of independence are in sets 3, 
4. Given that setup, we maximize with respect to k. If k is increased by one, then the 
increase in variance as compared to H0, 0 of sets 1, 2, 5, 6 is increased by another .5190, 
and the increase in variance as compared to H0.0 of sets 3, 4 decreases by 2(.1853) = 
.3706. Thus the maximal variance under H,, results i fk is maximal, i.e., k = n/2; in this 
case, all violations of noncomonotonic independence are maximally grouped together in 
same individual sets, and further they all occur in sets 1, 2, 5, or 6. (For the moderate 
values of n, k that are relevant for our analysis, that configuration can always be ob- 
tained.) Note that this configuration is quite implausible, so that in reality the variance 
will be lower. 

Given the described configuration of true-preference violations (and 4 x 84 = 336 
individual sets belonging to sets 1, 2, 5, or 6, and 2 • 84 = 168 to sets 3 or 4), the variance 
of Xis  .6546n/2 + .1356(336 - n/2) + .1048(168) = .2595n + 63.168. We conclude that 
the variance of Xis  less than or equal to 

.2595n + 63.168. 

Next we determine the likelihood function over the parameter  values of n, given the 
observationX = 62. For the variance we take again the upper bound derived above. The 
true variance is somewhat smaller, which means that the likelihood ratios are in reality 
even farther removed from 1, and our results are actually slightly stronger than our 
claims. With the variance as described, the likelihood function (multiplied by x/2~v) is 

1 x e x p ( - ( 6 " 0 5 6 - n / 3 ) 2  ). 
V.2595n + 63.168 2(.2595n + 63.168) 

Table 7 gives the likelihood function for some values of n, as well as the likelihood ratio 
of EU (n = 0) against those values of n. 
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Notes 

1. Wu (1993), in a study of which we were only recently informed, tested "ordinal independence," a condition 
for decision under risk that under continuity is equivalent to comonotonic independence. He found sys- 
tematic violations of ordinal independence, and thus of RDU. 

2. In the literature on decision under risk, a dual approach is often used, where outcomes are processed in a 
reversed order. By some elementary manipulations, this approach can be shown to be data-equivalent to 
our approach; convexity of the weighting function in our approach is equivalent to concavity in the dual 
approach, and vice versa. 

3. Copies of the instructions and the computer program to run the experiment are available upon request. 
4. There are a variety of psychological interpretations of the RDU transformation that go beyond transfor- 

mations from objective to subjective probabilities (Weber, in press). However, the present experiment was 
designed to demonstrate the existence of the phenomenon rather than its interpretation. 

5. Remember that, in the literature for decision under risk, a way of integration is often used that is dual to 
our way. Convexity of our weighting function corresponds to concavity in this dual approach. 

6. Weber, Anderson, and Birnbaum (1992) found strong evidence for differential weighting of probabilities 
associated with positive, negative, or zero outcomes for judgments of attractiveness as well as risk. 

7. Absolute difference between .5 and the proportion of risky choices across subjects. 
8. The latter two would perform somewhat better than RDU-in-general, the model tested here. Exact prob- 

ability calculations would, however, be complicated, because a symmetry between riskier and safer choices 
that has greatly simplified the following analysis, does not hold true for specific RDU models such as CPT. 

9. As explained in appendix B, the strong violations of comonotonic independence, and alI weak violations of 
independence, do not provide statistical information under the present assumptions. 

10. Given by Birnbaum (1992), personal communication. 
11. Wakker (1994a) showed that, given RDU, pessimism is equivalent to quasiconvexity of preferences with 

respect to probabilistic mixtures, and optimism is equivalent to quasiconcavity. The derivation of this result 
is not elementary, and it has not been known before in the literature. It suggests that tests of RDU with 
pessimism were rather tests of quasiconvexity. 

12. We use the term "set" both in a generic sense, and to describe a set-per-individual. When confusion might 
arise, we say "individual set" for set-per-individual. 

13. The probability distribution of Xdepends,  given n and k in H,,.k, on one more thing, i.e., the numbersn'  and 
k' of these violations in sets 3 and 4. (Thus, the remaining numbers of these violations in sets 1,2,5,6 are n 
- n '  and k - k'.) The upper bounds derived below will cover all possible configurations. 
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