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PREFACE

The 27th COSPAR meetings held in Espoo, Finland in July 1988 included a series of papers sponsored

•by Subcommission F.4, titled "Natural and Artificial Ecosystems." The scientific and technological

interests of this group of investigators range from the study of in situ natural ecological systems, the

development of biotechnology systems, through the generation of data on natural and artificial ecosys-

tems by remote sensing technologies, to the development of artificial ecosystems. Underlying the studies

presented are the participants' interests in developing life support systems for the use of human crews in

space.

The diversity of ideas and approaches presented in the papers contained in this collection reflect the

complexity of natural ecosystems and bioregenerative life support systems. It is anticipated that by

increasing our knowledge of how the Earth's natural ecosystems function, we will gain insights into the

requirements and function of artificial bioregenerative systems that will be used in space, either in orbit

or on planetary surfaces. In turn, the development of bioregenerative systems may provide information

leading to fuller definition of how natural systems function.

The majority of the papers presented in Espoo were concerned with research directed towards the devel-

opment of Controlled Ecological Life Support Systems (CELSS). Topics include biotechnology, plant

productivity studies, waste management issues, and ecosystem modelling. Contributions from Japan,

France, Canada, the Soviet Union, and the United States have been edited by R. MacElroy (NASA Ames

Research Center, California, U.S.A.), B. Thompson (Alberta Research Council, Alberta, Canada),

T. Tibbitts (University of Wisconsin, Wisconsin, U.S.A.) and T. Volk (New York University, New

York, U.S.A.). The editors wish to thank Sally Greenawalt at NASA Ames for her dedicated work in

coordinating the manuscripts.

Robert D. MacElroy

July 1989





SECTION I

HIGHER PLANT GROWTH

UNDER CONTROLLED ENVIRONMENTAL CONDITIONS





CURRENT AND POTENTIAL PRODUCTIVITY OF WHEAT FOR A

CONTROLLED ENVIRONMENT LIFE SUPPORT SYSTEM

B. G. Bugbee* and F. B. Salisbury**

*Assistant Professor, **Professor, Plant Science
Department, Utah State University, Logan, UT 84322-4820

ABSTRACT

The productivity of higher plants is determined by the incident photosynthetic photon flux

(PPF) and the efficiency of the following four physiological processes: absorption of PPF

by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and

carbon partitioning (harvest index). These constituent processes are analyzed to deter-

mine theoretical and potentially achievable productivity. The effects of optimal

environmental and cultural factors on each of these four factors is also analyzed.

Results indicate that an increase in the percentage of absorbed photons is responsible for

most of the improvement in wheat yields in an optimal controlled environment. Several

trials confirm that there is an almost linear increase in wheat yields with increasing
PPF. An integrated PPF of 150 mol m"2 d"l (2.5 times summer sunlight) has produced 60 g m"!

d"1 of grain. Apparently, yield would continue to increase with even higher PPF's.

Energy efficiency increased with PPF to about 600 _uaol m"2 s "1, then slowly decreased. We
are now seeking to improve efficiency at intermediate PPF levels (1OO0 _mol m"! s "1) before

further exploring potential productivity. At intermediate and equal integrated daily PPF

levels, photoperiod had little effect on yield per day or energy efficiency. Decreasing

temperature from 23" to 17" increased yield per day by 20% but increased the life cycle

from 62 to 89 days. We hope to achieve both high productivity and energy efficiency.*

INTRODUCTION

Several factors interact in complex ways to limit crop productivity. Crop physiologists

have used correlation analysis to identify the environmental, genetic and cultural factors
associated with high yields, but as we learn more about crop plant communities, it has

become useful to identify and separately analyze the constituent processes that determine

yield. The approach used in this paper is not unique and was developed from similar

approaches used by J. N. M. Thornley /33/, John Monteith /23/, Penning de Vries and van
Laar /28/, and especially V. A. Charles-Edwards /5/. We used the following determinants

of crop growth in our analysis of productivity:

1. Incident photosynthetic photon flux (PPF; pmoI m"2 s "I or mo£ m"z d't).

2. Percent absorption of the incident PPF by photosynthetic tissue.

3. Photosynthetic efficiency (moles of COl fixed per mole of photons absorbed).
4. Respiratory carbon use efficiency (CUE, net carbon fixed in biomass per unit carbon

fixed in photosynthesis).
5. Harvest index (edible biomass / total biomass).

Factor 1: Photosynthetic Photon Flux

PPF is the primary input to all plant production systems. All other environmental factors

indirectly influence growth and yield by altering the efficiency of PPF utilization. In-

cident PPF level not only determines potential yield, but dictates (directly or indirect-

ly) the energy fluxes in the plant production section of a Controlled Environment Life

Support System (CELSS). PPF level determines the heat load and thus the cooling require-
ments in a CELSS.

Elevating CO2 levels or lowering temperatures will increase the energy inputs to control-
led environments on the earth, but changing these inputs will probably have insignificant

effects on the energy requirements in a CELSS. Gas recycling means that it will not be

*Research reported in this paper was supported by the National Aeronautics and Space

Administration Cooperative Agreement 2-139, administered through the Ames Research Center,

Moffett Field, CA. Support was also received from the Utah Agricultural Experiment

Station. This is Utah Agricultural Experiment Station paper no. 3653.
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difficult to maintain elevated CO 2 levels. The challenge will be to control CO l at the
desired concentration. Providing low temperatures in the plant chamber means that slight-

ly lower grade waste heat will be produced, but biologically important temperature changes
are relatively minor when measured as absolute temperatures. In the vacuum of space,

cooling must be accomplished solely by radiation transfer, which is proportional to the

fourth power of the absolute temperature of the radiating surfaces (Stefan-Boltzman Law).

Reducing the temperature from 20" to 15"C would require 7.1% more radiating surface (2934

/ 288_), but only a very small increase in energy input to circulate cooling fluids /I/.

Increasing heat loads require increasing convective air movement, which requires more

energy, hut even this is a small fraction of the PPF energy. In a preliminary analysis,

Strickford et el. /32/ calculated that fans would require 4 to 10% of the total CELSS

energy (lighting required about 65% and cooling about 25% of the total energy). Commer-

cial growth chambers require 4 to 15% of the total energy to run the fans (depending on

the PPF level), but commercial chambers have not been designed to minimize energy input to

the fans.

Factors 2 to 5: Physiological Response

Four constituent physiological factors determine the efficiency with which photons are

converted into food. They follow each other in chronological order:

Factor 2. Photons cannot cause photosynthesis until they are absorbed by green leaves,

yet percent PPF absorption is often not included as a yield determinant. Measurement of

PPF absorption of plant canopies is often highly correlated with yield (e.g. /12, 14/).

Studies using single plants usually determine plant response to the environment by

measuring dry mass. These studies sometimes conclude that increased net photosynthesis

per unit leaf area caused increased growth. Total leaf area, however, (and thus PPF ab-

sorption) is often the cause of improved growth. The factor causing increased plant

growth becomes particularly important when single-plant studies are extrapolated to

predict the performance of plants in communities /37/. Increased leaf area per plant

causes increased competition among plants in communities, but increased photosynthetic

rates per unit leaf area can translate into increased photosynthesis per unit ground area.

Factor 3. Photosynthetic carbon gains are usually integrated with respiratory carbon

losses because plant dry mass is easily measured. Measuring plant dry mass is an

excellent method of determining net carbon gain over periods of several days or weeks, but

dry mass measurements cannot accurately separate photosynthesis from respiration.

Photosynthesis is biochemically well characterized, and considerable progress has been

made i. d-termining the factors that limit carbon fixation in single leaves in optimal

environments /30, 31/. Heasurements of photosynthesis in intact plant canopies in a CELSS

can be used to evaluate specific environmental effects on photosynthesis without the

interacting effects of dark respiration.

F#ctor 4. During recent years much progress has been made in coupling models of dark

respiration (excluding photorespiration) with physiological processes [16/. Several

recent studies indicate that respiratory efficiencies deserve more study in plants /2, 16,

19, 20/. Respiration is best analyzed as the sum of two functional components: growth

and maintenance respiration. These two components use the same substrates and biochemical

pathways but provide energy for different physiological processes /2/. Respiratory

efficiency has been widely studied in microorganisms and animals, so a large theoretical

and empirical foundation can be applied to studies of plant respiration.

Factor 5. Carbon partitioning (harvest index) has been widely studied, and a large data

base is available for comparison. Profuse vegetative growth (tallness, large leaves,

etc.) increases competitive ability; but competitive ability is neither necessary nor

desirable in controlled environments, and it decreases harvest index. There is thus

considerable opportunity to increase the harvest index of crops in controlled environ-
ments. Donald and Hamblin /8/, in an excellent review of harvest index in grain crops,

showed that yield increases (in the field) during the past 50 years have been primarily

the result of increased harvest index.

Because theoretical maxima for each of these four physiological processes have been calcu-

lated (based on the underlying biochemistry), this analysis can be used to determine theo-

retical yield. Theoretical maxima, however, have never been achieved for any constituent

process, so it is also useful to calculate the potentially achievable yield. This yield

is based on the hi8hest, instantaneous values ever recorded for each process. It assumes

that all four processes could be maintained at this rate throughout the life cycle.

This type of component analysis makes it possible to separately analyze the processes that

limit yield. Currently achievable productivity in a controlled environment, field produc-
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tivity, and potential productivity are compared for each factor. This analysis not only

provides an historical perspective on past accomplishments but is useful as a model to

direct future research.

MEASUREMENT OF PHYSIOLOOICAL DETERMINANTS OF CROP _RO_H

Accurate PPF measurements are particularly'important in CELSS research. Incident PPF is

best measured with a recently calibrated quantum sensor (e.g. LiCor, model LI-190S). PPF

is not uniform over a horizontal area in a growth chamber, and the average of many

measurements should be used to determine PPF level.

Absorption of PPF cannot be measured directly but can be determined by measuring reflected

and transmitted PPF and subtracting these components from incident PPF [12, 13[.

Transmitted PPF is very nonuniform and must thus be averaged over a large area. We use an

array of small (6 mm#) gallium arsenide photodiodes (Hamamatsu, model 0-1118; /6/, which

are calibrated with a quantum sensor. The small size of these sensors minimizes inter-

ference with leaf position in the canopy.

Carbon fixation and carbon use efficiencies are best measured with a gas exchan8e system

that measures carbon dioxide fluxes. Photosynthesis, photorespiration, and dark respira-

tion all occur simultaneously in the light, so special measurement procedures must be

followed. Many techniques for determining the magnitude of photorespiration have been

developed, but photorespiration is not a separate part of this model; its effects show up

as a reduction in the photosynthetic efficiency. Photorespiration is very important in a

CELSS and is discussed in the final section of this paper.

Unlike photorespiration, dark respiration is a separate part of this model. Precise

determination of respiratory carbon efflux is difficult because the effect of light on

dark respiration is not fully understood. Dark respiration may be higher in the light

because high levels of assimilates are known to increase respiration. Dark respiration

may be lower in the light because photophosphorylation provides reducing energy, and may

thus decrease dark respiration. The effect of light on dark respiration is reviewed by

Amthor /2/. Most models assume that respiration does not vary with light or darkness, but

several approaches to minimize the problem have been developed. They involve changing the

photosynthesis rate, growth rate, and/or plant mass and measuring corresponding changes in

the dark respiration rate [2/. An additional problem, common to all methods, is that the

energy gained by photophosphorylation can substitute for dark respiration. In fact,

photophosphorylation (which is driven by absorbed photons) is probably one of the reasons

that the highest measured photosynthetic efficiencies are well below their theoretical

potential. The merits and the problems of the methods for measuring dark respiration have

been reviewed by Lambers et al. [20[. The problems mean that values reported for carbon

use efficiency are close estimates rather than direct measurements.

Gas exchange measurements are frequently made either on single leaves or on single plants,

but we wanted to measure these parameters on communities of plants. To this end, we

sealed a growth chamber to allow the measurement of canopy gas exchange. A CELSS is a

sealed environment and is thus uniquely adapted to routine measurement of photosynthesis

and respiration.

Harvest index can easily be determined by separating edible plant parts from less edible

stem and root tissue. This measurement is made on a dry mass basis and includes the dry

root mass.

Although the individual determinants of yield are sometimes difficult to measure, the

total system efficiency can be accurately determined. The fundamental measure of

efficiency is the output of the system divided by the required input. The most useful

measure of the efficiency of higher plant growth in a CELSS is grams of edible and total

biomass per mole of photosynthetic photons. Calculations of efficiency per unit photosyn-

thetic radiation will be 3 to 6 times higher than per unit total radiation (because

artificial lamps are only about 15 to 35% efficient), but basing efficiency on photosyn-

thetic photon flux is more appropriate because biologists should not be penalized (or

rewarded) for differences in the efficiency of the lamps they are using. Expressing

efficiency per photosynthetic photon also facilitates comparison of results among

laboratories. The first goal of higher-plant CELSS research should be to determine

optimal environments; a subsequent goal should be to help engineers build systems to

deliver the desired environments.

Efficiency can be expressed on an energy basis by determining the energy content of the

biomass and the photons. The total (bomb calorimeter) energy content of wheat straw is

typically 17.0 kJ g-I Nheat seeds have a higher energy content at |8.6 kJ g-I Photosyn-

thetic photons from the sun have an average wavelength of 550-nm and thus contain 217 kJ

5



mol "I (E = hc/wavelength). Multiplying by these energy.contents allows the calculation of

percent efficiency /4/.

PHYSIOLOGICAL DETERMINANTS OF CROP OROlCrH: EFFICIENCY

Estimates of the efficiencies of the four yield determinants are summarized in Table 1 for

five situations: theoretical maximum, potentially achievable, Utah State University CELSS

project, world record field, and typical field. The values are combined (by successive

multiplication) to give an integrated efficiency for conversion of PPF to the chemical

bond (bomb calorimeter) energy of edible grain (92 to 96% digestible energy). The

following sections discuss the determinants as they apply in each situation.

TABLE I Efficiency of different growing environments

for converting incident PPF into edible food

S_TVATION

PIIOTO-

PPF SYNTHETIC RESPIRATION HARVEST INTEGRATED

ABSORPTION EFFICIENCY EFFICIENCY INDEX PPF

% % % % EFFICIENCY %

THEORETICAL

EFFICIENCY 100

POTENTIALLY-

ACHIEVABLE

EFFICIENCY

UTAH STATE

UNIVERSITY

CELSS

PROJECT

33.5 82 100 = 27.5

98 18 75 90 = 11.9

90 16 70 44 = 4.4

WORLD RECORD

IN FIELD 65 12 63 45 = 2.2

TYPICAL

FIELD 50 8 55 40 = 0.9

Theoretical Maximum

PPF _bsgrption. At the theoretical level we assume that plants are perfect blackbodies
and absorb 100% of the incident radiation.

Photosynthesis. One photon is required to excite one electron (Stark-Einstein Law), four

electrons are required to split each water molecule (because excitation of both photosys-

tems is essential), and two molecules of water are required to reduce each molecule of

CO2; this means that an absolute minimum of 8 photons (2 x 4) are necessary to fix CO2

into a carbohydrate skeleton (CH20; /29/). Photons of red light (exactly 700 nm) have the
lowest possible energy to excite electrons in photosynthesis, but the Emmerson enhancement

effect (cooperation of the two photosystems) means that it is more appropriate to assume

that photons must have an average wavelength of 680 nm /25/. At 680 nm, photons have an

energy of 176 kJ mol'Iso 8 moles of photons contain 1408 kJ. The energy per mole of

carbon in simple carbohydrate (sucrose) is 470 kJ mol "1. Thus, the theoretical maximum

efficiency of photosynthesis is 33.5% (470 / 1408).

Respiration. Plants consist of more than simple carbohydrates; additional energy is re-

quired to synthesize structural carbohydrates, proteins, and lipids. The theoretical min-

imum amount of nonstructural carbohydrate (e.g. sucrose, fructose, or starch) required to

make other compounds in higher plants was analyzed in a classic paper by Penning De Vries

et al. /28/. This paper, and another by DeWitt /7/, indicate that structural carbohy-

drates (cellulose and hemicellulose) can be made from hexose sugars with about 86%

efficiency, and amino acids can be synthesized with 70% efficiency (from ammonia, Table

2). If we assume a plant that is 75% carbohydrate and 25% protein (RUBISCO for CO z

fixation) it is possible to estimate a theoretical carbon use efficiency of 82%. This

assumes that no carbon is used in maintenance respiration and that neither lipid nor

lignin is present in the plant.

H_rvest index. For theoretical purposes, we consider all the biomass to be edible (100%

harvest index).



Combining these efficiencies (1.00 x 0.335 x 0.82 x 1.00 ffi 0.275) gives an overall

theoretical maximum efficiency of 27.5%.

potentially Achievable yield

Percent absorption. A single leaf transmits about 5% of the incident PPF and reflects an

additional 5% (when it is perpendicular to the light beam), so 90% of the PPF is absorbed.

Multiple layers of leaves in a fully developed wheat canopy in an optimal environment

result in a PPF transmission of about 0.1%. The vertical leaf orientation in wheat

canopies also means that slightly less PPF is reflected than is reflected from horizontal

leaves. We have measured less than 2% reflected PPF from a healthy canopy. The resulting

absorption is thus 98%. The challenge is to quickly reach and then maintain this level of

absorption until harvest•

Photosynthetic efficiency• The number of photons required to fix a molecule of CO 2 is

known as the quantum requirement. The lowest quantum requirement measured in reliable

studies (in a single leaf at a PPF level below 200 pmol m"Z s "1) has been 12 moles of

photons per mole of CO_ fixed /9, 10, 26/.

As noted above, photosynthetic photons from sunlight contain 217 kJ mol "1. The average

wavelength of most artificial lamps (and the energy content of photosynthetic photons) is

similar to sunlight, so a more realistic calculation for the conversion efficiency of

photosynthesis in a CELSS environment is thus 18% {470/(12"217)}. Because maximum
photosynthetic efficiency is only obtained at PPF levels below 200 _mol m"z s "1, the

challenge is to obtain maximum efficiency in a plant canopy at higher PPF levels.

Respiratory Carbon Use Efficiency: Growth respiration. Growth respiration is the cost
associated with the synthesis of new biomass. The conversion efficiency of simple sugars

into plant dry mass depends on the compound synthesized. Table 2 indicates the efficien-

cies of conversion of glucose to the major categories of plant substances (from /7/).

Glucose is _n uncommon compound in plants but is energetically representative of the

initial products of photosynthesis. Triose phosphates are the first products of photosyn-

thesis; the predominant sugar transported and metabolized in plants is sucrose; and hexose

sugars feed glycolysis and the Krebs cycle. Olucose was used in this study apparently

because the original analyses were done with microorganisms, which utilize glucose.

