243 research outputs found

    A modified expression of the major hydrolase activator in Hypocrea jecorina (Trichoderma reesei) changes enzymatic catalysis of biopolymer degradation

    Get PDF
    AbstractHypocrea jecorina (anamorph Trichoderma reesei) is a saprophytic fungus that produces hydrolases, which are applied in different types of industries and used for the production of biofuel. A recombinant Hypocrea strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1), was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also showed improved ability of clearing xylan medium on plates. Furthermore, this strain has a changed transcription profile concerning genes encoding for hydrolases and enzymes associated with degradation of (hemi)celluloses. We demonstrated that enzymes of this strain from a xylan cultivation favoured break down of hemicelluloses to the monomer d-xylose compared to the parental strain, while the enzymes of the latter one formed more xylobiose. Applying supernatants from cultivation on carboxymethylcellulose in enzymatic conversion of hemicelluloses, the enzymes of the recombinant strain were clearly producing more of both, d-xylose and xylobiose, compared to the parental strain. Altogether, these results point to a changed hydrolase expression profile, an enhanced capability to form the xylan-monomer d-xylose and the assumption that there is a disordered induction pattern if the Xylanase regulator 1 is de-regulated in Hypocrea

    Translocator protein in late stage Alzheimer\u27s disease and Dementia with Lewy bodies brains

    Get PDF
    OBJECTIVE: Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer\u27s disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB. METHODS: TSPO density was measured in multiple regions of postmortem human brains in 20 different cases: seven late stage AD cases (Braak amyloid average: C; Braak tangle average: VI; Aged 74-88, mean: 83 ± 5 years), five DLB cases (Braak amyloid average: C; Braak tangle average: V; Aged 79-91, mean: 84 ± 4 years), and eight age-matched normal control cases (3 males, 5 females: aged 77-92 years; mean: 87 ± 6 years). Measurements were taken by quantitative autoradiography using [ RESULTS: No significant changes were found in TSPO density of the frontal cortex, striatum, thalamus, or red nucleus of the AD and DLB brains. A significant reduction in TSPO density was found in the substantia nigra (SN) of the AD and DLB brains compared to that of age-matched healthy controls. INTERPRETATION: This distinct pattern of TSPO density change in late stage AD and DLB cases may imply the occurrence of microglia dystrophy in late stage neurodegeneration. Furthermore, TSPO may not only be a microglia activation marker in early stage AD and DLB, but TSPO may also be used to monitor microglia dysfunction in the late stage of these diseases

    PET imaging of in vivo caspase-3/7 activity following myocardial ischemia-reperfusion injury with the radiolabeled isatin sulfonamide analogue [(18)F]WC-4-116

    Get PDF
    The utility of [(18)F]WC-4-116, a PET tracer for imaging caspase-3 activation, was evaluated in an animal model of myocardial apoptosis. [(18)F]WC-4-116 was injected into rats at 3 hours after a 30 min period of ischemia induced by temporary occlusion of the left anterior descending coronary artery in Sprague-Dawley rats. [(18)F]WC-4-116 uptake was quantified by 1) autoradiography, 2) microPET imaging studies, and 3) post-PET biodistribution studies. MicroPET imaging also assessed uptake of the non-caspase-3-targeted tracer [(18)F]ICMT-18 at 3 hours postischemia. Enzyme assays and Western blotting assessed caspase-3 activation in both at-risk and not-at-risk regions. Caspase-3 enzyme activity increased in the at-risk but not in the not-at-risk myocardium. Quantitative autoradiographic analysis of [(18)F]WC-4-116 demonstrated nearly 2-fold higher uptake in the ischemia-reperfusion (IR) versus sham animals. [(18)F]WC-4-116 microPET imaging studies demonstrated that the IR animals was similarly elevated in relation to sham. [(18)F]ICMT-18 uptake did not increase in at-risk myocardium despite evidence of caspase-3 activation. Biodistribution studies with [(18)F]WC-4-116 confirmed the microPET findings. These data indicate that the caspase-3-PET tracer [(18)F]WC-4-116 can noninvasively image in vivo caspase activity during myocardial apoptosis and may be useful for clinical imaging in humans

