1,071 research outputs found

    Magnetically-dominated jets inside collapsing stars as a model for gamma-ray bursts and supernova explosions

    Full text link
    It has been suggested that magnetic fields play a dynamically-important role in core-collapse explosions of massive stars. In particular, they may be important in the collapsar scenario for gamma-ray bursts (GRB), where the central engine is a hyper-accreting black hole or a millisecond magnetar. The present paper is focussed on the magnetar scenario, with a specific emphasis on the interaction of the magnetar magnetosphere with the infalling stellar envelope. First, the ``Pulsar-in-a-Cavity'' problem is introduced as a paradigm for a magnetar inside a collapsing star. The basic set-up of this fundamental plasma-physics problem is described, outlining its main features, and simple estimates are derived for the evolution of the magnetic field. In the context of a collapsing star, it is proposed that, at first, the ram pressure of the infalling plasma acts to confine the magnetosphere, enabling a gradual build-up of the magnetic pressure. At some point, the growing magnetic pressure overtakes the (decreasing) ram pressure of the gas, resulting in a magnetically-driven explosion. The explosion should be highly anisotropic, as the hoop-stress of the toroidal field, confined by the surrounding stellar matter, collimates the magnetically-dominated outflow into two beamed magnetic-tower jets. This creates a clean narrow channel for the escape of energy from the central engine through the star, as required for GRBs. In addition, the delayed onset of the collimated-explosion phase can explain the production of large quantities of Nickel-56, as suggested by the GRB-Supernova connection. Finally, the prospects for numerical simulations of this scenario are discussed.Comment: Invited paper in the "Physics of Plasmas" (May 2007 special issue), based on an invited talk at the 48th Annual Meeting of the APS Division of Plasma Physics (Oct. 30 - Nov. 3, 2006, Philadelphia, PA); 24 pages, 7 figure

    Using Technology to Encourage Self-Directed Learning: The Collaborative Lecture Annotation System

    Get PDF
    The rapidly-developing 21st century world of work and knowledge calls for self-directed lifelong (SDL) learners. While higher education must embrace the types of pedagogies that foster SDL skills in graduates, the pace of change in education can be glacial. This paper describes a social annotation technology, the Collaborative Lecture Annotation System (CLAS), that can be used to leverage existing teaching and learning practices for acquisition of 21st Century SDL skills. CLAS was designed to build upon the artifacts of traditional didactic modes of teaching, create enriched opportunities for student engagement with peers and learning materials, and offer learners greater control and ownership of their individual learning strategies. Adoption of CLAS creates educational experiences that promote and foster SDL skills: motivation, self-management and self-monitoring. In addition, CLAS incorporates a suite of learning analytics for learners to evaluate their progress, and allow instructors to monitor the development of SDL skills and identify the need for learning support and guidance. CLAS stands as an example of a simple tool that can bridge the gap between traditional transmissive pedagogy and the creation of authentic and collaborative learning spaces

    Temporal properties of the short gamma-ray bursts

    Get PDF
    A temporal analysis has been performed on a sample of 100 bright gamma-ray bursts (GRBs) with T90<2s from the BATSE current catalog. The GRBs were denoised using a median filter and subjected to an automated pulse selection algorithm as an objective way of idenitifing the effects of neighbouring pulses. The rise times, fall times, FWHM, pulse amplitudes and areas were measured and the frequency distributions are presented here. All are consistent with lognormal distributions. The distribution of the time intervals between pulses is not random but consistent with a lognormal distribution. The time intervals between pulses and pulse amplitudes are highly correlated with each other. These results are in excellent agreement with a similar analysis that revealed lognormal distributions for pulse properties and correlated time intervals between pulses in bright GRBs with T90>2s. The two sub-classes of GRBs appear to have the same emission mechanism which is probably caused by internal shocks. They may not have the same progenitors because of the generic nature of the fireball model.Comment: 4 pages, 7 figure

    The star-formation rate in the host of GRB 990712

    Get PDF
    We have observed the host galaxy of GRB 990712 at 1.4 GHz with the Australia Telescope Compact Array, to obtain an estimate of its total star-formation rate. We do not detect a source at the position of the host. The 2 sigma upper limit of 70 microJy implies that the total star-formation rate is lower than 100 Msun/yr, using conservative values for the spectral index and cosmological parameters. This upper limit is in stark contrast with recent reports of radio/submillimeter-determined star-formation rates of roughly 500 Msun/yr for two other GRB host galaxies. Our observations present the deepest radio-determined star-formation rate limit on a GRB host galaxy yet, and show that also from the unobscured radio point-of-view, not every GRB host galaxy is a vigorous starburst.Comment: A&A Letters, in press, 5 pages; a high-resolution color gif version of the paper figure is also supplie

    Infrared afterglow of GRB041219 as a result of reradiation on dust in a circumstellar cloud

    Full text link
    Observations of gamma ray bursts (GRB) afterglows in different spectral bands provide a most valuable information about their nature, as well as about properties of surrounding medium. Powerful infrared afterglow was observed from the strong GRB041219. Here we explain the observed IR afterglow in the model of a dust reradiation of the main GRB signal in the envelope surrounding the GRB source. In this model we do not expect appearance of the prompt optical emission which should be absorbed in the dust envelope. We estimate the collimation angle of the gamma ray emission, and obtain restrictions on the redshift (distance to GRB source), by fitting the model parameters to the observational data.Comment: 6 pages, 2 figures, Submited to Astrofizik

    Identification of biomarker volatile organic compounds released by three stored-grain insect pests in wheat

    Get PDF
    Monitoring and early detection of stored-grain insect infestation is essential to implement timely and effective pest management decisions to protect stored grains. We report a reliable analytical procedure based on headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS) to assess stored-grain infestation through the detection of volatile compounds emitted by insects. Four different fibre coatings were assessed; 85 µm CAR/PDMS had optimal efficiency in the extraction of analytes from wheat. The headspace profiles of volatile compounds produced by Tribolium castaneum (Herbst), Rhyzopertha dominica (Fabricius), and Sitophilus granarius (Linnaeus), either alone or with wheat, were compared with those of non-infested wheat grains. Qualitative analysis of chromatograms showed the presence of different volatile compound profiles in wheat with pest infestation compared with the wheat controls. Wheat-specific and insect-specific volatile compounds were identified, including the aggregation pheromones, dominicalure-1 and dominicalure-2, from R. dominica, and benzoquinones homologs from T. castaneum. For the first time, the presence of 3-hydroxy-2-butanone was reported from S. granarius, which might function as an alarm pheromone. These identified candidate biomarker compounds can be utilized in insect surveillance and monitoring in stored grain to safeguard our grain products in future
    • …
    corecore