Fortunately, the energy per mole of carbon in glucose and sucrose are nearly identical
(466.7 and 469.6 kJ mol'_ respectively; Handbook of Chemistry and Physics 66th ed.) so

the values of Table 2 do not change significantly with the substrate sugar.

TABLE 2 Grams of the major categories of plant tissue that

can be synthesized from one gram of glucose.

COMPOUND CONVERSION EFFICIENCY

g per g

Structural carbohydrates ....

Lipids ..............

Lignin ..............

Organic acids ..........

Organic N-compounds with NO3. . .

Organic N-compounds with NH|.. •
Inorganic minerals assimilated

into organic molecules .....

• •

• •

0.86

0.36

0.46

0.99

0.47

0.70

0.93

Low-lipid, high-carbohydrate plants (wheat and potatoes) can have very high respiratory

conversion efficiencies for new biomass. The carbon use efficiency for the synthesis of

high-lipid biomass (e.g. peanuts and soybeans) is much lower than wheat and potatoes; such

plants do have a correspondingly high energy content per unit mass of seed storage tissue•

Maintenance respiration. As noted earlier, it is useful to partition the dark respiratory

carbon efflux into two functional components, a growth component and a maintenance com-

ponent /19/. The carbon required for maintenance respiration is used to maintain existing

biomass. A significant fraction of the carbon used in maintenance respiration is required

to resynthesize compounds that help plants adapt to changing or harsh environmental condi-

tions. The constant, optimal environmental conditions in a CELSS may thus significantly

reduce the maintenance requirement /19/. Rapid growth rates should also reduce the

maintenance requirement. Models by Johnson /16/ indicate that carbon use efficiency

should asymptotically approach 75% as the growth rate increases, but the effect of rapid

growth rates on maintenance respiration are still controversial /19/• Some models of

potential crop production have assumed a carbon use efficiency of 75% for root and tuber

crops /35/. We thus estimate a potential carbon use efficiency of 75%. The challenge is



to maximize total carbon use efficiency by minimizing unnecessary compounds (like lignin)

and unnecessary biomass (roots and stems).

Harv_$_ _ndcx. Crop plants vary widely among species in their harvest index. Some

improvement in a species can be made with cultural and environmental manipulations, but

major improvements require 8enetic manipulation of plant morphology. A harvest index of

100% would be possible only when combined with the refinement of technologies to convert

cellulose, hemicellulose and lignin to digestible compounds /21/. Potatoes and lettuce

grown in an optimal environment typically have harvest indexes of about 80% [18, 34[.

Some super-dwarf wheat cultivars (20-cm tall) have a harvest index of over 60Z, but they

are not high yielding. Genetic improvement of head size (sink strength) in these

cultivars might significantly increase both yield and harvest index, but this will not be

easy to accomplish. Our experience with wheat indicates that the root system is consis-

tently about 3% of the dry biomass at harvest. An additional 2% is in the stem base. We

speculate that a harvest index of 90% might be achieved with appropriate genetic and

environmental manipulations.

The potentially achievable efficiency, within the constraints as discussed, is thus about

11.9% (0.98 x 0.18 x 0.75 x 0.90 = 0.119).

Currently Achievable Efficiency: Utah State University CELSS Project

pPF absorption. Although 98% absorption occurs at full canopy development, an average of

90% of the PPF is absorbed over the life cycle (Figure I). The high plant densities that

are an important component of high yields in a CELSS cause PPF absorption to exceed 95% a

few days after emergence (when the lights are turned on). Leaf senescence during the last

part of the life cycle reduces absorption.

100

Z
o 80

60
o

_ 4o

2O

0
0

a CELSS/ _

High density t_alze

20 40 60 60 100 120 140

DAYS AFTER EMERGENCE

Fig. I. A comparison of the percent absorption of PPF by wheat in a

CELSS and maize in the field. The data for maize are taken from /13[.

Similar data for wheat (over the entire life cycle) were not readily

available, but cereal crops typically absorb PPF somewhat more rapidly

during early growth than maize /12, 14/. This comparison indicates one

of the primary reasons for increased yields in a CELSS.

Photosynthetic and respiratory efficiencies. Preliminary data from our canopy gas

exchange system indicate that photosynthetic efficiencies of 17% are possible during the

first half of the life cycle. Leaf senescence during the final stages of the life cycle

reduces photosynthetic efficiency and thus reduces the average efficiency over the life

cycle to about 16% /4/.

We do not yet have good measurements of the respiratory carbon use efficiency, but we

hypothesize that rapid growth rates may reduce maintenance respiration and thus increase

carbon use efficiency /4/. The respiration rate of roots is typically very high /19/, but

an optimal root-zone environment (hydroponic culture) significantly reduces the size of

the root system, thus improving carbon use efficiency, which we estimate to be 70%.

Harvest inde_. Our harvest indexes (40 to 45%) have not exceeded those in the field.

High C02 concentrations and a continuous supply of nitrogen in the root-zone promote
vegetative growth and may thus reduce the harvest index. Wheat forms multiple heads

(called tillering) when environmental conditions favor vegetative growth. High photosyn-

thetic environments cause excessive tillering, and late forming tillers have a 10% lower

harvest index (Figure 2). Eliminating late (tertiary) tillers might increase the mean
harvest index to 50%.



Ourgeneticmanipulationshave not eliminated tillering, but altering the red/far-red

radiation ratio might be very effective. This ratio directly alters the phytochrome

equilibria in plant tissue, which in turn regulates tillering /17/. We hypothesize that a

high level of far-red radiation during the first 20 days of growth may be sufficient to

eliminate late forming tillers. Charles Barnes, a Ph.D. student in our laboratory, is

studying these effects.

Our highest current efficiency is 4.4% (0.9 x 0.16 x 0.7 x 0.44 = 0.044).

_CONDArt .
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Fig. 2. The effect of daily PPF on harvest index. Note that primary (o)

and secondary (&) tillers have a much higher harvest index than tertiary

(A) tillers. The harvest index increased slightly with increasing PPF.

The root dry mass is included with the total plant biomass in these data.

Root mass is not typically included in harvest index calculations in the

field, but these plants had less than 5% root mass.

Field Efficiencies

Integrated efficiency. The data for the world record wheat efficiency are from a one

hectare field in Washington State. This record, set in 1965, used the cultivar "Gaines",

which is a winter wheat /36/. This report is similar to other reports of record yields in

the literature. These reports were recently reviewed [4/. Record wheat yields are

typically set with winter wheat, partly because it is in the field for about 9 months

(over the winter). This makes it difficult to realistically estimate yield per day. We

took the total grain yield as reported by Wittwer /38/ (216 bushels/acre) and assumed a

100 day period of active growth (yield/100 = yield per day). This probably overestimates

the yield per day, but we prefer to give field yields the benefit of the doubt. This

calculation, combined with average daily PPF data for Washington State, allows an estimate

of integrated PPF efficiency (2.2%). The integrated PPF efficiency for a typical field is

estimated in a similar manner.

PPF absorption. The data in Figure I for high density maize in the field is typical of

highly productive field environments /13/. The PPF absorption integrated over the life

cycle for the high density maize in Figure 1 is 53% of the incident PPF. High density

wheat is planted in rows that are closer together than high density maize (15-cm vs. 30-

cm, respectively) and thus more rapidly absorbs incident PPF during the first 20 days of

growth. Hipps et al. /15/ found that a wheat crop in the field absorbed about 75% of the

incident PPF at a leaf area index (LAI) of 2, and 95% of the PPF above an LAI of 5.

Unfortunately, wheat does not reach an LAI of 2 for several weeks after planting. Average

PPF absorption is typically about 65% over the life cycle /12, 14/.

Photosynthesis and respiration. Photosynthetic efficiency in the field was taken from

values in the literature /5, 28/. Experimental evidence indicates that the respiratory

cost of maintenance in annual plants in the field is about equal to the cost of growth

respiration over the plant life cycle /2/. The overall carbon use efficiency has thus

been about 60% for crop plants /16, 22/.

Harvest index. A harvest index of 50 to 55% can be obtained in field grown wheat, but a

harvest index of 40 to 45% is more common. Harvest indexes below 40% are usually associ-

ated with plant stress.



TOTAL SYSTEM EFFICIENCY

The PPF Innut / Efficiency tradeoff

Table 3 indicates how the total percent efficiency {from Table 2) interacts with PPF input

to determine edible yield.

TABLE 3 The effect of PPF level on energy efficiency and edible Yield.

PPF EDIBLE
INPUT EFFICIENCY YIELD

SITUATION nml m"| d"1 % g m°| d "1

POTENTIAL YIELD 45 11.9 73

UTAH STATE UNIVERSITY 45 4.4 27

CELSS PROJECT

WORLD RECORD IN FIELD 45 2.2 14

TYPICAL FIELD 45 0.9 6

UTAH STATE UNIVERSITY 150 2.9 60
CELSS PROJECT

TOTAL BIOMASS 150 7.2 137

High efficiency (4.4%) can be achieved at field PPF levels, but the most remarkable find-
ing is that yields continue to increase as PPF increases. The average daily PPF in the
field ranges from 35 to 60 mol m"! d "! during the summer months in different crop growing
regions (depending mostly on cloud cover). A high PPF in controlled environments (3.3
times field PPF) resulted in a yield that was close to the potentially achievable grain
yield in the field (60 vs. 73 g of seed m"z d "1; CELSS and field, respectively). This yield
increase comes at the expense of efficiency (2.9% versus 4.4%). Figure 3 illustrates this
tradeoff. The efficiency values in this figure are for total biomass, but the shape of
the efficiency curve is nearly identical for edible biomass because harvest index changes
only slightly with daily PPF.

150

120

OI

_'_ 90

0

CROP
GROWTH

30 60 90 120

DAILY PPF (tool m-2 d-l)

r._

0
50

Fig. 3. The tradeoff between percent PPF efficiency and yield in a CELSS.
Percent efficiency is calculated as discussed in the text. These data
(from /4/) indicate that efficiency peaks at about 30 to 40 NO1 m"2 d "!

and then slowly decreases. When mass and volume are considered, peak
efficiency should occur at a higher PPF level.

pq_entiallv achievable productivity. Figure 4 graphically indicates field, CELSS, and
potentially achievable productivity as a function of PPF input. The CELSS yield curve in

this figure is the same as that in Figure 3, which is based on data from our laboratory•
Record productivities are documented in the literature, and they vary widely for different
crops in different environments (reviewed in /4/). The calculation of potentially
achievable yield is based on the assumptions discussed earlier.
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Fig. 4. A comparison of potentially achievable yield, current CELSS

yield, and the range of record yields in the field (shaded area). All

data are for total biomass. Potentially achievable yield assumes that

PPF is the only limiting factor and is based on the calculations in the

text. CELSS yield is from /4/. Summer PPF in the field is 30 to 50 mol

m"2 d "I and maximum field yields are from studies in the literature.

Reproducibility. How reproducible is the CELSS yield curve in Figure 4? Figure 5 shows

the overall mean from eight separate studies and compares this mean with the yield from

our best single study. The 8 studies include different environmental conditions (photo-

period and temperature); different cultivars (Yecora Rojo and Veery 10), and different

cultural conditions (planting densities, etc.). The studies were also conducted in

different types of growth chambers. Two of the studies were conducted in a special, CO 2-

enriched greenhouse section. All studies were conducted in hydroponic culture. About

half of the scatter in the data is the result of environmental parameters other than PPF,

hut much of the scatter is from unidentified causes (experimental error).

150 I .............................

_. i . _" _._<" -! I ""eo[

0 30 60 90 120 150

DAILY PPF (tool m-2 d-l)

Fig. 5. Reproducibility in a CELSS: A comparison of our best single

trial with the overall mean of 8 different trials. Symbols represent

different studies. The eight studies involve environmental and cultural

treatments conducted in different types of growth chambers. None-the-

less about half of the variability is the result of experimental error.

Reproducibility is critical in a CELSS, but variability is inherent in biology. As we

identify the causes of low yields, we improve our ability to predict yields.

Figure 5 also indicates the lack of data at low and high PPF levels. Additional research

at low PPF levels would help to precisely identify the PPF level at which peak energy

efficiency occurs. Energy, however, is not the only input to a CELSS. Higher PPF levels

are necessary to increase efficiency per unit mass and volume. Studies at both high and

low PPF are important because PPF level often interacts with the other environmental,

cultural and genetic factors that determine the PPF utilization efficiency.

Photoveriod effects. When the daily PPF is the same, low PPF levels and long photoperiods

usually result in better growth than high PPF levels and short photoperiods. Wheat is a

long-day plant for reproductive initiation and thus does not have an obligate need for a

daily dark period. Wheat plants yield well and appear healthy in continuous light, but
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long photoperiods might reduce efficiency per photon. Three recent studies with 16, 20,
and 24 hour photoperiods indicated that wheat plants do not need or benefit from a daily
dark period. Photoperiod, however, has large effects on plant height and length of the

life cycle. Compared to a 16-h photoperiod, continuous light shortened the life cycle by
30Z and shortened plant height by 25Z. Both of these effects would be beneficial in a
CF3._SS.

A NOTE ON PHOTORESPIRATIOR IN A CELSS

Although photorespiration can reduce photosynthetic efficiency by 30_ at ambient O2 and

COz levels, high CO2 levels (1500 pmol mol'l; characteristic of a CELSS) reduce photores-
piration to less than 5Z /9/. Indeed, photosynthetic efficiency is increased in a CELSS

environment largely because of reduced photorespiration. In high CO| environments, all
plants with C) photosynthesis have higher photosynthetic efficiencfes than the four
principal, _ crop plants (maize, millet, sorghum, and sugar cane; /9, 10/).

Are low oxygen concentrations necessary or useful in a CELSS? Theoretically, photores-

piration can be eliminated either by decreasing 02 levels or by increasing CO2 levels
/11/, but Husgrave and Strain /24/ found that wheat growth was increased at 5_ O2'compared
to controls at ambient 02 and 1000 rumol mol "! CO2. This CO2 level (0.I_), however, is not
high enough to eliminate photorespiration. Increasing the CO2 concentration to 0.2Z (2000
_mol mol "I) is high enough to eliminate almost all photorespiration, but, although this CO2
level increases photosynthesis for several days, it can reduce growth after several weeks

/3, 18/. The physiological mechanism causing CO2 toxicity is not yet clear and we are
continuing our studies. Small CO2 increases (0.1Z of total atmosphere) have large effects
on plant growth and are thus preferable to decreasing 02, which is hazardous to humans.
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ABSTRACT

The cultivation of wheat (Triticum aestivum L.) was performed in controlled environaent

chambers with the continuous monitoring of photosynthesis, dark respiration, transpiration

and main nutrient uptakes. A protocol in twin chambers was developed to compare the speci-

fic effects of low 02 and high CO 2. Each parameter is able to influence photosynthesis

but different effects are obtained in the development, fructification and seed production,

because of the different effects of each parameter on the ratio of reductive to oxidative

cycle of carbon. The first main conclusion is that low level of O 2, at the same rate of

biomal$ production, strongly acW on the rate of ear appearance and on seed production.

Ear appearance was delayed and seed production reduced with a low 02 treatment (= 4 t).

The 02 effect was not mainly due to the repression of the oxidative cycle. The high CO 2

treatment (700 to 900 _1.1-1) delayed ear appearance by 4 days, but did not reduce seed

production. High ¢O 2 treatment also reduced transpiration by 20 t. Two hypothesis were

proposed to explain the similarities and the difference in the 02 and CO 2 effects on the

growth of wheat.

INTROOOCTIOm

In space, plant life is free not only from gravity but also from factors linked to earth

surface particularities such as z atmosphere composition, light cycles, and light inten-

sity. Zn particular, planned farming for producing part of the food needed by the crew,

especially on long duration miisions /19/, can be optimised without regard to earth condi-

tions.

The first planned modification has to do with the atmosphere. Experiments involving the

growth of CO 2 content at three times the earth atmosphere level were put into practice

at the Botany facilities /8/. It is because carbon dioxide stimulates the photosynthesis

process, that experiments have been planned to provide information for the Blogeneratton

Life Support program /25/. From a physiological point of view, little is still known regar-

ding the particular effects of this increase in CO 2.

Biochemistry studies show that the effect of CO 2 is inseparably linked to that of oxygen.

The two react on the same substratum thus generating two antagonistic reactions, one of

carboxylation and the other of oxygenation, catalyzed by the same enzl_me : ribulose bis o

phosphate carboxylase/oxygenase or rubisco. The ratio of the two reaction speeds depends

on the respective concentrations of CO 2 and 02 /21/. The two reactions initiate two meta-

bolic cycles /30/. The activity of the carbon reduction cycle which synthesizes hydrocarbons

depends on the rate of carboxylation reaction. All activity enhancement obtained by in-

creases in the CO 2 partial pressure, is detrimental to the oxygenation process. Oxygenation

supplies the oxidative carbon cycle that is closely linked to nitrogen Detabolism. Bio-

chemical studies have shown this link /30/, but no physiological experiments have demons-

trated this link. Even so, if it is established that the oxidative cycle generates amino

acids (glycine and serine) it will still remain unknown if the cycle exports these subs-

trates. Assuming that these are exported, either directly or by transaminase, it is equally

unclear whether this emission is essential or useful to the plant.

Cultivation of plants under CO 2 enrichment /9, 20, 28, 29/ have shown a total bio_mse

improvwmnt but often a smaller increase in the reproductive parts, as the grain of wheat

than in the vegetative parts. Because the grain Is very rich in nitrogen compounds, a

reduction in the ratio of 9rain to dry matter could be associated with a repression of

the oxidative cycle /23/. However, accurate and systematic research on the effect of CO 2,

in repressing the oxidative cycle, has not been undertaken. F_iually significant is the
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decrease of dark respiration activity when assimilation is increased by elevation of ¢0 2

/5, I0, 17/. This suggests that synthesis activity, which accounts for part of the respi-

ration end is proportional to the assimilation activity, 18 reduced when CO 2 is increased.

Up to this time, oxygen content modification has not been studied in Bioregenerative Life

Support research. Considering the activity of rubiscc, /21/, the lowering of the oxygen

content theoretically stimulates the photosynthesis process in the same way as an increase

in the CO 2 content. In practice, the stimulation of growth is important during the vege-

tative phase /7, 27/. But accurate study of secondary effects of the repression of oxidative

cycle by this way has not be Implemented.

The potential opportunity to regulate oxygen concentration in space farming systems, toge-

ther with the difficulties and the coat of a precise oxygen regulation in culture modules

or in the bloreactors, are reasons for the study of the oxygen level effects.

