15 research outputs found

    Report of the 1st Planning Workshop for CELSS Flight Experimentation

    Get PDF
    A workshop held March 23 and 24, 1987 to establish a base upon which a CELSS flight experiment program will be developed, is summarized. The kind of information necessary for productivity assessment was determined. In addition, generic experiments necessary to gather that information were identified and prioritized. General problems of hardware and equipment were defined. The need for the hardware to provide a stress-free environment, not only for productivity, but also to make more readily identifiable disturbing mission factors, was recognized

    CELSS Program Meeting

    Get PDF
    A meeting on the potential contributions of plant science to the goals of Controlled Ecological Life Support System (CELSS) research produced discussions that helped to focus on a variety of topics. In the area of volatiles and soluble organics, microbial activity, disease, and productivity, participants emphasized the need to know more about the consequences of closure for the growth of plants. Under nutrient delivery systems, the problems focus on the need to maintain a stable, optimum nutrient system. Lighting systems discussions emphasized unique methods of direct lighting and development of improved irradiation sources. Flight experiment opportunities were outlined by one speaker. Documentation of the Plant Growth Module was discussed. The last day's discussion focused on the organization of the research group to be involved in the development and use of a two to three cubic meter sealed chamber and ancillary equipment

    Controlled Ecological Life Support Systems: CELSS '89 Workshop

    Get PDF
    Topics discussed at NASA's Controlled Ecological Life Support Systems (CELSS) workshop concerned the production of edible biomass. Specific areas of interest ranged from the efficiency of plant growth, to the conversion of inedible plant material to edible food, to the use of plant culture techniques. Models of plant growth and whole CELSS systems are included. The use of algae to supplement and improve dietary requirements is addressed. Flight experimentation is covered in topics ranging from a Salad Machine for use on the Space Station Freedom to conceptual designs for a lunar base CELSS

    Closed Ecological Life Support Systems (CELSS) Test Facility

    Get PDF
    The CELSS Test Facility (CTF) is being developed for installation on Space Station Freedom (SSF) in August 1999. It is designed to conduct experiments that will determine the effects of microgravity on the productivity of higher (crop) plants. The CTF will occupy two standard SSF racks and will accommodate approximately one square meter of growing area and a canopy height of 80 cm. The growth volume will be isolated from the external environment, allowing stringent control of environmental conditions. Temperature, humidity, oxygen, carbon dioxide, and light levels will all be closely controlled to prescribed set points and monitored. This level of environmental control is needed to prevent stress and allow accurate assessment of microgravity effect (10-3 to 10-6 x g). Photosynthetic rates and respiration rates, calculated through continuous recording of gas concentrations, transpiration, and total and edible biomass produced will be measured. Toxic byproducts will be monitored and scrubbed. Transpiration water will be collected within the chamber and recycled into the nutrient solution. A wide variety of crop plants, e.g., wheat, soy beans, lettuce, potatoes, can be accommodated and various nutrient delivery systems and light delivery systems will be available. In the course of its development, the CTF will exploit fully, and contribute importantly, to the state-of-art in closed system technology and plant physiology

    Controlled ecological life support systems: Development of a plant growth module

    Get PDF
    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity

    Controlled Ecological Life Support System. Design, Development, and Use of a Ground-Based Plant Growth Module

    Get PDF
    Problems of food production by higher plants are addressed. Experimentation requirements and necessary equipment for designing an experimental Controlled Ecological Life Support System (CELSS) Plant Growth Module are defined. A framework is provided for the design of laboratory sized plant growth chambers. The rationale for the development of an informal collaborative effort between investigators from universities and industry and those at Ames is evaluated. Specific research problems appropriate for collaborative efforts are identified

    Controlled Ecological Life Support Systems: Natural and Artificial Ecosystems

    Get PDF
    The scientists supported by the NASA sponsored Controlled Ecological Life Support Systems (CELSS) program have played a major role in creating a Committee on Space Research (COSPAR) section devoted to the development of bioregenerative life support for use in space. The series of 22 papers were sponsored by Subcommission F.4. The papers deal with many of the diverse aspects of life support, and with outgrowth technologies that may have commercial applications in fields such as biotechnology and bioengineering. Papers from researchers in France, Canada, Japan and the USSR are also presented

    L1 libration point manned space habitat

    Get PDF
    Second generation stations or Manned Space Habitats (MSHs) are discussed for an Earth-Moon libration point and in lunar orbit. The conceptual design of such a station is outlined. Systems and subsystems described reflect anticipation of moderate technology growth. The evolution of the L1 environments is discussed, several selected subsystems are outlined, and how the L1 MSH will complete some of its activities is described

    Osmotic Stresses and Wetting by Polymer Solutions

    No full text
    Polymer solutions do not wet the substrate, even when the solvent is wetting. It is suggested here that it becomes difficult to squeeze polymer molecules into thin films found near the contact line due to adverse changes in the polymer entropy. Models are used to show that as the film thins a potential barrier is encountered due to the entropy changes in the polymer. This is observed in the calculated values of disjoining pressure as a function of film thickness. Equations arising from force balances are used to predict the contact angles in terms of a model disjoining pressure. the results can vary with the nature of constraints on the system, and care has been exercised to be faithful to the experiments reported earlier. Qualitatively, the dependence of the contact angles on various parameters are correctly predicted
    corecore