    In Vivo Study of the Sorbicillinoid Gene Cluster in Trichoderma reesei

    Get PDF
    Sorbicillinoids are a diverse group of yellow secondary metabolites that are produced by a range of not closely related ascomycetes, including Penicillium chrysogenum, Acremonium chrysogenum, and Trichoderma reesei. They share a similarity to the name-giving compound sorbicillin, a hexaketide. Previously, a conserved gene cluster containing two polyketide synthases has been identified as the source of sorbicillin, and a model for the biosynthesis of sorbicillin in P. chrysogenum has been proposed. In this study, we deleted the major genes of interest of the cluster in T. reesei, namely sor1, sor3, and sor4. Sor1 is the homolog of P. chrysogenum SorA, which is the first polyketide synthase of the proposed biosynthesis pathway. Sor3 is a flavin adenine dinucleotide (FAD)-dependent monooxygenase, and its homolog in P. chrysogenum, SorC, was shown to oxidize sorbicillin and 2′,3′-dihydrosorbicillin to sorbicillinol and 2′,3′-dihydrosorbicillinol, respectively, in vitro. Sor4 is an FAD/flavin mononucleotide-containing dehydrogenase with an unknown function. We measured the amounts of synthesized sorbicillinoids throughout growth and could verify the roles of Sor1 and Sor3 in vivo in T. reesei. In the absence of Sor4, two compounds annotated to dihydrosorbicillinol accumulate in the supernatant and only small amounts of sorbicillinol are synthesized. Therefore, we suggest extending the current biosynthesis model about Sor4 reducing 2′,3′-dihydrosorbicillin and 2′,3′-dihydrosorbicillinol to sorbicillinol and sorbicillinol, respectively. Sorbicillinol turned out to be the main chemical building block for most sorbicillinoids, including oxosorbicillinol, bisorbicillinol, and bisvertinolon. Further, we detected the sorbicillinol-dependent synthesis of 5-hydroxyvertinolide at early time points, which contradicts previous models for biosynthesis of 5-hydroxyvertinolide. Finally, we investigated whether sorbicillinoids from T. reesei have a growth limiting effect on the fungus itself or on plant pathogenic fungi or on pathogenic bacteria

    Proceedings from the Fourth International Symposium on sigma-2 receptors: Role in health and disease

    Get PDF
    The sigma-2 receptor (S2R) complex has been implicated in central nervous system disorders ranging from anxiety and depression to neurodegenerative disorders such as Alzheimer\u27s disease (AD). The proteins comprising the S2R complex impact processes including autophagy, cholesterol synthesis, progesterone signaling, lipid membrane-bound protein trafficking, and receptor stabilization at the cell surface. While there has been much progress in understanding the role of S2R in cellular processes and its potential therapeutic value, a great deal remains unknown. Th

    Involvement of circulating CEA in liver metastases from colorectal cancers re-examined in a new experimental model

    Get PDF
    Both experimental and clinical data show evidence of a correlation between elevated blood levels of carcinoembryonic antigen (CEA) and the development of liver metastases from colorectal carcinomas. However, a cause-effect relationship between these two observations has not been demonstrated. For this reason, we developed a new experimental model to evaluate the possible role of circulating CEA in the facilitation of liver metastases. A CEA-negative subclone from the human colon carcinoma cell line CO115 was transfected either with CEA-cDNA truncated at its 3' end by the deletion of 78 base pairs leading to the synthesis of a secreted form of CEA or with a full-length CEA-cDNA leading to the synthesis of the entire CEA molecule linked to the cell surface by a GPI anchor. Transfectants were selected either for their high CEA secretion (clone CO115-2C2 secreting up to 13 microg CEA per 10(6) cells within 72 h) or for their high CEA membrane expression (clone CO115-5F12 expressing up to 1 x 10(6) CEA molecules per cell). When grafted subcutaneously, CO115-2C2 cells gave rise to circulating CEA levels that were directly related to the tumour volume (from 100 to 1000 ng ml(-1) for tumours ranging from 100 to 1000 mm3), whereas no circulating CEA was detectable in CO115 and CO115-5F12 tumour-bearing mice. Three series of nude mice bearing a subcutaneous xenograft from either clone CO115-2C2 or the CO115-5F12 transfectant, or an untransfected CO115 xenograft, were further challenged for induction of experimental liver metastases by intrasplenic injection of three different CEA-expressing human colorectal carcinoma cell lines (LoVo, LS174T or CO112). The number and size of the liver metastases were shown to be independent of the circulating CEA levels induced by the subcutaneous CEA secreting clone (CO115-2C2), but they were directly related to the metastatic properties of the intrasplenically injected tumour cells
    corecore