The study of partial oxygen pressure is of particular importance if there are reductions

in the total pressure in the plant growing modules. Considering the high volume required

for cultivating plants for life support the weight, and hence the launching costs, can

be considerably reduced by growing plants in a ratified atmosphere. It has been shown

that germination and growth of plants for about 20 days can be undertaken in a pressure

of .07 of the normal atmospheric pressure /4/. If the same low pressures can be utilized

for the entire growth period, it is evident that the weight reduction within the deprss-

surlzed modules would be extremely important and proportional to the depressurlxation

factor.

This option should be examined, especially if the need for separating the plant growing

modules from inhabited areas is required for Pathological (microorganisms) and physiological

(airborne pollutant) reasons. The reduction of pressure by eliminating all or part of

the nitrogen in the atmosphere would facilitate the management end transfer of oxygen

from the "plant s compartments to the inhabited areas /18/. Bowever if the space vehicles

are maintained at reduced pressures and thus at high oxygen concentrations, this involves

additional risks to the humans present.

Interestingly, in contrast to humans, plants thrive in a partial oxygenated environment

/7, 27/. The partial 02 pressure could be decreased well below 250 mb, thus avoiding the

risks of using pure oxygen at this pressure.

Carbon dioxide and oxygen effects account for numerous growth problems in plants when

grown under special or extreme environments. The theoretical and practical motivations

of long duration space farming can shed some light on the specific effects of oxygen and

CO 2 •

14ATI_ALS AND mrFB(X)S

Wheat (Triticum aestivum L. cv. Courtot, a semi-dwarf, spring cultivar) was used in two

successive experiments. Each experiment used two growth chambers : a control chamber in

standard atmosphere and a treated chamber where the atmosphere was modified to manipulate

the rate of photorespiration, either by low 02 or by high CO 2. In both cases the equality

of CO 2 uptake between treated and control chambers was obtained by an electronic slaving

of the valve of CO 2 injection of the treated chamber to the valve of control chamber.

_tper;----t in low 02- One-week-old seedlings were planted in 3-on holes in 20 x 90-cm

polyvtnylchloride tubes filled with sand and aerated with normal air. The stems of the

seedlings were sealed with non-toxic putty (Teroson, Prance} to make the root compartment

gas-tight, thus allowing independent control of root conditions and measurement of root

r&apiration. Tillers emerged through the putty without difficulty. Details of this experi-
mental system were described previously /14, 16/. Two tubes, each containing 20 plants,

were placed in a 700 1 reach-ln chamber /I, 2/, giving a density of 80 plants m -2. The

volume of sand was approximately 1 liter per plant.

The photoperiod was 14 h, day/night temperatures were 23/180C, and 400-700 m photon flux

density was 850 _mol m-2s -1 on the young plants, but rose to 1000 _mol m-2s "1 on plant

tops when they reached their full height. CO 2 concentration in the control chamber was

regulated at 340 ,1 1"1 by automatic injection from compressed air cylinder of CO 2 or

trapping in a loop including soda lime with control by s computer. Photosynthesis and

respiration were computed from the computer records of counts of injection or seconds

of trapping CO 2.

Treated ©hasher. 02 concentration in the shoot compartment was reduced to about 4 % by

s nitrogen flushing and was maintained by coupling injections of nitrogen to the injections

Of CO 2, ensuring 8 dilution of the photosynthetic 02 proportional to ItS production. Supple-

16



mentary nitrogen was also injected manually whenever necessary. The linkage of the valve

of C0 2 injection for the low 0 2 chamber to the valve of control chamber made the CO 2 level

lower in the low 0 2 chamber due to the higher affinity of the plants for CO 2 (Fig. IB2).
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Fl_mze 1 : Principle of the experiments in twin growth chambers directed toward smnipulatlng

photorespiration (02 uptake, U) with the same photosynthesis (CO 2 uptake, P). A : Comparison

between photosynthesis and photorespiration versus CO 2 concentration at a "standard" irra-

diance (AI} or at a "low" irradlance (k2): for a same rate of photosynthesis, two rates

of photorespiration depending on the level of irradlance could be achieved. B : Comparison

between photosynthesis and photorespiration versus CO 2 concentration st 20.6 t 02 (BI}

and at _ 4 • oxygen partial pressure (B2}. The dashed lines and arrows intersect points

of equal rates of photosynthesis but significantly different rates of photoresplration.

It symbolizes the slaving of the injection of CO 2 of the treated chamber to the injection

of the control chambers.

_rperimeat In high CO2. The conditions were similar to the experiment at reduced 02 with

the following exceptions. The roots were not in closed containers because there was no

risk of hypoxy. In each chamber, twenty 1.45 dm 3 pots of sand were used instead of tubes

filled with sand. Two seeds were directly sowed in each pot giving a density of 80 plants

m-2.

In the control chamber the irradiance was lower than the previous experiment, around

600 umol m-2s -1 on the young plants and 800 pmol m-2s -I on mature plants.

Treated chamber. The co 2 was not monitored to a fixed concentration, but maintained between
700 and 900 pl i-I to maintain a photosynthetic rate similar to that in the control chamber.

The valves of CO 2 injection for the elevated CO2 chamber were coupled to the valves of

the control chamber• The irradiance was reduced to permit the equilibrium of CO 2 at a

high level, for the same assimilation rate (Fig. IAI). A change of irradiance was made

periodically to maintain the balance in the range 700-900 ul I -I of CO 2.

mutrient cooditions and aineral uptakes. For all experiments the control of nutrition

was the same. Hoagland nutrient solution (Tab. I} was regularly delivered to the plants

by a small tube watering system (Gerbaud and Daguenet, 1984). The frequency of watering

and the total volume delivered were calculated so as to ensure that the plants received

twice as much water as lost by transpiration. The excess nutrient solution drained to

a container from which samples were taken daily and chemically analyzed for determination

of nutrient consumption /3/.
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Transpired water was condensed on a cooled radiator in the chamber and collected in a

container under the chamber. The transpiration rate was derived from the weight of condensed

water measured with an electronic balance connected to the computer. We used the program

"TRACER" (A. Daguenet) for part of the data processing.

TABLE 1 Composition of the nutrient solution

Macroe lements, mM

K + Mg 2+ Ca 2+ NH 4 + NO 3 - SO 42- pO 42-

6.5 2.0 4.0 1.0 14.5 2.0 1.0

Microelements, _M

BO33- CI- Fe 3+ Mn2+ Cu 2+ Na + Mo042- Zn2+

46 18 16 9 0.32 0.21 0. I0 0.087

RESULTS

The effect of the repression of oxidative cycle by low 02 pressure on the life cycle of

wheat has been described /15, 17/. The main results will be concisely presented in a first

part to permit a comparison with the effect of high CO 2 treatment presented afterwards.

Then the global comparison and discussion will take place.

I - Influence of low 07 concentration

The wheat crop grown under low 02 (4 %) did not significantly differ in shoot respiration,

photosy_'-thetic capacity of leaves, the chlorophyll content, from wheat grown under normal

02 . However under low 02 , there was a slight depression in :ranspiration and an increase

in root respiration compared to normal 02 levels. The main important change was a delay

of 15 days in the appearance of ears and the total absence of crain under low 02 .

II - Influence of a high CO_ concentration

A) ,Gas exchanqes and mineral nutrition of the control culture crop.

The pattern of gas exchanges and mineral uptakes of the con=rol plants maintained under

340 _i ! -1 of CO 2 and 20.6 % of 02 is presented in Fig. 2.

Net CO 2 assimilation. According to the pattern of net CO 2 fixation of the wheat crop,

the life cycle can be divided in four phases s a quasi-exponential phase until the day

20, a linear increase from the day 20 to day 36, a saturati:g effect until a plateau al-

through day 68, and a continuous decline at the end of the cycle.

The initial phase of rapid increase in photosynthesis resulted from the simultaneous in-

crease in the surface of leaves, number of leaves, and number of tillers. The linear phase

of photosynthesis expressed the equilibrium between tilleri:g and the beginning of the

competiuion for light. This competition was equalized when =he plateau was reached. The

beginning of the decreasing slope, corresponded to the time of ear appearance (Fig. 5).

Transpiration and Nocturnal Respiration. The transpiration of water vapor and the evolutio=

of CO 2 in the dark followed the general pattern of CO 2 uptake (Fig. 2). One mole of fixe_

CO 2 required an average of 300 moles of transpired water. The dark respiration of the

whole plant corresponded to a loss of carbon of 20 % of the light Period uptake.

Mineral Nutrition. The uptake of nutrients did not strictly follow the pattern of CO 2

uptake (Fig. 2). The increase of the potassium and also nitrate uptake started earlier

than the rapid increase in CO 2 uptake. Their increase was quasi-linear until the maxlmun

of photosynthesis. The fast decrease of the nitrate uptake corresponded to the time of

ear appearance. Potassium uptake also decreased during this period. Such a decrease was

also reported at the beginning of the reproductive phase for maize /3/. The uptake of
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ammonia and phosphorus, increased uniformly with a stabilization after 80 dayl of growth.

The requirement of nutrients in m mole per mole of net CO 2 absorbed for 100 days of culti-

vation was 52.6 of NO3-, 4.3 of HPO42-, 19.1 of K+. The distribution of the uptake for

the different nutrients was similar to that reported by Berezi et al. /6/.

The total uptake of anions did not equal cation uptake because certain cations were no_

included as Ca 2++, Mg 2÷, Na +. However their uptake was probably not great enough to equal

the nitrate uptake to obtain ionic equilibrium. It is probable, as demonstrated by Gerbaud

et a.____l./15/, that H ÷ uptake compensated to obtain ionic equilibrium.

• ,o3 ,o
c : K÷ • o_o

60-":NH4" 2 o._'" X_Ooo ° . -30
, o : HPO 4 " / "_oe •

40- % eee _e___ _ 20

ooooO :Ooo.o-o
, 20- __o oooooO° o oo ooo - 10

_-- _oooo" ___ __,..,_.._. _ o
• • e" ^oOo°Z-_---,e_m__" _ :L.

o-.= - - -'-o ".

t. 4 Net Photosynthesis

EO.SJ- / Transpi_on I " "__ o

o. 4_- / _/.r"- resoirali0n -I 4

ffo.o 0 Z

2o 4o 8o ioo
TIME ( days after sowing )

Figure 2 = Net photosynthesis, night respiration, transpiration and mineral nutrition

of control plants of wheat (Triticum aestivum) plotted on the basis of the surface area

of the growth chamber. Plants were grown under the following conditions. Photoperiod :

14 h light/10 h dark t irradiance : 600 _mol m-2s -I ; CO 2 concentration : 340 ul1-1 :

02 conce=tration : 20.6 t t density of plants : 80 per m 2.

B) Gas _1_h--_es r mineral nutrition and development of the crop cultivated under high

CO? ooncentration

Gas Excbangeo The diurnal CO 2 assimilation being by definition equal to that of the control,

the variations observed in exchange of other gases, are only reported. They will be expres-

sed in relative value in comparison with the control.
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Figure 3 : Effect of elevated CO2 (?00-900 _I 1-1 ) on respiration and transpiration

of wheat. Ratio values calculated for surface area of growing chamber.
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Transpiration rate was reduced 77 % by elevation of the CO 2 [Fig. 3). This figure was

relatively stable along the entire I00 days of growth. This effect was probably the conse-

quence of the increase of the atomatal resistance /12/. The nocturnal respiration of the

crop under CO 2 enrichment was not very different from control plants under ambient CO 2

(Fig. 3). However, after day 75 an increase was noticed, corresponding to the period of

grain formation. Other workers have shown that CO 2 enrichment causes stimulation of growth,

but that the respiration rate was not stimulated in proportion to that of photosynthesis

/I0, 5/. In our case a lower rate of respiration was expected, but was not observed. The

explanation proposed is that the CO 2 enrichment associated with higher light probably

induced, in conventional experiments, an extra accumulation of glucoeldea which was stored

and not used in respiratory metabolism.

Kiner_ nutrition. Figure 4 depicts the ionic uptake of NO3-, K +, HFO42-, NH4 ÷ of wheat

under CO 2 enrichment as a ratio of the uptake of wheat with ambient CO 2 level. It is not

possible to observe a very significant difference between the two crops. During the 80

days of measurements, the averages of the ratio of uptake, for elevated CO2/ambient co 2,

were 1.O3, 1.06, 1.02, 1.04 respectively for nitrates, potassium, phosphate, and ammonium.

Develoi_ent and Yield Characteristics at Harvest. The appearance of leaves was delayed

by 1 to 2 days in high CO 2 compared to ambient CO 2. The appearance of ears was delayed

4 days by elevated CO 2 (Fig. 5A). In the crop under low 02 treatment this delay was 15

days (Fig. 5B).
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Figure 5. Time for appearance of ears for plants grown at an elevated CO 2 concentration

(A) and for plant grown in low 02 concentration (S). The control plant grown at 20 % of

02 and 340 _i 1 -I of CO 2. The photosynthetic CO 2 exchange (--) was maintained equal

between control and treated plants.

Harvest data is shown in table 2. The distribution of dry matter in the different parts

or organs was similar, but the roots were of less weight in high CO 2 than in ambient CO 2.

This effect ks surprising and must be confirmed. In contrast, CO 2 enrichment in conventional

experiments induced an opposite effect, an increase of root allocation. As observed in

respiration, the response was probably the consequence of the requirement for storage

of extra assimilates. With low 02, the main observed effect was the absence of grain.

This effect was not observed with high CO 2.
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TABLE 2 Harvest data for wheat crops grown at ambient and elevated CO 2 with

photon flux balanced to obtain similar net photosynthesis at each CO 2 level.

Each chamber was divided into three areas to permit statistical comparisons.

Control High C02

Dry weights
per plant

10.2 9.2
Leaves & stems 9.7 9.7 8.1

9.3 8.4

7.8 6.3
Ears 7.2 7.4 6.9

7.4 6.3

8.6

6.5

3.2 2.7
Seeds 2.7 3.2 3.3 3.0

3.6 3.1

2.9 1.8
Roots 2.6 2.6 1.7

2.3 1.5

1.7

Number

per
plant

23.5 19.1
Tillers 18.8 20.8 18.5

20.2 18.5

22.3 19.I

Ears 17.8 19.0 18.5
17.4 18.2

88.0 89.6
Seeds 66.6 85.5 I08.0

102.0 108.3

18.7

18.6

95.6

0.18 0.17
Harvest |ndex 0.16 0.19 0.22 0.20

0.22 0.21

DISCOSSIOIi

Ilarveat Index. The harvest index was low in comparison with figures obtained in field

or in similar cultures /24, 9/. That was primarily due to the low density used of 80 plants

m -2, compared with 1000 to 2000 plants m "2 used by Bugbee end Salisbury /9/. The low density

was chosen so that roots of plants could be maintained in separate atmospheres during

the low 02 treatment. A consequence of this low density was an abnormal increase in the

number of tillers. Ear appearance was distributed over a long period of time. The late

developln_ tillers were shaded significantly and heads remained small and unfertile.

A "closure effect" may also have resulted, as found in Soviet studies (KELESHKO, private

comt_nication}. Closure would permit the accumulation of volatile products emitted by

plants, especially ethylene, which would interfere on the fertilization of the plants.

In our case the closure was relatively complete. Our CO 2 supply, by a gas mixture of 20 t

CO 2 and 80 % nitrogen, minimized the atmosphere renewal necessary to exhaust the oxygen

produced by plants. Hence, the atmosphere renewing was lower than 10 % of the chamber

volume per day. A trap for volatile products (activated charcoal) was inserted in the

system loop provided for CO 2 trapping. However the efficiency of this trap for ethylene

absorption was questionable.

Si_rnlflca_ce of the delay induced by O02 e,rlc_aeat. The delay observed for ear appearance

with CO 2 enrichment was small but was probably real because many precautions were taken

to maintain equal average temperatures in twin chambers. The temperature probes recorded

by a computer were frequently checked by standard thermometers introduced in shaded tubes

beside the recorder probes. Considering that the development rate is proportional to the

thermal time (Io T B dr) with e the dry temperature, dt the interval of time in days,

T the age of the culture /Ii/. The daily temperature average being around 20°C, a difference
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of 4 days corresponds to a difference of thermal time of 80 days, a systematic error of

80/75 days = 1.06°C is necessary to explain the discrepancy of the ear appearance. Thus

temperature differences cannot explain the delay in ear appearance because the average

temperature was 19.54°C for the control and 19.57 for the high CO 2 chambers.

Differences in irradiation levels may have increased leaf temperatures even though air

temperatures were similar. However a differential effect of radiation on the shaded tempe-

rature probes would only concern the light period temperature. Hence, to have an effect

of 1.06"C on the daily average, the error must be 1.81°C. The effect of increased radiation

would tend to increase the temperature probe of the control chamber. Thus the actual effect

of increased radiation would be to reduce the true temperature of air in the control cham-

ber. A difference of 0.5eC on the probe would mask a difference of one day in the rate

of flowering. That would minimize the observed difference.

Comparison with data of literature. It is known that a certain weight must be obtained

by a plant to permit flowers to develop /22/. Studying the effect of CO 2 enrichment on

growth and development of several plants, Marc and Gifford /26/, showed that the increase

of dry weight by continuous CO 2 enrichment was accompanied by an advance in the date of

flowering. In wheat, this advance was from 1 to 5 days. A short term enrichment (7-I0

days) before the period of flowering was also sufficient to advance this process. The

explanation can be either a trophic effect or a direct effect of CO 2. Nonetheless the

availability of additional carbon dioxide generally contributes to a stimulation in the

rate of flowering.

The discrepancy between these data and our observations could result from the two opposite

actions of the CO 2 enrichment - the stimulation of the carboxylation and the repression

of the oxidative cycle. The experiment cited above mixed the two effects, the stimulation

being predominant. In our case the protocol was developed to avoid the stimulation effect

of CO 2, insuring the same growth as the control. Thus it reveals an opposite effect, the

repression of the oxidative cycle.

_i_on between low 02 and CO 2 effects. It is clear that CO 2 enrichment, in the range

of our experiments, does not modify the yield of grain. On the contrary reduction of 02

did modify the yield of grain. A direct effect of 02 was suggested rather than an indirect

effect on the oxidative cycle /16/. It has been reported that a lowering of 02 concentration

can reduce the respiration of organs or organelles concerned with reproductive growth

/13/. A direct effect of 02 is also proposed to explain the effect of 02 on the rate of

development, however the small but significant effect of CO 2 on rate of development suggests

that the oxidative cycle is the controlling factor in the low 02 effect.

If the effect of low 02 was larger than that of CO 2 enrichment, the two treatments would

not have the same theoretical effect on the repression of the oxidative cycle. It was

calculated /16/ that the vo activity st low 02 was depressed from the control plant vo

value of 0.4 P to a value of 0.09 P (vo being the oxygenation rate of rubisco giving the

flow rate (activity) of the oxidative cycle, P being the net CO 2 assimilation}. Thus the

repression of oxidative cycle was 1.7 time less for CO 2 enrichment than 02 reduction but

the delay of the flowering was three times less important (4 days instead of 15 days).

This would indicate that the repression of flowering is not proportional to the repression

of the oxidative cycle. In fact there is no reason why the effects on the nitrogen metabo-

lism, /30/ should be proportional to the repression of the oxidative cycle. Two different

hypothe_s can be proposed :

l) One hypothesis is that the oxidative cycle regulates the production of required nitrogen

compounds. The nitrogen requirement, stated as a proportion of the carbon requirement,

can be deduced from the classic ratio of N/C in organic matter and is around 0.09 g/g.

Expressed in moles, and related to the rate of carbon assimilation P, this requirement

is equal to 0.078 P. The stochiometry of the oxidative cycle indicates that the rate of

amino acid synthesis is vo, the activity of the oxygenation of rubisco. Thus if one assumes

that the requirement of nitrogen is totally satisfied by the production of glycine, then

to obtain a limitation in the production of nitrogen compounds, the vo activity must be

repressed below 0.078 P. A threshold effect could be expected when approaching this value.

That actually was observed since, with low 02, the value of vo was 0.09 P and is near

the threshold. On the contrary, with elevated CO 2, the value of vo was 0.15 P and was

far fro= the threshold and thus less reason to implicate this hypothesis. The same conclu-

sion would be obtained if the serine was used in place of glycine.

2) Another hypothesis is that the glycine is a preferential substrate to support in vitro

mitochondrial activity /31/. The basic activity of mitochondria should be totally saturated

by the .treat availability of glycine which, as noted above, is 0.4 P in standard conditions.

To Derturbate the "normal" mitochondrial metabolism of the light period and to force it

to use sugar as it uses in the dark, it is necessary to repress the glycine activity,

i.e. vo, below the basal dark respiration. It is observed that a threshold effect can
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be expected and that the response of low 02 plants was at this threshold. However the

elevated CO 2 response only approaches this limit.

CONCLUSION

the conuentration of CO 2 did not modify the ratio of grain to dry matter, at the elevated

level of 700 to 800 _l 1 -I of CO 2. The CO 2 effect on the rate of development also was

3ma11. :he concentrations of CO 2 anticipated in space bases, around i000 Vl I -l, are

higher than levels studied but should not have any significant effect on the development

Df plan_s. However the basic question concerning the necessity for activity of the oxidative

_ycle _s not solved by these investigations. The two hypothesis suggested by our data

indicate that the action of CO 2 on the oxidative cycle is considerable compared to its

• £fect on nitrogen metabolism. The inhibition of nitrogen metabolism by CO 2 was too small

to have an}' significant effect on nitrogen metabolism. It can be calculated that 3000 Vl 1 -I

Df CO 2 would be necessary to repress the amino acids synthesis below the 50 % of normal

requir_nt of nitrogen compounds. Our hypothesis therefore could explain the toxicity

_f very high levels of CO 2.

Concerning the effect of low 02 treatment, two negative responses were observed _ absence

of grain and delay of flowering. Only the last response could be related to the repression

of oxidative cycle according to our hypothesis. The evidence for theses effects of 02

reveals new limiting steps in the fertilization process that should be of use to geneticists

and plant breeders for improvement of plant lines.

The effect of low 02 on grain production poses a serious problem to solve if reductions

of 02 pressure are used in combination with a decrease of nitrogen pressure to maintain

reduced pressure-plant cultivation modules in space.
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ABSTRACT

A number of studies have selected the sweet potato as a potentially

important crop for CELSS. Most hydroponic studies of sweet potatoes have

been short term (<80 days). Full term (90 to 150 days) studies Of sweet

potatoes in hydroponic systems were needed to understand the physiology of

storage root enlargement and to evaluate sweet potato production potential

for CELSS. Early and late maturing sweet potato varieties were grown in

hydroponic systems of different types--static with periodic replacement,

flowing with and without recirculation, aggregate and non-aggregate. In a

flowing system with recirculation designed at Tuskegee University using the

nutrient film technique (NFT), storaqe root yields a_ h_Qh as 1790 g were
produced with an edible Growth rate of up to 66 g m- d- and a harvest

index as high as 89% under greenhouse conditions. Preliminary experiments

indicated high yields can be obtained in controlled environmental chambers.

Significant cultivar differences were found in all systems studied.

Nutritive composition of storage roots and foliage were similar to

field-grown plants. The results indicate great potential for sweet potato

in CELSS.

INTRODUCTION

Progress and problems associated with stowing plants in controlled

environments for future space missions have been described and summarized

by Langhans and Dreesen /I/ and Salisbury and Bugbee /2,3/. To date, eight

crops that provide a balanced diet have been selected by NASA for initial

study: wheat, rice, white potato, sweet potato, soybean, peanut, sugar beet

and lettuce /4/. The primary focus of scientists working with the

NASA-CELSS program has been on four of these crops--wheat, lettuce, potato

and soybean. Intensive research on the cultural and environmental

conditions for optimum yield and duality of these crops in controlled

environments at l _ is beinn conducted. Limited data exists for the other

crops. In 1985 NASA initiated studies of sweet potato for CELSS through

Tuskegee University. This paper represents a progress report on some of the

studies conducted in growina this crop for CELSS.

SELECTION OF SWEET POTATO FOR CELSS

A number of studies have developed criteria to select crops appropriate for

CELSS /5,&,7,4/. Hoff et al. /7/ gave numerical values to 21 selection

criteria so that their growth potential for CELSS could be quantified

(Table I). Sixteen of these criteria were assigned numerical values of 0, 1

or 2 for a low, medium or biqh rating. Because of their relative importance

for CELSK, the other five criteria were Given a weighting factor twice that

of the other 16, i.e, 0, 2 or 4. These five criteria were: energy

concentration, nutritional composition, processing requirements, proportion

of edible biomass and yield of edible plant biomass. Of the |3 root and

tuber crops evaluated, potato, carrot and sweet potato received the highest

ratings of 35, 34 and 32 respectively.

*Author presenting paper. Contribution No. PS007 of the George Washington
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Hill et al. /8/ modified this rating in view of the edibility of sweet

potato foliage (which increases the weighted factors of both proportion and

yield of edible biomass for this crop), the presence of solanine, saponins

in combination with oxalate, and hydrocyanic acid in potato, taro and

cassava, respectively, (which lowers the ratings for these crops in

toxicity) and the horizontal (ageotropic) growth habit of sweet potato.

This latter characteristic would be a positive factor in that it eliminates

the need for gravitational cues for growth--an important factor in plant

selection for CELSS /9�--and thus was added to the 21 criteria and given a

weighted factor. These modifications have been incorporated in Table 2 with

the resulting ratings of 43, 39 and 38 for sweet potato, carrot and white

potato, respectively. These results agree with the conclusion by

Nikishanova /6/ that sweet potato is the "crop most suited for CELSS".

Basic preparations of sweet potato storage roots and leaves are simple. The

roots can be processed into flour, starch, hot cakes, gruel, noodles, pies,

cakes, french fries, chips, candy, ice cream, milkshakes, _elly and syrup.

Carotene, pectin, and a tempeh-like food can also be produced from sweet

potato. The foliage tips may be prepared as a salad or a cooked green in a

manner similar to spinach, mustard, turnips, and collard greens. Cultivars

with dwarf-type foliage exist and potentially can be selected to minimize

non-edible leaf and shoot portions /10,11,6,12/. The sweet potato roots are

high in carbohydrates, protein (some cultivars), vitamins A (orange flesh

cultivars), B. and C, iron and potassium. The leaves are high in protein,

vitamins B 2 a_d C, calcium, iron, phosphorus and dietary fiber.

sweet potato would be expected to have an oxygen production potential

similar to other plants. Oxygen evolution can be assumed to be

approximately proportio_alltO dry matter accumulation, i.e., the oxygen

product_onlin liters m- d- is approximately equal to dry mass production
in g m- d- when the dry mass consists of sugars /4,5/. Sweet potato has

the second highest sugar production (next to sugar beet) of the root and

tuber crops per unit of dry matter and thus can be expected to rank high in

oxygen production. Also, if sweet potato can be produced with a harvest

index of 89%, then a smaller percentage of the oxygen produced will be

needed for oxidation of the inedible plant parts and a greater percentage

available for breathing (food oxidation) by humans.

OVERVIEW OF EXPERIMENTAL METHODOLOGIES

Studies at Tuskegee University in growing sweet potatoes in soilless

culture have involved three phases of experimentation with aggregates and

recirculating flowing culture (NFT)--both in the greenhouse and in

environmental chambers.

Aggregate Studies

Three, ten or fifteen L black-white vinyl-covered pots filled within 2 cm

of the top with sterilized perlite, sand, sawdust, rockwool or gravel were

planted with 15 cm sweet potato vine cuttings in a greenhouse. 'Jewel',

'Regal' and 'Georgia Jet' cultivars were studied with the latter used in

most experiments because it is early maturing. Water or nutrient solution

was provided to each plant via drip irrigation. A small submersible pump in

the nutrient solution or water reservoir fed the header according to a

programmed time sequence. A bypass line off the header and directed back to

the reservoir provided for flow rate control and aeration. Some systems

were designed as open hydroponic systems with the effluent solution simply

wasted. Others were closed systems with the solution recycled. In either

case, the nutrient solution was changed every two weeks. Typical nutrient

solution application protocols applied approximately 50-60 ml of solution

s{X times daily for one to two minute intervals.

Experiments using these agarenate systems provided some basic information

essential to understanding the process of sweet potato storage root growth

and enlargement. However, the heavy weight of some of these aggregates

preclude their use in CELSS.

Carver Agricultural Experiment Station, Tuskegee University. This research

was supported by funds from the U.S. National Aeronautics and Space

Administration (Grant No. NAGI0-O024) and USDA/CSRS (Grant No. ALX-SP-I).

We wish to thank Mr. Ralph Prince and Dr. William M. Knott of the NASA/John

F. Kennedy Space Center for technical assistance.
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NFT Studies

Experiments were also conducted using NFT. This system required a

reservoir, pump, growin_ channels and associated piping and structural

materials. Within this system, the nutrient solution is pumped from a 45 L

reservoir to the high end of a 1.2 m long channel which is sloped (I cm in

I00 cm) down to the reservoir. The nutrient solution spreads across the 15

cm wide channel as a thin film as it flows to the drain and returns to the

reservoir. The flow rate to each channel is set by utilizing a bypass line

back to the reservoir with a system of on-off valves. The 15 cm sweet

potato vine cuttings are held upright within a growing channel by an

assembly attached to the sides of the channel by vinyl (white on top, black

below) which covers the channel. As the foliage grows, the vines are tied

to vertical strinqs dropping I meter from above the channel. The storage

roots develop within the Growing channel in the space below the assembly

and the assembly is raised either manually or by the roots themselves as

they enlarge. The roots may be examined during the course of the experiment

by simply opening the vinyl.

The third stage for the research was to locate Tuskeqee University nutrient

film systems within walk-in environmental chambers so that system

conditions could be effectively controlled and more easily quantified.

Growing Conditions

Table 3 lists the growing conditions presently under study or in the

research plan. Greenhouse conditions precluded holding some of these

parameters at a fixed value from day to day or even ho_r to hour. The air

temperature in the greenhouse varied between 22 and 35-C depending on the

season of the year and the weather _onditions. Within the g_owth chambers
the temperature has been held at 28 C during the day and 22 C at night.

The relative humidity ranged between 60 and 95% in the greenhouse but was

set at 70_3% in the growth chambers. The daytime irradiance level in the

greenhouse varied with the season of the year, time of day and the weather

conditions; between the sunlight and the supplemental cool white m_2s_lfluorescent (CWF) llghting, the level ranged from 200 to 2000 umol

The environmental chambers are supplied with both incandescent (INC) and

CWF lighting and the distinct irradiance levels utilize_pi the sweet

potato studies to date include 300, 480 and 960 umol m-_s -_. The hours of

light in the photoperiod can be easily controlled in the growth chambers

and the two levels studied thus far are 12 and 24 hours of light. In the

greenhouse the variation in hours of light was from 10 to 15 hours

depending on the season of the year. All studies to date have been

conducted with CO 2 at the ambient level.

The channels for all the sweet potato experiments carried out so far have

been designed as described earlier but modifications in design are being

planned. The nutrient solutions used for growlng sweet potatoes have varied

from quarter to full strength Hoagland solution with modifications in Fe,

N and K. The application protocol for these nutrients has been intermittent

in the aggregate studies and continuous in the nutrient film studies.

Deionized water has been used to top off reservoirs in many experiments if

the level of nutrient solution became too low for proper pumping prior to

the biweekly changeover.

Cultivars selected for our studies to date have included: 'Jewel', 'Geor0ia

Jet', 'Regal', '85-DW-8', 'TI 155', 'GA 120' and2'GA 121'. Plant spacings

considered to date have included 0.03 and 0.12 m per plant in aggregate
s_udies and 0.05 and 0.13 m per plant in the nutrient film system. The

_arvesting procedure for sweet potatoes for one study involved taking

foliage samples every 15 days beginning with day 55 and until entire plant

harvest at 120 days. In other experiments, both roots and foliage have been

harvested at 70, 90, 105, 120 or 130 days.

RESULTS AND DISCUSSION

Yields and Yield Components

Table 4 shows yield data from a few selected experiments with several

cultivars of sweet potatoes grown hydroponically in the greenhouse with

sand as an aggregate or with NFT using a modified half Hoagland solution.

Yields of up to 869 g/plant in sand and 1790 g/plagt in the NFT system
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(Fig. I) were obtained. These data are also listed along with both field

and greenhouse experiments of other investigators /13,14,15,16,17,18,6/ in

Table 5. If the sweet potato clone study of Martin /16/ and the cultivar

evaluation in the undefined growing system of Nikishanova /6/--both single

plant results--are excepted, the yields obtained in this report are

comparable to the highest yields obtained in other greenhouse or field

studies on sweet potatoes by other researchers. The yields obtained in NFT

are the highest ever recorded for sweet potatoes grown in an NFT system.

The 5000 and 8000 g yields listed in Table 5 indicate the potential of the

sweet potato that can serve as a goal for future work. More immediately, we

expect fresh storage root yields of 2 to 4 kg/plant to be produced in

controlled environmental systems.

Table 4 also provides yield data expressed in units necessary to determine

growing potential on an area, time and photosynthetic efficiency basis. The

growth rates of 'Jewel' and 'Geo_gi_ Jet' arown in sand and calculated on a

calory area basis (9.4-14.1 g m-=d - ) and root area basis (34.6 to 52.0 g

m d ) are considerably lower than growth rates of 'Georgia Jet' and 'TI

155' grown in NFT and calculated on a canopy area basis (13.7 to 23.1 g

m-2d I) and root area basis (39.1 to &6.0 g m-2d-l). The growth rates of

sweet potato in NFT are comparable to those fgr _heat, potatoes, lettuce

and soybeans (54.3, 24.3, 28.7, and 23.6 g m--d--, respectively) /3/. None

of these growth rates for sweet potatoes takes into account the fact that

the sweet potato foliage tips are edible and can be consumed. Thus the

rates as calculated would be higher if this fact were considered. On tile

other hand, it should be noted that these values were obtained in

greenhouse studies with day-to-day variable temperatures, relative humidity

and light. The harvest indices for the sweet potatoes resulting from each

of these selected experiments ranged from 60 to 89.2%; this is comparable

to those for potatoes and lettuce but exceed those for wheat and soybeans.

Edible portions of foliage have not been included in these harvest index

calculations.

Environmental Growth Chamber Study

A recent study in a controlled chamber using NFT produced a s_oE_ge root

yield of 505 g/plant and 374 g/plant with 960 and 480 umol m s

irradiation, respectively, in 85 days (Table 6). These yields were obtained

with t_e 'Georgia Jet' cultivar grown with 14=10 L:D photoperiod, 28°C day

and 22 v night temperature, and 70% RH. Although these were preliminary,

unduplicated data, results show a higher storage root production under the

higher light intensity.

Nutritive Proximate Analysis for NFT

Proximate analysis of sweet potato storage roots grown in NFT are shown in

Table 7 as compared to that for field grown roots. The data indicate that

hydroponically-grown roots provide comparable nutrition to field-grown

plants /19/. Apparent differences in values can be attributed to the fact

that the roots from the NFT system were analyzed immediately after harvest

while the field grown sweet potatoes were cured, stored and baked prior to

analysis. Carbohydrates and vitamins A and C are the major nutritional

components from the roots.

CONCLUSIONS

Preliminary research data have shown that sweet potatoes can be produced

hydroponically in bot_ aggregate and NFT systems. Yields of up to 1790 g

per plant in a 0.I_ m_larea (root basis) have resulted in an edible growth
rate up to 66 g m-- d and a harvest index as high as 89%. Yields per

plant obtained in the greenhouse were comparable to those obtained in the

field with the sa_e cultivar.

Nutritive content of hydroponically-grown sweet potatoes was similar to

field-grown ones.

Optimization of environmental conditions, nutrient composition and

application protocol leading to the best yields form our present and future

research agenda. There is also a need to study the effects of various

harvest practices on foliage quality and storage root development. Some of

these practices include single or multipl_ root removal at various times

during the life of the plant and harvest of edible shoots at various
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freauencies, amounts and locations on the plant. More research is needed in

order to obtain maximum sweet potato yields under controlled conditions and

to grow the crop effectively in the 'Breadboard' facility at the NASA-John

F. Kennedy Space Center /20/ and finally in CELSS in space.
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TABLE 3 Sweet Potato Growing Conditions Under Consideration

Parameters Range

Temperature

Relative Humidity

Irradlance

Lamp Source

Photoperlod

CO 2

Nutrient Application Protocol

Plant Spacing

15 ° to 38°C

60 to 95Z

-2 -I
200 to 2000 umol m s

High-pressure sodium, cool-whlte

fluorescent, incandescent, aunllght

6 to 24 hours of light

Ambient to 1500 ul per L

Continuous - intermittent

2
0.01 to 0.50 m per plant

TABLE 4 Yield Data for Sweet Potatoes Grown in Sand and NFT

Systems Maintained in Greenhouse

i

Fresh Wt. Dry Weight

Growing Per Per

System Cultivar Duration Plant Plant Canopy Area Root Area

(days) (g plant -l ) (q m -2d-l) (g m-2d-l)

Harvest

Index

(%)

Sand, Geor0ia 120 869* 203 14.1 52.0

pot Jet 748** 175 12.1 44.8

Sand, Jewel 120 606* 162 11.3 41.5

pot 505** 135 9.4 34.6

NFT Georqia I05 1482" 297 21.4 61.1

Jet 949** 190 13.7 39.1

NFT TI 155 130 1790" 397 23.1 66.0

1493"* 331 19.3 55.0

89.2

87.6

82.4

79.6

70.1

60.0

*Highest plant yield

**Mean of four plants
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Fig. I. Sweet potato roots grown in the Tuskegee University NFT

system.

TABLE 5 Highest Sweet Potato Storage Root Yields Reported in

Various Field and Greenhouse Studies

Fresh Wt/ Specified Growing

Plant (g) Cultivar Conditions Period (d) Source

1627 TIS 9265 Field 120

989 A28/7 Field, Dry season 140

1509 V5-I13 Field, irrigated, 133

humid region

8000 293 clones Field 148

1300 Triumph Greenhouse, pot, 132

sand

1550 _14 Tucker Greenhouse, sand 30

then static solution I00

5000 60 varieties Greenhouse, undefined 150

hydroponic system

869 Georgia Jet Greenhouse, po[, 120

sand

1482 Georgia Jet Greenhouse, Tuskegee

NFT system

1790 TI 155 Greenhouse, Tuskegee

NFT system

I05

130

Alvarez & Hahn, 1983

Lowe & Wilson, 1975

National Sweet Potato

Collaborators Group,

1985

Martin, 1983

Leonard et al., 1948

Uewada, 1987

Nikishanova, 1977

(This Report), 1986

(This Report), 1987

(This Report), 1988
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TABLE 6 Sveet Potato Storage Root Production in Environmental

Growth Chambers

Storage Root Irradiance

Fresh Weight PP_2 -t
Cg per plant) (umol m s

374 480

505 960

Hydroponic System: Tuskegee University Nutrient Film System

Conditions:

Cultlvsr: Georgia Jet

Duration: 85 days

Photoperlod: 14:10 Day:Night

Temperature: 28°C Day

22°C Night

Relative

Humidity: 70Z

CO2: Ambient

Nutrient

Solution: HaXf-Hoagland
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TABLE 7 Proximate Analysis and Comparlson x of 'Georgia Jet'

Sweet Potato Storage Roots Grown in the Tuskegee University NFT System and

Field Grown Roots

Component

NFT System Field Grown

Content* per 100g

(g) (g)

Moisture 78.5 80.4

+
Fat - 0.2

+
Ash - 0.6

Protein 1.0 I.I

+
Carbohydrate - 17- 7y

+
Starch 12.9 -

+
Sugar - 5.1

+

Vitamin Bit* 0.136 -

+

Vitamin B2*t 0.064 -

Vitamin C** 28.0 12.8

Carotenoids** 7.5 II.3

XNFT system measurements made on raw rooCs Immediately after harvest; field

grown measurements made on baked roots followln8 curing and storage.

aNet basis

_*mg per lOOg
Not measured in this study

YDetermlned by difference
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ABSTRACT

The photosynthesis and productivity of Lemna gibba were studied with a view to its use in Controlled Ecological

Life Support Systems (CELSS). Photosynthesis of L. gibba floating on the nutrient solution could be driven by

light coming from either above or below. Light from below was about 75% as effective as from above when the

stand was sparse, but much less so with dense stands. High rates of photosynthesis (ca. 800 _mol CO2- g dry

weight (DW) -1 s-1) were measured at 750 pmol. m -2 s -1 PPF and 1500 #tool. tool -1 CO 2. This was attained

at densities up to 660 g fresh weight (FW). m -2 with young cultures. After a few days growth under these

conditions, and at higher densities, the rate of photosynthesis dropped to less than 25% of the initial value. This

drop was only partly alleviated by thinning the stand or by introducing a short dark period at high temperature

(26°C). Despite the drop in the rate of photosynthesis, maximum yields were obtained in batch cultures grown

under continuous light, constant temperature and high [CO2]. Plant protein content was less than reported for

field grown Lemna. When the plants were harvested daily, maintaining a stand density of 600 g FW m -2. yields

of 18 g DW m -2 d -1 were obtained. The total dry weight of L. &Jbba included 40% soluble material (sugars

and amino acids). 1_5% protein. 5% starch. 5% ash and 3.5% cellulose and other polymers.

We conclude that a CELSS system could be designed around stacked, alternate layers of transparent Lemna

trays and lamps. This would allow for 7 tiers per meter height. Based on present data from single layers, the

yield of such a system is calculated to be 135 g DW m -3 d -_ of a 100% edible, protein-rich food.

INTRODUCTION

The development of Controlled Ecological Life Support Systems (CELSS) for use on long-duration and/or large

population space missions has been described as a critical enabling technology by the National Commission on

Space /1/. Proposed missions to the Moon. Mars. asteroids or large orbiting space stations demand reliable,

largely autonomous systems to provide the life support requirements of the crew. The development of such

bioregenerative systems will eliminate the need for expensive resupply strategies, which are incompatible with

• nission goals /2.3/. One of the main factors which determines the relative advantage of a CELSS based on

plant growth, versus a chemical regeneration plus food storage system, is plant productivity per unit volume

and per unit of required energy.

In theory, algae are among the most attractive higher plants for use in CELSS /4/. Their small size and small

proportion of nonphotosynthetic tissue gives them extremely high relative growth rates (RGR) and they can be

grown continuously in automated cultures. However, a variety of difficulties are associated with their use in a

CELSS, including stringent growth requirements and the need for considerable processing before they may be

eaten in quantity/5.6/.

Duckweeds, mainly from the Lemnaceae but also including Spirodela and Wolffia spp. are tiny (1-5 ram) higher

plants, which grow as floating mats on still, fresh waters. Small size, a large percentage of photosynthetic tissue

and permanently open stomates give them many of the qualities of algae, and RGR values are among the highest

known for flowering plants /7.8/. They have a number of other characteristics which make them particularly
attractive for CELSS:
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- Reproduction is usually by vegetative budding, every one to three days. Flowering is rare /9/. This allows
rapid, uniform growth,

- Axenic stock cultures can be maintained indefinitely in light, or in the dark on sugar/10/, This enables rapid
restart of the standing crop after a prolonged period of dark, or after a system failure.

- They preferentially take up ammonia /11/, which may be present in the output of bioregenerative waste
processors /12/.

- Their stomates are inactive /13/. This allows for photosynthesis during unusual photoperiods (unusual for
terrestrially evolved plants) such as may be encountered in low Earth orbit (LEO) or on the moon.

- They have a 100% harvest index of highly nutritious material, reported to contain from 10-35% protein with
a high content of most essential amino acids, about 5% lipids, 10% crude fiber/14/and variable starch. There
have been many animal feeding trials with duckweed spp which have shown high edibility and food value as

compared to other high protein fodder crops /14,15,16.17/. There is at least one report on the use of Wolffia
spp. for human consumption/18/.

On a very small scale, duckweed (mainly Spirodela polyrrhiza) has been studied and flown in the early days of
space flight, with a view to their ultimate use in life support systems/19.20/and /21,22/ (quoted by Landolt
and Kandeler/23/). They have also been studied, for the same purpose, in submersed mass culture/24/.

Productivity figures for higher plants in bioregenerative systems are usually given on an area basis (e.g. /25/).
It may be assumed that at least 1-1.2 m would be the minimum required height of substrate, plants and lighting
system. Lemna, which can be grown floating on a few centimeters of nutrient solution in transparent trays.
could be stacked with alternating layers of lamps, in many layers within a one meter height. The first purpose
of the work reported here was to learn whether photosynthesis would respond to. and Lemna could be grown
advantageously, with bilateral lighting, as could be used in such a stacked system.

As with other C3 plants, photosynthesis and growth of Lemna increases with [CO2] rising from 350 ('normal')
to 1500 ('high') pmol tool -1 [CO2] in air /26.27/. However. as for some other plants /28/. the response of
Lemna has been found to drop after prolonged exposure to high [CO2] /27/. Thus our second purpose was
to study RGR and changes in the rate of photosynthesis under conditions of continuous high [CO2] and light.
Finally. we sought to determine the basic productivity (g. m -2 d -1) of a laboratory stand grown under these
conditions and maintained at the stand density found to give maximum yield.

METHODS

Axenic cultures of Lemna gibba were grown in Erlenmeyer flasks, under continuous light: 150-200 pmol m -2
s -1 PPF. from Sylvania cool-white fluorescent lamps. This and all PPF values mentioned were measured with
a LICOR Model L1-188 integrating quantum meter measuring photons of 400-700 nm radiation. The culture

medium was a modified Datko et al. (1980) nutrient #4/10/. without sugar, having the following composition:

Macronutrients Micronutrients

NH4NO3 3.0 mM H3BO 3 16.2 pM
KNO 3 1.5 mM Fe citrate 4.08/_M
CaNO3 4H20 1.5 mM ZnSO4 7H20 3.48/_M
MgSO4 7H20 3.0 mM MnSO4.4H20 0.592 _M
KH2PO4 3.0 mM Na2MoO4-2H20 0.41 _M

CuSO45H20 0.12 #M
pH 6.5 EDTA (acidic) 0.01 M

Plants were transferred to four identical experimental chambers, which were alcohol-swabbed, contained sterile

nutrient solution and were aerated with dry air. However. strictly axenic conditions were not maintained during
the course of the experiments. The experimental chambers were rectangular at top and bottom with inwardly
sloping sides, and were made of transparent polycarbonate. Polycarbonate lids were clamped to the tops.
over gas-tight gaskets. Four liters of nutrient solution were added to each chamber, giving a depth of 6,0 cm
and a surface area of 754 cm 2. Chamber temperatures were controlled by circulating controlled temperature

water through transparent, plastic (Bey-a-line IV), heat-exchanging tubing, fitted at the bottom of the vessels.
Temperatures were measured by thermistors set just below the surface of the nutrient solution.

Air was scrubbed of CO 2 by passing through two columns of indicating soda lime in series, and mixed with

gas from cylinders containing 1 to 5% CO 2 via Side-Trak (Sierra Instruments) mass flow controllers/meters to
obtain the desired concentration of CO 2. Air flow through each chamber was controlled by a set of four mass
flow controllers. The rates of flow of CO 2. CO2-free air. and flow through each chamber were manually adjusted
during the course of experiments to give the desired [CO2] values within each chamber. The gas mixture entered
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one side of the chamber, passed over the water surface and exited at the opposite side, via perforated stainless
steel tubes, Within the chambers the air was stirred with fans fitted into the lids. As the air in the chambers

was well Stirred the [CO2' " of the efflux air was taken as the average of the ambient air over the plants.

When the air leaving the chambers was being analysed, part of the efflux gas was passed through a condenser at

2-5°C and further dried by a column of magnesium perchlorate before reaching a LIRA (Mine Safety Appliances

Co.) infra red gas analyzer (IRGA) for measurement of [CO2].

The chambers were irradiated from both above and below by banks of cool-white fluorescent lamps. The lamps

could be raised or lowered to change the incident photon flux. Measurements of PPF were first taken at about

12 points in each chamber at the level of the liquid surface, with the quantum probe facing up or down, For

these light measurements the chambers were fully configured, except for the presence of Lemna plants, The

average values of the !2 points were correlated with levels measured at fixed points outside of and between the

chambers. PPF readings at these external points were then used to calculate the photon flux incident on the

plants, from above or below, within the chambers,

In the course of the experiments the nutrient pH was checked and periodically adjusted with ammonium hydroxide

to pH 6.5. The solution was also periodically topped up with distilled water to replace transpired and evaporated
water.

An Apple 512 computer, operating through a MacAdios model 411 analog to digital convertor, controlled the

system and logged data. Under its control sequential samples of gas were taken as follows, and passed through

the IRGA for [CO2] analysis: zero [CO2]: calibration gas; air-in gas and air-out from chambers 1.2.3 and 4.

Each sample of gas was passed through the system for four minutes to allow for system and IRGA equilibration.

Values of the IRGA. gas flow meters, clock and temperature thermistors were logged every four minutes. Initial

(Di) and final (Df) dry weights were obtained. The IRGA was recalibrated and photosynthesis or respiration

values were calculated for each chamber once every 28 minutes.

Photosynthesis or respiration were calculated from the rate of gas flow through the chambers and the difference

between the [CO2] of the air-in and air-out. Results were expressed on either a per chamber or a per unit dry

weight (DW) basis. The latter was calculated from Di (obtained from the measured fresh weight (FW). and
the DW/FW ratio of a parallel sample} and Df. The dry weight at any time. t. was calculated from the RGR.

Interpolation of t and Di into the rearranged RGR equation gave the instantaneous dry weight (Dr):

RGR = (l,,n ! - l_z_)/t (1)

Dt = EXP(t * RGR + IND') (2)

When photosynthesis was being measured as a function of [CO2] or PPF. changes in [CO2] and PPF were
carried out manually. The order of PPF or [CO2] changes was always randomized to avoid time and hysteresis

effects, Usually no more than a 5-10 minutes were required for the plants and system to equiJJbrate under the

changed conditions. IRGA and other values were then noted and input into a data analysis program via the

computer keyboard. The program calculated the ICO2] within the chambers, the incident PPF at the plant level.

from above and below, and the rate of photosynthesis or respiration.

'i

Protein content was measured by the method of Lowry et al./29/. Starch content was measured by enzymatic

degradation of starch to glucose followed by a colorimetric glucose assay /30/.

RESULTS

High vs. Low Assimilate levels

Net photosynthesis of L. gibba plants was determined as a function of PPF. with the light coming from above.

below, or from both directions. Plants for this experiment were raised under conditions conducive to a low

assimilate status: 200 #mol. m -2 s -1 PPF, room air ICO2] and low nutrient levels ("low assimilate" means

protein plus starch levels less than 100 rag. g-1 DW). Prior to the measurements the plants were held in the dark
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Fig. 1. Net photosynthesis response to bilateral lighting of a sparse stand of low assimilate Lemna gibba.

Plants were grown with continuous light at 200-250 _,mol. m -2 s-1 PPF at ca. 350 pmol mol -z [CO2].
Measurements were made at saturating levels of [CO2] (> 1.400 pmol- tool-l).

for 15 hours. The measurements were made at photosynthesis-saturating [C02] levels (> 1400/_mol- mo1-1)
using a sparse stand of plants (150 g FW m-2).

As seen in Figure 1. light from below the floating Lemna plants could drive photosynthesis with about 75% of
the efficiency of light from above. This experiment was repeated a number of times with L. gibba and also with
S. polyrrhiza, with similar and consistent results.

The response differed when the plants were in a high assimilate status (protein plus starch greater than 100 mg
g-1 DW). The plants were grown with ca. 1500/amol- mo1-1 [CO2J, a regime of 16 h light, day -1 with bilateral
lighting at a total flux of 750 pmol- m-2 s-1 PPF. fresh nutrient media and at 26°C. After 5 days of growth
under these conditions, the stand became very dense, reaching 1210 g FW m -2 and photosynthesis responded
very little to light from below. This changed when the stand was thinned to 260 g FW_ m -2.

The rate of photosynthesis at any given radiation level for plants grown at high light and [CO2] (high assimilate
plants) was only one third that of plants grown at low light and {CO2J. This can be seen by comparing the
photosynthesis of the "sparse density, high assimilate" plants (Figure 2) with that of the low assimilate plants
(Figure 1). Similar low rates of photosynthesis, after a period of growth at high light and [CO2]. were found for
S. polyrrhJza (data not shown). It should be noted that light saturation of photosynthesis was not attained in

these experiments even at the highest bilateral lighting intensity used (750 _mol. m -2 s -1 PPF).

"The response of photosynthesis to changes in ambient [CO2] was also much reduced in plants grown under

conditions of high light and [CO2] IFigure 3). This inhibition of photosynthesis could be partly offset by
growing the plants with an 8 h. day- dark period at 26 C. This partial offset of inhibition could also be seen
in photosynthesis/light response curves. Similar responses to high light and [CO2] and to a 16h light, day -1
regime were also found for S. polyrrhiza (data not shown).

Density effects

The data depicted in Figures 2 and 3 show that after a period of growth with continuous high light and [CO2]
there was a very considerable reduction in the potential for photosynthesis as calculated on a dry weight basis.
The loss of photosynthesis potential increased with time. This was a result of both an increase in stand density
and internal plant factors (as also noted in field studies/28/), The optimal density within the present context is
that which gives maximum carbon gain and hence growth per unit area. In batch experiments at high light and
ICO2] photosynthesis per unit area tends to increase to a peak and then to decline, whereas the photosynthesis
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Fig. 2. The effect of stand density on the net photosynthesis response to bilateral lighting of high

assimilate Lemna &ibba.

The same plants were used in all experiments. Plants were grown at 1400 #mol. mo1-1 [CO2], 720

_mol m -2 s-1 PPF and 16 hour day length. Photosynthesis was first measured at a stand density

of 1210 g FW. m -2. The stand was then thinned to 260 g FW. m -2 and the measurements repeated.
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Fig. 3. Net photosynthesis response to ambient [C02] of sparse stands of Lemna gibba after being grown

for 5 days either at low [C02] and continuous low radiation levels (bilateral, 200-250/Jmol. m -2 s-Z).

or at high [C02] and either continuous or 16 h d -1 high, bilateral radiation levels

(720/_mol m -2 s -1 PPF).
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per unit plant material decreases with time. An example, from a batch run with L. &ibba. grown with high light
and [C02]. 16h light- day -1 and at 27°C. is shown in Figure 4. Note that there is a certain small, systematic
error in the calculation of dry weight from RGR. as shown in Figure 4. The calculation of RGR assumes an equal
g g-1 d-1 growth, which is not exactly the case since photosynthes!s per unit weight is decreasing,

A - per unit area
(chamber area: 754 cm I)
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Fig. 4. Time course of net photosynthesis and respiration per unit chamber (area) and per unit dry weight
of Lemna gibba.

Plants were grown at 26°C with i6 h. d-1 bilateral lighting at 720 #tool. m -2 s-1 PPF and

photosynthesis saturating [C02] (> 1.400 #mol. mol-Z). The surface area of the chambers is 754 cm 2.
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Plant growth is directly related to net carbon gain (net photosynthesis. NP. less respiration in the dark. R).
From the data given in Figure 4 the R/NP ratio can be calculated to increase from an initial value of 7.2% to a
final value of 19%. In this case, the rate of maximum carbon gain was observed on the second day, when the

stand density was 500-600 g FW m -2

Maximum rates of photosynthesis per unit DW were higher in high light and [CO2] grown plants when they were
given an 8h, d -1 dark period (Figure 3). although daily yields were higher with continuous _ight. Subsequent
experiments aimed at maximizing yield per unit area were therefore carried out with continuous light (750/_mol.

m -2 s -1) and high [CO2] (> 2000/_mol. mol-1). To determine the density for maximum yield per unit area
under these conditions, plant stands were established at 8 different initial densities (in two separate experiments,

each with four densities), The plants were grown for three days before harvesting. RGR (equation 1). yield and
the logarithmic average FW density were calculated for each of the eight and data were plotted on this basis

(Figure 5). Although there was some difference in the rate of growth of the two batches of four initial stands.
both showed the expected drop in RGR with increasing stand density. The combined yield/density data could
be fitted with a polynomial equation (Y = -6.03 + 1.2x - 0.019x 2 -h 0.00009x 3) with an r value of 0.86. The
polynomial curve indicated a standing density for maximum yield of 663 g FW. m -2 (50 g FW. chamber -1 or
43 g DW m-2). At this density the daily yield was 18 g DW m-2.
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Fig. 5. RGR and yield (DW) of Lemna gibba, grown for three day periods under continuous, bilateral
light at 720 #tool. m -2 s-1 PPF and ca. 2,000 #tool, mo1-1 [CO2]. as a function of logarithmic

average stand density.
The curve fitted to the square symbols. (yield/density) is pooled data from two experiments and.

is the derived polynomial (Y = -6.03 + 1.2X - 0.019X 2 + 0.00009X 3. r = 0,86),
The RGR's are plotted separately for each experiment.

In order to confirm the potential yield, as indicated by the peak of the curve of the batch/density experiment

(Figure 5). a continuously harvested system was set up with the four chambers. Light was continuous, bilateral
at 720 pmol. m -2 s -1 PPF. and ICO2] above the photosynthesis saturation level (> 1400 _,mol, tool-l). Tem-
perature was held at 23°C. At day 5 density had reached about SO g FW. chamber -1 (663 g FW. m-2). This
density was maintained by daily harvesting. The harvested plants were analyzed for protein and starch content.
The dry matter also contained 40% soluble material (sugars and amino acids). 5% ash and 35% cellulose and
other polymers. Results are shown in Table 1. From day 5 to 10 it was possible to maintain a harvest averaging
18 g DW m -2 d -1 and 13% protein. After day 10, protein and starch content decreased. Addition of fresh
nutrient solution led to a partial recovery of growth and assimilates with a final harvest on day 14 of 4.3 g DW.
chamber -1.
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Future projections

Based on the above data and 9 tiers of L. &ibba in a stack 1.2 m high we calculate a potential yield of 135 g DW
m-3 d-1 of a nutritious crop with a 100% harvest index. Although very high. this projection may be conservative.
As discussed above, the rate of photosynthesis under the conditions of growth of the continuously harvested
cultures is only 20-40% of the initial value. Manipulation of the environmental conditions, such as light intensity,
nutrient solution composition, daylength and temperature, may allay part of this inhibition. Furthermore. although
the parallel experiments noted above on S. polyrrhiza, showed no significant difference from L. gibba, it may
be possible to select a species or strain of duckweed more adaptable to conditions conducive of extremely high
rates of photosynthesis. Thus an increase of yield from 135 to 250 g DW • m-3 d -1 does not seem to be an
unreasonable target. Assuming a caloric value of dry duckweed equal to that of wheat and a requirement of 2800
Kcal, man -1 d -1. 3.3 m3 of a CELSS plant growth unit could support the requirements of one man. However.
a CELSS could not be based on a single plant species and there are many questions to be answered, such as
the human acceptability and nutritional value of large quantities of duckweed.
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TAgLE I Lemna llbba Harvest Experlment

Time (days I Herves¢ (gl A_leifr_hltes (mg/g DW)

Wet weight Dry weight Protein Starch

1

s

6

7

8

9

10

13

14

$9.0i 4.0 5.2 ± 0.3

15.0 + 2.0 1.4 ± 0.2 140.0 i 10.0 30.0 _ 10.0

15.0 ± 2.0 1,2 ± 0.2 IS0,O ± 10.0 20.0 + 10.0

23.0 ± 2.0 2.0 ± 0.2 170.0 ± 10.0 25.O ± 10.0

16.0 ± 1.0 1.3 ± 0,2 170.0 ± 10.0 21.0 ± 2.0

16.0 ± 2.0 1,2 ± 0.2 120.O i IO.0 25.0 ± 10.O

12,O ± 1.O 1.O i 0.1 120.0 ± 20.0 19.O ± 2.0

14.0± 3,0 1.0± 0,1 70.0± 10.0 15.0± 1,0

61.0i 4.0 4.3 ± 0.3 100,0± 20.0 20.0 :k4.0

DISCUSSION AND CONCLUSIONS

The results shown in Figure 1 and the sparse stand data in Figure 2. indicate that. under suitable growth
conditions, the photosynthesis of L. &ibba will respond to light from below with about 75% of the response to
light coming from above. This allows for the design of a multi-tiered CELSS plant growth unit for low gravity
environments, such as prevail on the Moon or on Mars. Banks of relatively thin lamps, such as electric fluorescent
or optical fibers bringing in filtered solar radiation/31/, could be alternated with layers of nutrient solution. The
latter would be about 5 cm deep. with the duckweed plants floating on top. In this way 10 layers of lamps and
9 layers of duckweed could be stacked within a height of 1.2 m. 1.2 m is the least which would be required to
provide space for the rooting medium, lamps and stand of a conventional crop such as wheat.

Light saturation was not attained in these experiments. Although, as can. be seen in Figures 1 and 2. there was
some indication that at high ambient [CO2] (> 1000 ,tool. tool -1) saturation would be attained at about 1000
#tool m -2 s -1 PPF when light is incident from above and below. This is considerably lower than has been used
for maximizing productivity of most, if not all CELSS plants/32/. For wheat. Salisbury et al. /33/ reported
using 1700 and Polanskiy and Lisovskiy /34/ used >5000/Jmol. m-: s-1 PPF. A nine tiered duckweed CELSS
unit would use ten layers of lamps, each delivering 500 incident pmol. m-2 s-1 PPF in each direction. This
may translate to considerable savings in terms of the energy and heat dissipation requirements per unit biomass
produced.

When L. gibba or S. polyrrhiza were grown at low levels of light and [CO2] their initial rates of photosynthesis.
when measured with high bilateral light and high ambient [CO:z]. were high as compared to values reported in the
literature/7.8.16.17.20.26.27.35/. At 750/_mol- m -2 s -1 PPF and >1200 #mol- mo1-1 [CO2] rates approached
750 ,_mol CO 2, g DW -1 s-1 (Figures 1 and 3). However, as shown in Figure 4B, when grown under these
environmental conditions and even when the 24 hour day contained an 8 hour dark period, this rate declined
• apidly. When the stand was thinned, the P,,,, rose but was still only 40% of the initial rate. When grown with
continuous high light and [CO2]. P,_, fell to 20% of the initial rate (Figure 3). Measurements of diurnal protein
and starch levels indicated that starch was degraded over the first 4-6 hours of darkness, while protein was
essentially constant over 24 hours. It is possible that the build up of starch in continuous light is detrimental.
It can be expected that in addition to a daily 8h dark period, any regime which reduced photosynthesis per day.
such as lower light intensity or lower ambient [CO2] would also attenuate this drop in response of photosynthesis
to light and CO 2.

As can be seen in Figs. 2 and 5. productivity was also reduced by high density. Farber et aL /36/reported that
ethylene production may be a detrimentaJ factor Jndense lemna stands. Densely packed stands were also much
less able to utilize light coming from below (Fig. 2). The highest productivity in this initial series of growth
trials was obtained at a stand density of ca. 660 g FW- m -2 (Fig. 5). When plants were grown with relatively
high, continuous bilateral lighting, saturating [CO2] (> 1400 pmol. mo1-1) and were harvested daily, an average
productivity of 18 g DW- d -1 could be maintained over a period of 10 days. This is only one third to one half
of the productivity per unit area. reported by Salisbury et al. /33/ for wheat, by Hill et al. for sweet potatoes
/37/ and by Tibbitts and Wheeler for white potatoes (/32/ and this conference). However. as argued below.
the comparison is very different on a v_ume basis.
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Utilization of _ite Potatoes in CELH

Theodore W. Tibbitts, Susan H. Bennett, Robert C. Horrow and lay•end
J. Bula

University of Wisconsin, Hadison, WI 53706 USA

ABSTRACT

Potatoes (Solanun tuberosun) have a strong potential as n useful crop species in a

functioning CILSS. The cultivar Denali has produced 37._ g red -1 when grown for 132
days with the first 40 days under a 12-h photoperiod and • light:dark tenperature cycle
of 20eC:16eC, and then 92 days under continuous lrradiance and a tenperature of
16oC. Irradiance was at 725 _nol n-Xs -t PPF and carbon dioxide at IO00 unol sol -I .
The dried tubers had 82_ carbohydrates, 9_ protein and 0.6_ fat. Other studies have
shown that carbon dioxide supplenentation (1000 _nol sol "l) is of significant benefit
under 12-h irradiance but less benefit under 24 h irradiance. Irradiance cycles of 60
ainutes light and 30 ninutes dark caused a reduction of note than §0_ in tuber weight

conpared to cycles of 16 h light and 6 h dark. & diurnal tenperature change of 22oC
for the 12-h light period to 14oC during the 12-h dark period gave increased yields of
30_ and 10_ for tee separate cultivate, coup•red with plants grown under a constant
18oC teaperature. Cultivar screening under continuous irradiance and elevated
teaperatures (28oc) for 8 weeks of growth indicated that the cvs big° Denali,
Atlantic, Desires and Rutt had the best potential for tolerance to these conditions.

Harvesting of tubers free plants at weekly intervals, beginning at 8 weeks after
planting, did not increase yield over a single final harvest. Spacing of plants on 0.055
centers produced greater yield per ns than spacing at O.ll or 0.22 a s. Plants
saint•Sued 0.33 esters apart (0.111 na per plant) in beds produced the sane yields when
separated by dividers in the root uatrix as when no separation was lade.

A. BACKGRO_D

The white potato (Sol•nun tuberosua) is one of eight plant species being considered for

inclusion in a CELSS. The crop has high productivity rates and • high ratio (.80) of
edible to inedible bionass {high harvest index). Potato tuber| are nutritious,

consisting prinarily of carbohydrates (82_), with a significant anount of protein (11_).
There is sufficient protein to satisfy a person's total protein requirement if all that
person's energy requirenents are set by the consuaption of potatoes. Potatoes are •leo
easily stored for long periods, and can be prepared in a nuaber of culinary for_s.

The University of lisconsin has been supported to evaluate potatoes for the CELS$
progran. To acconplish this, an extensive series of studies have been and continue to be
carried out at the University of Wisconsin to deternine naninun productivity; to
deternine the range of yield response under different enviroanental conditions, and to

address the cultural aspects of growing potato plants in space. Brief sunlaries of thole
investigations will be provided.

B. RESF._CH

1. HIximun Productivity

Potatoes, cv Denali, were grown in a controlled environaent ross at the University of
Wisconsin Biotron to naxinize yield productivity in terns of grass per unit are• per day
(g n -8 d-I). Plants were grown in 24 closely spaced containers to develop a solid

taod 3.0 n x 2.0 n. The area was enclosed by a wire nesh fence to contain the plants.
he sides were further enclosed by opaque but reflective siding to prevent side lighting

of the plants. This siding was gradually raised during growth to be Just below the top

nest part of the plants. &ir noveuent in the ross was horizontal fron one end to the
other end. Sixteen plants, excluding one row of plants on each end, were harvested for

productivity calculations.

Growing conditions were as follows:

Irradiance Level
Carbon Dioxide

Relative Hunidity

725 _nol rSe -' PPF
1000 u mol sol-

7Oil
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9-T7 days 38-41 days 42-132 days
Temperature 201)=161( 19 to 17D:16N 16D:16N
Zrr&diance DuratioR 12 h 14 to 22 h 24 h

I S04 peat:S04 vermiculite nediun was used and plants watered to excess four times daily
using a nodified half strength Hoagland's solution. Plants were raised fret tissue
culture and grove for 18 days in 10 cn plastic containers to aininize the growing area
when plants were snell. Plants were then transferred to 30 cm plastic containers for the
rest of the growing period. Spacing of each plant was as follows:

0.02 u s plant -1 (day 0-18)
0.25 ms plant -I (day 19-132)
0.22 u s plant *t (overall average)

Plants were harvested after 132 days, and the following yield data obtained:

Total dry nattnr
Edible dry setter
Bsrvest index

Tuber productivity

5920 g n -s
4352 g n°t
73.64

37.$ g n -t d -!

Nutritional Value of Tubers
Protein 94
Carbohydrate 824
Fat 0.64
Energy content 3.7 hcal/gDV

Nutritional Yield 139 heal r s d-1

Ires for l hunan requiring 2800 kcal d -s = 20.1 i t

2. Environaental aesponr_

lrradiance dad Carbon pio_Kx_de Znteractioas

Three eultivars of potatoes, Denali, Norland and Russet Burbank, were grown for 90 days
at 160C, and 704 tH. Separate experinents sere undertaken with 12 end 24-h durations
of irradiation and with ashiest (_ 350 uuol sol -t) and enriched (1000 uuol sol-S)
carbon dioxide levels. In each experinent, plants were grown in one-half of the room at
a PPP of 400 Uiol m-st I and in the other half at a PPF of 800 _lol rss -l.

The tuber yield of the three cultivars under the separate irrsdiance treatnents and
carbon dioxide levels is provided in Table 1. An increase fron 400 to 800 _eol with a
12-h photoperiod increased yields of all cultivate. However, when grown under continuous
(24 h) irradisnce, only Denali showed an increase in yield with increasing PPF while

Russet Burbank appeared to show a reduction in yield. Apparently the photosynthetic
capability was exceeded for certain ¢ultivars when 800 _aol m°ts -l was provided for 24 h.
It can be seen that the two treatments with similar total daily irradiance (400 _nol
n-18 °t for 24 h and 800 unol rt8 -t for 12 h) had rather similar yields when averaged
over all cultivars and COt levels.

$upplsnentation with carbon dioxide was a significant benefit to all cultivate when grown
under 12-h of irradisnce st both the low and high irradiance levels. This benefit anounted
to an approxiltately 304 increase in yield, with the greatest benefit obtained b7 Densli.
Carbon dioxide supplementation was Inch less of an advantage with 24-h irrsdiance durations
and appeared to be a slight detriment st the high irradiance level. This response under 24 h
i_radisnce durations was similar for all three cultivate (Table 1).

Liuht Duration Changes

Potatoes (cv Denali) were grown for 16 weeks at 16*¢, 704 H, anbient CO, (350 unol

sol-t} and a PPF of 400 unol m-us -t. Plants were started under 12-h or 24-h light
durations and switched to the opposite duration at 4, 8 or 12 weeks after planting.

Plants grown with 24-h light for 16 weeks gave the highest tuber yields and those grown at
12-h light for 16 weeks gave the lowest yields (Figure 1). Plants which were switched
between light treatnents gave internediate yields, although plants grown first with 12-h of
light followed by 2d-h of light gave higher tuber yields than plants given the reverse
treatnont.
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Table 1. Potato tuber dry weight z in response to irradiance

and carbon dioxide concentration.

Cultivar

Photoperiod

12-h 24-h

Carbon Dioxide Irradiance

(umol mol-*) (umol m-Zs -I PPF)

400 800 400 8OO

Norland Ambient 248 307 304 317

1000 321 359 310 282

Russet Ambient 225 262 339 311

Burbank 1000 321 335 388 272

Denali Ambient 253 334 334 488

1000 363 456 366 469

ZData represent mean of six plants expressed as grams by weight.

A second replicate of this experiment incorporated an elevated COz concentration of

1000 umol mol -_. The C02 enrichment of this second replicate produced nearly 30%

greater tuber yields on plants which received 12-h lighting for the entire 16 week

growing period, but bad little or negative effects on plants receiving 24-h lighting for

the entire period and plants receiving changed lighting treatments (Figure 2). Carbon

dioxide enrichment increased shoot growth by 50 to over 100% in all treatments.

Li____h_/Dark Cycles of 90 Minutes

Potatoes (cvs Denali) were grown at 16oC, 70% RH and 400 umol m-2s "* PPF for 16

weeks under a simulated low earth orbital (LEO) light:dark cycle of 60 minutes light and

30 minutes dark. Potatoes grown under a light:dark cycle of 16 hours light and 8 hours

dark were used as a comparison. Both treatments were equivalent in terms of total

irradiance over a 24 hour period. Potatoes showed a 49% reduction in total biomass and a

55% reduction in tuber yield when grown under the LEO light:dark cycle (Table 2).

Reductions in total chlorophyll content of approximately 35%, and reductions in stomatal

conductance and photosynthesis were associated with the biomass reductions observed under

the LEO light:dark cycle. The flowers on plants in the LEO treatment failed to oper_

fully a response similar to that of flowers observed under contznuous light exposureu.

LIGHT DURATION TUBER DRY WEIGHT

I 24 I

24

2,,
24

(g plant" 1)

582

832

1043

1019

1177

853

711

749

I I I I I
0 4 8 12 16

WEEK

Fig. 1. Effect of light duration changes during growth on yield of potato tubers.
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LIGHT DURATION

24

I 24

I 24

Fig. 2.

TUBER DRY WEIGHT SHOOT DRY WEIGHT

(%)

28

24 J 5

I -2

I
24 I -5

24 _ -15

. _ - " -8

_ "," ". "_" -" _._!.._ "4

I I I I
4 8 12 16

WEEK

(%)

117

68

71

71

72

52

102

116

Effect of carbon dioxide supplementation in combination with light duration

changes on tuber and shoot dry weight.

Table 2. Weight of potato plants (cv. Denali) grown for 16 weeks

under orbital light:dark cycles (60 minutes light:30 minutes dark)

compared to plants grown under light:dark cycles of 16 hours light
and 8 hours dark.

Weight per plant (g)

60 MIN L:30 HIND 16 HR L:8 HR D

Tubers 169 374

Total plant z 529 1030

Zlncludes shoots, tubers, roots, and stolons.

Subsequent experiments have provided evidence that the biomass reductions observed in

potatoes under LEO light:dark cycles can be prevented by the addition of 75 _mol

m-Zs -1PPF during the 30 minute "dark" portion of the cycle.

Diurnal Temperature Fluctuations

Potatoes (cvs Norland and Denali) were grown for 90 days under 12-h photoperiods with 440

umol m-2s -I PPF in two separate controlled environment rooms. One room was set at a

temperature of 18oC during the light and dark periods, and a constant 70% RH. The

other room was set with a diurnal temperature fluctuation of 22oC light and 14oC

dark, with relative humidities adjusted to 77_ light and 61_ dark to maintain a constant
vapor pressure deficit (0.59 kPa) in both treatments.

Tuber dry weights under diurnal temperatures were increased by 54% in Denali and 8% in

Norland (Table 3). Total dry weight values were 30% higher for Oenali grown in

fluctuating temperatures and 10% higher for Norland. Both cultivars produced taller

plants in the fluctuating temperature treatment. An experiment is currently in progress

to determine if use of a low day/high-night temperature regime would reduce plant height

without adversely affecting tuber yields.
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Table 3. Effect of diurnal fluctuations in tenpornture on growth and
taberizatinn of potato.

Temperature Tuber Total Plant
. Treetnent Dry Veiaht Dry Veiaht

Light Dark (g plant -t) (g plant-t)

('C)

Norl_ 22 14 332 492

18 18 309 449

Plant

(on)

107

94

Denali 22 14 405 G49 120

18 IS 263 499 106

3. Cult*vat Screening

Effort has been directed towards evaluating cultivate obtained from various growing
regions for usefulness in a CELSS. Attempts have been made to obtain cultivate selected
for long daylengths and for adaptation to high temperatures. Potatoes adapted to these
conditions would extend the useful range of environmental conditions for potatoes in
C|LSS and possibly increase the max*nun productivity that can be attained.

The cult*wars were evaluated in continuous light at 600 _nol n-as -t PPF, 1000 u aol
mol-' COt, 18oC an_ 704 HH in a continuous light screening study; and in 12-h
lighting at 600 _nol ras-i0 1000 _nol mol -I C02, 2SeC and 70_ RH in a high
temperature screening study. Twenty three cult*wars were grown for eight weeks and then
observed for tuber initiation and plant vigor am shown in Table 4.

Table 4. Evaluation of selected cultivate at high temperature and with continuous
irradiancs.

Cult*war Country
of origin

He,maUve Tuber _nitiati9_'

Continuous Light High Temperature

Hang US
Denali US (Alaska)
Atlantic US

Desires Holland **
Alaska 114 US (Alaska) **
Runt Norway *
Troll Norway *
Horland US --
R. Burbank US --
Kennebec US --
Hake King US --
Superior US --
llpba Holland --
Otter Norway *
_nogg Norway *
_intJe Holland *
Fr81 US *
Snowchip US (Alaska) *
Gulauge Norway *
Spunta Holland *
Stately US (Alaska) --
ND860 US --
MY72 US --

** (slight chloroeiev)
*t

(slight chloronis,)

(slight chlorosln,)

(chlorosia)

(stunted, necrotic,)
(slight chlorosln,)

(chlorosim,)

(slight chlorosin,)
{chlorotic,, necrotic,)
(elongated stems)
(slight chloroJis,)
(abscisaion,)
(stunted plants)
(very stunted plants)

(elongated stone)

(elongated etens)

(elongated stews)
(elongated stems)

#*

l*

i*

t*

** (exposed tubers)
e

_a

(elongated inane)

-- (very stunted)

s** high * gone
,leaves

-- UOOe
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Five cultivate, Haig, Denali, Atlantic, Desiree, and lust, were found to have the best

potential under both continuous irradiation and high temperatures. These will Me
evaluated in growth studies of 120 days to deternine their productivity potential.

4. Cultural Procedures

8ubet_ate8 and Nedia

Investigations have been made of various substratum and media for use in a CELS$. These
were studied using plants grown in inclined trays with nutrient solution flowing
continuously along the bottom of the tray. The nutrient solution was recirculated and pB
maintained at 6.0 with automatic pH controllers. Potatoes have been grown successfully
both on capillary netting, as utilized for pot watering in greenhouses, and in a Icn
layer of arcillits (calcined clay particles). In either case the matting or arcillite
was covered with an opaque sheeting of plastic. These systems have achieved yields
comparable to those obtained in deep containers filled with peat-vsrniculite. However
stolons have often grown under the fibrous root nat in these systems, and as tubers have
enlarged the roots have been lifted and separated from the flowing liquid nutrient.
Efforts are being directed toward finding substrate materials0 such as finely woven
screens and porous nets, that would allow downward root penetration but inhibit stolon
penetration. Materials tested to date have been unsuccessful since newly initiated
stolons have a sufficiently snell diameter to penetrate the screens used. Also, it is
possible that stolons nay need to grow beneath a root nat, or within a substrate, in
order to initiate tubers.

Continuous hrvestina

Continuous harvesting of tubers as they resch a usable size has been compared to a single
harvest st plant maturity. Plants were grown in a 1 cn layer of arcillite0 as described
in the previous section. Plants were grown under 600 _nol n-88 -t PPF of 12 h
duration, a light:dark temperature of 22*C:16*C and 70_ RH. At 8 weeks, and for each
week until the final harvest st 16 weeks, enlarged tubers over 5 cn in diameter were
removed by reaching under the cover (with the rosa dark) and separating the tuber from
the stolon. The total weight of tubers harvested from trays over this 8 week period was
compared to the weight of tubers harvested from trays that were undisturbed for 16
weeks. No yield advantage was obtained with the continuous harvesting practice, and
there was no evidence that senescence of the plants was delayed. Tuber removal disturbed
the source-sink balance in the plants as evidenced by the collapse of small areas of
tissue on exposed leaflets within 24-h after the removal of the first tubers. Direct
mechanical damage to stolons was also apparent in trays subjected to successive
harvesting.

P_ant Spacing and Container Configuration

research has been directed toward determining the nest effective spacing for potato
plants and most desirable shape and size container for the plants.

One study was undertaken to deternine the effect of plant spacing. Potatoes (cv Denali)
were grown for 87 days under dO0 _nol m-ms -I PPF° of 24 h duration° 16oC and 70,
aH. Plastic trays (54 cn wide and 83 cn long and 11 cn deep) were filled with a
peat-vermiculite medium end planted with two° four end eight potato plants which provided
.224° .112 and .056 n s (ranpectively) of growing area for each plant. Wire fencing was
placed around each tray to contain the shoots to the tray area. Mntrient (modified half
strength Hoaglands °) was provided to the plants four tines daily in excess.

The trays with eight plants developed a solid canopy to cover the surface of the trays in
20 days, whereas with four pla_s it required 25 days and with two plants 35 days. The
I_oo_ and dry weight increased with increasing numbers of plants in the trays with about
s40_ greater yield st the close spacing (Table 5).

A second study was undertaken to determine if the depth of media and volume of media were
significant factors in tuber yield. Plastic containers of 20.3 and 30.5 cn diameter wec_
utilized. Four of the 20.3 ca containers were filled to within 1 cu of the top with
peat-vernieulite (50:50) media. Four of the 30.5 cn containers were filled to the top
with peat-verniculite and eight of the 30.5 cn containers were fitted with false bottoms.

Of these 8, four were fitted so that only the upper 17.8 cm was filled with media and the
remaining four fitted so that only the upper 7.6 cn was filled with media. Potatoes (cv
Norland) were grown under a continuous irradiance at 400 wnol n-as -I PPF, 16oC and 70,
RH. Plants were watered to excess four tines daily with modified half strength
Hoagland's nutrient solution. Harvests nude at 64 days indicated that tuber and total
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plant production were proportional to the volume of media, with grsategt production tree

_lants that were provided with the largest quantity of media {Table 6). Although the
differences in plant yield were not very large at this early harvesting date, it would be

expected that if the plants had been grown to maturity the differences in yield would be

much greater. It was of considerable interest that container shape appeared to have
little influence on plant productivity, for plants grown in 30.5 ca wide x 7.6 ce depth

had similar yields to those grown in 20.3 cm wide x 17.8 cm depth (containers with
similar volumes of media).

Table 5. Effect of plant spacing on tuber weight,

shoot weight, and plant height of potatoes (cv

Denali) grown for 87 days.

Area per Tuber Shoot

.Plant pry Weight Dry Weioht

(m') (g m-t) (g m-')

.224 907 830

.112 1010 882

.056 1285 952

Table 6. Growth of Norland potatoes grown for 64 days in containers of
different size and shape.

Container Tuber Total

Diameter _ Volume Dry weiaht Dry Weight

(cm) (cn) (ms) (g plant "l) {g plant "t )

30.5 7.6 .006 79.5 152.2

30.5 17.8 .013 86.0 171.3

30.5 30.5 .022 93.7 198.4

20.3 17.8 .006 79.4 160.5

A third study was undertaken to determine if containment of stolons and roots was a

limitation to production of tubers. Trays were constructed of 0.3 elm thick polyvinyl

chloride sheeting to develop growing areas that were 96 cm x 96 cm by 20 on high. Two

trays were constructed with dividers to partition the tray area into 9 separate compart o
ments, each 32 cm x 32 on. Two trays were left with no compartmentalization. The trays

were filled with peat-vermiculite (50:50) media. Nine potato plants (cv Danali) were

planted fn each tray with a single plant positioned in the center of each compartment or
in similar locations in the open tray. An automatic watering system was installed with

four drip tubes positioned in each 'compartment ° and waterings were made to excess four

times each day. Wire fencing was placed around each tray to contain the shoots to the

tray area. Plants were grown under 700 _mol m-is -I PPF at 16eC and 70_ RH.

Harvest of plants at 59 days showed no difference in potato growth or tuber yield between

the two types of trays.

Sugary: Research with potatoes continues to demonstrate that this species has a

|_gnificant place in an operational CELSS0 either alone or in combination with other food

Crops, and can fulfill a significant portion of the energy and protein requirements of
humans in space. The high productivity of nutritious tubers, high harvest index and low

irradiance requirement of the potato plant make it a particularly strong candidate for

use in CELSS to provide food and oxygen, and to remove carbon dioxide for apace

inhabiCants.
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TRANSPIRATION DURING LIFE CYCLE

IN CONTROLLED WHEAT GROWTH

Tyler Volk* and John D. Rummel**

*Earth Systems Group, Department of Applied Science,
New York University, New York, NY 10003, U.S.A.
** Code EBR, Life Sciences, NASA Headquarters,

Washington, D.C. 20546, U.S.A.

ABSTRACT

We use a previously-developed model of wheat growth, which was designed for convenient incorporation into
system-level models of advanced space life support systems. We apply the model to data from an experiment that
grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of
time. We examine the adequacy of modeling the transpiration as proportional to the inedible biomass and an age
factor, which varies during the life cycle. Results indicate that during the main phase of vegetative growth in the
first half of the life cycle, the rate of transpiration per unit mass of inedible biomass is more than double the rate
during the phase of grain development and maturation during latter half of the life cycle.

THE GROWTH MODEL

We developed a model for the growth of wheat/1/, which proved useful for coupling the wheat with other
components in a system-level model of a Controlled Ecological Life Support System (CELSS). The rationale for
the model's form is that growth curves of most crops prominently show the S-shaped or sigmoidal curve typical of
biological systems. The solution to the logistic differential equation imitates this S-shape of exponential growth
followed by a leveling-off. In the logistic equation, dMIdt = rM(1-MIK), where M is the biomass and t is time,
there are two parameters: r and K. The r is the growth rate for the purely exponential part of the system. K, the
carrying-capacity in an ecological system, in this case is the maximum biomass reached by the crop. The logistic
equation thus contains some biologically meaningful parameters.

While the logistic equation can be applied directly to the growth of the inedible biomass of a crop, the equation for
the edible crop parts is here somewhat differently structured (see also/2,3/). Like the inedible cells, the edible cells
reproduce and the total edible growth must be proportional to the edible mass (Me.d). However, the edible parts do
not produce their growing mass through photosynthesis, but rather receive photosynthetic products from the
inedible parts (in particular, the leaves); therefore, the inedible biomass (Mined) should also appear in the edible
equation. Furthermore, since the edible growth occurs substantially after the beginning of the inedible growth
(about halfway through the life cycle for wheat), a time that initiates the growth of the edible mass (t*) is
incorporated into the edible equation. Before t* the edible biomass is assumed equal to zero, and its growth is
initiated at t* with a minimum edible mass (Emin). The full set of equations is (s¢¢ also[2,3/):,

= rined Mined (l - Min-D-i'i'i'i'i'i'_.ined)

t<r* : --_ = 0

(1)

(2a)

(2b)

The parameters t and t* are in units of time, rined and red are in units of time"l, and all other parameters (Med, Mined,
Ked, Kinexl, Emit0 are in identical units of either dry mass or dry mass per unit area. The system of equations (1a-c)
above was used for wheat, soybean, and potato/2/. The total fresh biomass (B) is the sum of the fresh edible and
inedible masses, expressed using their respective ratios (wi's) of their wet (fresh) mass to dry mass:

B = WedMed + WinedMined (3)
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We compare the model to data provided by S. Schwartzkopf/4/. He grew wheat at the NASA Ames Research
Center under controlled conditions of temperature, humidity, and atmospheric CO2 (1200 ppm). Since we are not
concerned here with how growth is affected by changes in these variables (except for humidity, see below), or
other parameters (such as planting density), this data has been normalized to the total fresh biomass at day 60
(B60), which in his experiment was the maximum total fresh biomass reached during the seed maturation. Figure
la plots this normalized value of B/B60 as a function of time for the wheat data.

Equations (i, 2a-b, and 3) are run with Wed = !.13 (gm fresh per gm dry)/5/and Wined = 5.7 (gin fresh per gm
dry) 161. Other parameters used here are Ked = 2500, Kined = 3700, Emi n -- 80, initial Mined = 10. In previous
models these units have been gm dry mass m-2, but here the units may be considered arbitrary since to facilitate

comparison to Schwartzkoprs data, the n_xlers output is normalized as a ratio between total fresh biomass and the
total fresh biomass at day 60. This ratio, BIB60, is plotted in figure la. Note also that the harvest index, defined
as the fraction of the edible dry biomass----here approximately 2500/(2500+3700)----is consistent with the value of
0.4 from data/51. The only major unknowns that can influence the shape of the growth curve significantly are the
growth rates; these are adjusted to produce a reasonably accurate fit to data. The model curve shown in figure la
uses red =rmed = 0.2 day -t.

TRANSPIRATION FORMULATION

Transpiration will probably account for about half the energy balance in the plant growth system of a CELSS. By
definition, the total transpiration rate (F) is proportional to the transpiration rate per unit of inedible biomass (y) and
to the total inedible biomass. Therefore

r = y Mined (4)

Following general reasoning such as that given in Gates/7/, y is a function of the difference between the partial
pressures of water vapor in the leaf (PH20,leaf) and atmosphere (PH20,air) and a function of the stomatal resistance
(]'s), which itself a complex function of various environmental factors including light, temperature, and CO2.

_, = _ fh fs fa (5)

Here we have written y as a product of a humidity factor (fh is a function of PH20,leaf - PH20,air), a stomatal
resistance factor (fs), a unit normalizing constant _, and an age factor (fa), which accounts for changes in the
plant's transpiration rate per unit inedible biomass during its life cycle even when all environmental factors (fh, fs)
are constant. A y = constant = 2.4 gm H20 per gm dry inedible biomass per day (this gives a rough average of
typical wheat under controlled environments/8/) was used by Rummel and Voik/11, but could not be tested against
data during the plant's life cycle at that time. S. Sehwartzkopf has been able to take detailed transpiration data from
wheat 14/. To facilitate comparison between model and dat;_ the cumulated transpired water at time t ( 0It Fdt ) is
normalized to the cumulated transpired water at day 60 ( 0_ Fdt ). This ratio-- _t Fdt ( 0_ Fdt )-1__ is plotted
as a function of time in figure lb. It is also useful to consider the instantaneous transpiration rate 1"(here calculated

from the data on cumulated water for any point using the_revious and subsequent points), also normalized to the
cumulated transpired water at day 60. This ratio---- F ( _ Fdt )-t--has the units of day -t, and should he read as
the fraction of the total transpired water during the life cycle transpired during a given day; this ratio is plotted in
figure lc.

Normalized cumulated transpiration = _ , (0a)
or" rdt

F
Normalized transpiration rate = _ (6b)

olw rdt

Schwartzkopf's humidity controls kept the relative humidity (rh) at 0.35 at the beginning Of the experiment, but
only maintained rh near 0.45 at the end 141;the change was gradual and approximately linear. Assuming leaf rh =
1.0 and air rh varied from 0.35 to 0.45, the humidity faetorfh, expressed in terms of rh and non-dimensionalized
to the final condition, is taken here to have varied linearly from 1.1g at the beginning of the experiment ((1-
0.35)/(1-0.45)) to 1.00 at the end. Furthermore, we set y *= 2.4 gm H20 per gm dry inedible biomass per day,
and since environmental conditions were approximately constant, fs = 1.0 for the duration of the experiment. We
test several cases of the age factorfa.

The first case hasfa = 1.0 = constant (or, ct = 0, see below). Output from the model for cumulated transpiration
and transpiration rate is normalized to the cumulated transpiration at day 60 using equations 6a-b, like the
experimental data. Note this normalization effectively eliminates dependence of the results on TL Results withfa
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= constant are plotted against data in figures lb and It. Although the general shape of the cumulated Iranspiration

data is matched by the model (see figure Ib), the empirical value is significantly underestimated during the middle
one-third of the life cycle. The underestimation is even clearer in the rate results, shown in figure Ic. For the first

one-half of the life cycle, the transpiration rate in the model is much too low.

A second case explores the possibility that the transpiration rate per unit inedible biomass is substantially higher

when the plant is younger than when mature. A convenient way of parameterizing this process that takes into
account the apparent steadiness of the transpiration rate during the second one-half of the life cycle, whe,1 the

b_edible biomas:+ itself is relatively maximtml and constant, is to write]'a as a function of Mined:

fa =1+ ot(l- M_ine'l_ (7)Kined )

Flere the term ct is an enhancement of transpiration rate per unit biomass when the plant is young. Notefa = 1.0
when Mined = Kined. The model output for cumulated transpiration and transpiration rate for this second model--

which uses o_ = 1, rather than 0t = O--is shown in figures lb and lc. Overall better fit to the data is apparent, in

particular, improvement in the transpiration rate during the first one-half of the life cycle. However, also clear is

that even higher rates (in other words, higher ct's) are needed in the first one-third of the life cycle. Without fitting
the data even further, we have nevertheless demonstrated the possibility of representing the transpiration to varying

degrees of accuracy with formulations that have physical meaning.

CONCLUSION

Models such as these are the best way of examining the "interactions of assumptions"/9/. Considering the overall
results, the logistic growth equations combined with the assumption that the rate of transpiration per unit inedible

mass decreases during the life cycle of the crop will generally reproduce the data and will probably be adequate in

highly aggregated models of a CELSS, for example, the BLSS model IlL A physiological interpretation of this

transpiration formulation and comparison of these findings to the transpiration formulations in more detailed

models of non-hydroponic wheat/10,1 !/(which, however, are presently not applicable to a CELSS model) will

help the crop model shown here develop more complex dynamics and allow better preliminary designs of space

agricultural systems.
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ABSTRACT

We describe the experimental system having maximal possible closure of material recycling

in an ecosystem, including people and plants, which was carried out in a hermetically

sealed experimental complex "BIOS-Y', 315 m z in volume. The system included 2

experimentators and 3 phytotrons with plants (total sowing area of 63 m2). Plants were

grown with round-the-clock lamp irradiation with 130 Wm -z PAR intensity. The plants

production was food for people. Water exchange of ecosystem, as well as gas exchange,

was fully closed excluding liquids and gas samples taken for chemical analysis outside

the system. The total closure of material turnover constituted 91%. Health state of the

crew was estimated before, during and after the experiment. A 5-months period did not

affect their health. The experiments carried out prove that the closed ecosystem of

"man-plants" is a prototype of a life-support system for long-term space expeditions.

INTRODUCTION

The development of cosmonautics nowadays is directed to the preparation of spacecraft

flights of long duration and distance with many crew members on board. The development

also implies the creation of large space stations, Moon bases and extraterrestrial

settlements inhabited by people. One of the key problems in the development of space

technology of the next generation is the elaboration of biological life-support systems

intended for a long stay of people beyond the Earth, independently of the supply from the

Earth.

The analysis of the problem shows that the optimal solution for long-operating inhabited

space objects is the creation of essentially closed ecological systems with substances
turnover. The basis for these closed systems is photosynthesis of plants using the

energy of sunlight. Such ecosystems including man, are the new product of civilization,

in principle, being the instrument to permit the spreading of human civilization beyond

the Earth biosphere. Since there are no complete analogues of these systems, neither in

nature nor in technology, the possibility of their implementation makes theoretical

analysis and experimental proof necessary.

The aim of our presentation is to consider one of the solutions which was put into

practice through creation of an operating experimental ecosystem including man. The
experimentators lived in this system for several months, obtaining oxygen, water and a

part of food, by means of a controlled biological turnover of the substances inside the
system. In the process of the work with this complex, we have become convinced that we

can create an effective closed ecological system with man and providing a mechanism to

reveal specific problems that arise. It presents an effective instrument for the

experimental solution of these problems as well.

Experimental work on the development of such ecosystems was started by scientists in
several research centres of the USSR, with scientists of the Siberian Branch of the USSR

Academy of Sciences from Krasnoyarsk included. This particular work was guided from the

very beginning by academician L.V. Kirensky with the project originally sponsored by

academician S.P. Korolyov.
N

In the 1960's we developed and studied a closed "man-algae" system using the techniques

of that time and involving continuous intensive cultivation of the unicellular algae,

chlorella /1,2/. The experiments, which lasted 6 weeks, proved the algae to he able to

fulfill successfully the functions of gas- and water-exchange in the system for man.

However they failed to serve as the source of useful food for man. Thus we initiated

experiments that included the traditional higher plants in a closed system /3,4,5/.

In the early 1970's, the experimental pilot complex "BIOS-3", for long-term experiments

in a closed ecosystem, has been designed and built (Figure i). The sealed system, with a

volume of about 300 cubic meters, is fully isolated fro_ the environment and has a closed

cycle of circulation of air, water, and partly for nutrients.
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Fig. i. The general view of the complex "BIOS-Y' (The model is shown without

ceiling). The right lower quarter is the living section with private cabins for the

crew. The other sections are phytotrons for plants.

Three of the 4, equal in area and interconnected sections of the complex, could be called

phytotrons and are used to grow plants (Fig. 2). The 4th section houses the crew in 3

single cabins, a galley-commissary, a lavatory and a control room for the phytotrons.

This room also contains the equipment for processing of wheat, utilization of inedible

biomass, repairs, weighing, end measurements.

During the series of experiments (1972-1984), 2- and 3-man crews of volunteers, selected

by medical experts, manned "BIOS-3" over periods of 4 to 6 months /6-10/.

The crews planted crops, cultivated and harvested them, processed the harvest, and

operated the complex in all other ways. This made the "BIOS" complex different from all

the other similar experimental life-supgprt systems in which all these jobs are done by

the auxiliary personnel outside the complex.

The air of the crew module of the complex was pumped into the phytotrons to reduce the

concentrations of carbon dioxide and other gases and vapors. Here it was enriched with

oxygen generated by the green plants in the process of photosynthesis and then pumped

back into the living quarters.

The plants did not clean the circulating air completely and a thermocatalytic filter was

used to combust all the organic admixtures.

Water vapor discharged by plants was the source of water inside the complex. Drinking

water was additionally purified by passing it through ion exchange filters and water for

o_her uses was simply boiled.

While on hoard the "BIO$", the crew could communicate with the outside world by phone or

view through the glass portholes which helped to relieve the psychological stress. When

off duty, the crew members were able to spend time in their cabins where only

electrophysiological monitors kept watch over them.

Crews who stayed inside the complex for periods of 6 months, did not manifest any signs

of deterioration of their health, including allergies from contact with plants or any

infection of the skin, mucous membranes or the intestine. Tests also revealed that the

air end water inside the complex or edible food from plants did not undergo any unhealthy
effect.

The driving force for the substances turnover in the closed ecosytem was plant

photosynthesis.
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Fig. 2. Wheat of different age In the phytotron of "BIO$-Y'.

During the experiments with nan which lasted from 4 to 6 months in the sealed system, the

crews cultivated a set of 10-12 cultures (wheat, sedge-nut, beet, carrots and others)

under round-the-clock lamp illumination at photosynthetically active radiation (PhAR)

level of 130-180 W/m 2 (380-720 nn). Wheat was cultivated with the help of an air

subirrigational methods (Fig. 3), the sedge-nut and vegetables, by means of hydroponics.

The nutrition of plants was supplied with salts and acids from storage. Each plant

species was grown on a culture conveyer with 2 to I0 plantings of different ages

simultaneously. This provided needed stability in photosynthesis and smoothed over the

age fluctuations in photosynthetic rates of different cultures.

It should be noted that under optimized growth conditions nearly all the species showed a

level of average daily productivity of similar value. This level of plant photosynthesis

was conditioned by physical and technological limitations rather than by biological

limitations. That is why the possibilities of further increase of photosynthetic produc-

tivity of higher plants is seen mainly in the improvement of technology of cultivation

and not in the search for species with unusually high photosynthetic rates.

No negative interactions between different plants were revealed in the course of the

experiments. During the 4-months period with man in the experimental closed system all

the cultures went through 1.3 to 4 complete cycles.

The experiment carried out showed that under the chosen conditions of plants irradiance,

13 mz area occupied by plants is sufficient for a continuous supply of one man's

o_ygen, water (at the expense of transpirational moisture condensate) and for 40-45_ of

hi's food.

If one of the experiments, in which the crew was fed only by food produced by the plants,

we increased the sowing area (for one man) up to 30 n 2 /11/. But it resulted in an

excess of oxygen in the atmosphere and accumulation of alot of inedible plant biomass.

This inedible part of biomass was combusted inside the system to produce additional

carbon dioxide necessary for photosynthesis and reduce the oxygen level in the

atmosphere. The sanitary water used in this experiment (shower, wash-basin etc.) after

filtration, along with the urea of the experinentators without treatment or storage, was

introduced into the wheat nutrient medium. Thus wheat's needs were net 59_ in nitrogen,

28_ in sulphur, 19_ in potassium, 17_ in phosphorus and 19_ in magnesium. The rest of

the biogenic elements for wheat and the nutrients for all other plants was introduced

into the nutrient medium in the form of mineral compounds (acids and salts).
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Fig. 3. Wheat on the plastic racks. The roots are periodically wet with nutrient
solution.

The kitchen wastes, and the solid excretions of the experimentators were dried within the
ecosystem to return water into the closed system and this dried material, along with the
ash from the combustion of the plants' inedible biomass was then removed from the
ecosystem.

The experiment showed that the average daily requirement of the crew for oxygen, water,
food, etc. was met 95q (in weight) with the resources inside the system (Tables 1, 2).

Only 5q of substances (animal products, sodium chloride for man and nutrients for plants,
as well as personal hygiene requirements) were stored in advance for the duration of the
experiment. The further increase in the degree of closure of substances turnover would
be related mainly to animal product regeneration in the system. But this implies much
greater consumption of energy because animal demands are nearly two-fold greater than
demands for bionass production by plants.

TABLE 1. Requirements of the crew without recycling and with recyling in BIOS-3.

Substances Requirements of the Crew
Without Recycling With Recycling in BIOS-3

u

(g per day) (g per day)

l. Dry food 924 l. Dry food 208
(without water)

2. Chemical compounds for
2. Oxygen 1220 the nutrient medium 350

3. Drinking water 5133 3. Sanitary materials 9.5

4. Sanitary water 5696 4. Absorbents for water
purification 2.7

5. Sanitary materials 9.5
5. Cooking salt 28

6. Cooking salt 28

TOTAL 13010.5 598.2

Note: The sampling of a substance for investigation outside the system isn't
presented in this table.
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TABLE 2. System recycling of food conspmption by humans.

e

Turnover of substances Absolutely Proteins Lipide

for nutrition purposes dry substance g g
g

Carbo- Caloric

hydrates value
g kcal

Consumed by the crew

during the month of
the experiment

TOTAL 27716 4369 4679 16030.:' 11_699

Edible biomass provided
by plants grown in the
system

Portion of crew con-

sumption being recycled

21484 _ 2851 1652 15290 83609

77.5 65.2 35.3 95.4 69.8

A system that comp3etely provides nan yitb oxygen and nter but provides only 40-45% of
food is more advantageous energetically than a system providing 95% of man's food needs.
To provide 40-45_ of the food needs, it is necessary to have an area under crops of 13
n z for one man, and round-the-clock irradiation of 150-160 g/m s PhAR. This PhAR flux
was provided by 200 watts of power from lamps. This is the flux of PhAR in Earth orbit
beyond the limits of the atmosphere (and on the Moon) that incidents every 3.5 m2 of
surface perpendicular to the suns rays. At the orbit of Mars such a flux embraces 8
ms . It goes without saying that the introduction of light into a life-support system
would face the loss of a part of energy and require a definite increase of light-
accumulating surfaces compared to the areas mentioned above. But this problem isn't of
biological character, it is rather a technical one and is solvable in all probability.

The spacecraft flying by the Sun is irradiated by it continuously. In a cosmic
settlement on the Mars the day lasting for 12 hours will be replaced by the night of the

sane duration. Neither 12-hours days nor the continuous illumination would pose any
significant restriction to culture of the selected species.

More complicated is the problem of plants cultivation on the Moon surface because of the
duration of the Moon day and the Moon night, i.e. 15 terrentrial days of continuous light
and the sane period of darkness. The Moon rhythm of night and day alternation does not
occur under the Earth conditions. Growing plants usually can not bear the long period of
continuous darkness. So the necessity arises to stop the growth of plants during long
periods of darkness corresponding to the Moon nights in duration.

To solve the problem of the growth of plants under the conditions of Moon photoperiods,
we carried out a series of experiments with wheat, barley, peas, turnips, dill, carrots,
beet, radish, tomatoes, cucumbers, and sedge-nut /12,13,14/. The principal idea was to
maintain plant vitality during the 15 day dark period by decreasing the temperature.
Temperatures were lowered to 2.5 to 3.0°C during the darkness.

The experiments showed that all the cultures under study (except tomatoes, cucumbers, and
qedge-nut) survived the Moon night safely and resumed grow normally during the Moon day.
A'partial injury of leaves was noted to occur in the course of Moon nights. /_ a result
nearly all the cultures had the edible part of the crop reduced 30-50% compared to the
control (Table 3). This indicates that the chosen regime of "conservation" of plants
during the Moon nights is far from being optimal, but on the whole the data obtained
provided evidence for the possibility of obtaining the traditional plant products under
the conditions of Moon photoperiods, with a biochemical composition being essentially
analogous to the control plants.
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T__LE 3. Yield of plant• grown under Noon photoperiod• with a temper•tare of 24"C to
during the light period and 2.5 to 3.0.C during the dark period.

Specie• Cultivar Irradiation Total Edible Economic

regime z bioman• biomass coefficient
(kS n -t) (ks m=t) (_)

Carrot Chantanet 75 light days 15.92 10.80 67.8
(5 m.d. 4. 4 ILn.) 13.82 7.93 57.3

Beet Bordo 75 light days 8.38 5.32 63.5
(5 m.d. + 4 n.n.) 13.77 6.51 4"/.2

Turnip Petrovakaya 60 light days 12.32 5.71 46.0
(4 m.d. 4. 3 m.n.) 7.S 3.25 42.5

Dill 30 light days 3.04 2.73 89.9
(2 m.d. + 1 n.n.) 2.30 1.97 85.7

Radi•h Viroveky 22 light day• 8.66 5.95 68.7
(white) (1.5 m.d. ÷ 1 n.n.) 7.55 3.66 48.5

• m.d. - Moon day; m.n. - Moon night
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ABSTRACT

Research and technology development issues centering on the recycling of materials

within a bioregenerative life support system are reviewed. The importance of recovering
waste materials for subsequent use is emphasized. Such material reclamation will

substantially decrease the energy penalty paid for bioregenerative life support systems,
and can potentially decrease the size of the system and its power demands by a
significant amount. Reclamation of fixed nitrogen and the sugars in cellulosic materials is
discussed.

INTRODUCTION

As the duration of space journeys and the number of crew members increase, future

space missions will face the difficulty of ensuring a constant supply of life support
consumables. The need to supply air, water and food, and to remove wastes from the

crew environment represents a potential weight penalty of the order of 43
kg/day/person for consumables, such as drinking, hygiene and wash water for dishes
and clothing, food, oxygen and carbon dioxide absorbers, and the packaging associated
with these materials (Table 1). This sums to about 23,000 kg for a crew of 6 during a 90

day stay in space. Without alternative methods of dealing with life support, masses of
this magnitude would have to be transported into orbit and, except for materials that
leak into space, returned to Earth. Because such masses are close to the Shuttle's carrying

capacity, life support could pose a significant logistics problem.

RESEARCH DIREC-qqONS

NASA has conducted research and development activities for the past 20 years to
address the issue of regenerating the 02, water and food that crews require.

Regeneration schemes are being developed based on physical - chemical and biological
processes to regenerate waste materials, for example, collecting CO2 and processing it to

generate 02 for crew use /1/, and oxidizing organic materials to generate CO2 and water
/2/ /3/. These kinds of approaches separately address specific recycling and

regeneration issues, and will probably be utilized early in human space exploration.
However, the most ambitious and complete solution to life support recycling and

regeneration is to develop a single integrated system capable of performing all of the
necessary functions for life support. Bioregenerative systems are potentially useful in
this regard and can use sunlight, plants or algae, and microorganisms to recycle wastes in
much the same way as occurs on Earth (Figure 1).

_tNIENTIONALtT ItLANIt
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TABLE 1 Use of Consumables and Packaging for Life Support per Person,
per Day

Material Consumables Mass Packaging Mass

(Kg) (Kg)

Water

Food

Oxygen
Waste

CO2 __ 2.90

Liq uid/solid __ 8.24

TOTAL 24.09 18.82

22.08 6.87

1.18 0.45
0.83 0.36

In concept, a very small "ecological" system will be developed for use in space (on orbit,

in transit to Mars, or on the Lunar or Martian surfaces) to generate food, oxygen and
potable water from waste materials, such as CO2, organic materials and contaminated

water produced by the crew. The system will not, in fact, rely on processes that are

"natural" or "ecological" because they are slow, too poorly understood for adequate

control, and do not necessarily respond to the goal of a life support system, which is to
support a human crew. The term Controlled Ecological Life Support System (CELSS) is

used to emphasize the need to operate a controlled system that fits crew needs and the
space environment.

_" FOOD '_

_ WASTE

Fig. 1. Materials Cycling in a Closed System
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Amongthe requirementsof a CELSSarecontinuousregenerationof life support
consumables in a system with Iong-ierm stability and with an efficiency, based on the

use of mass, volume and power, such that most of the materials in the system are

completely recycled in the shortest time possible. The constraints on such systems for use

in space include limitations on mass and volume, on power and human labor availability,

and on stable operation in lowered or micro-gravity and in radiation fluxes that are

higher than on Earth. The requirements and constraints are summarized in Table 2.

TABLE 2 Requirements and Constraints for Life Support System Use in Space

Requirements:

To produce the materials required for LIFE SUPPORT
- To RECYCLE and regenerate life support materials

- To function RELIABLY for extended periods of time

Constraints:

- Launch vehicle capabilities: MASS and VOLUME

- Mission capabilities: POWER and HUMAN LABOR availability

- Space environment effects: GRAVITY and RADIATION flux

TABLE 3 Progress in CELSS: 1982 - 1987

Material Mass per Person

1982"

(Kg)

Mass per Person
1987"

(Kg)

Water

Water (nutrient) Tanks

Structures (plant growth)

Ancillary equipment

Harvest/Process equip.

Waste process equip.

Power (lighting)

(electric, 43 Kw/person,

45.3 kg/kw)

1867 896

584 280

180 86

1336 641

134 *'134

56 **56

1970 945

TOTAL 6127 3038

*Initial launch mass of components of a BLS system

**Not affected by plant growth efficiency improvements

To address the requirements and constraints the CELSS research program has, for the

past 7 years, focussed heavily on the issue of how to supply a crew in space with a diet of

food grown as rapidly and in as small a volume as possible. Significant progress has been
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,nade in this area, resulting in a decrease in the required mass (Table 3), as well as better
developed concepts of life support requirements (Table 4). Information of this kind

allows estimates to be made as to whether the general approach is feasible, and which

kinds of missions in space could benefit from a CELSS. The growth of plants involves the
removal of CO2 from the crew environment, the production of oxygen, and also the

production of relatively large amounts of very pure water. All of these factors must be

considered when measuring the fit of a CELSS to future space missions.

While considerations of biomass (food) growth within a life support system have
occupied the major efforts of the CELSS research program to date, issues associated with

proving the concept, and with scaling-up the system to human size /4/ have also been

addressed. In the future it is likely that the CELSS research program will focus on issues

of recycling the chemical elements that constitute the system. In general, the processes
involved in recycling materials are termed 'waste processing' and are essential to the

goal of 'loop-closing' upon which the concepts and the economics of regenerative life
support systems are based.

TABLE 4 Life Support Consumables Produced by BLS System (per Person,
per Day, assuming 97% regeneration of food)

Material Consumables Mass Percent of

per person Crew

(Kg) Requirements

Food I. 2 9 7
Water 300.0 322

Oxygen 3.6 97

CO2 removal 3.4 97

RECYCLING, REGENERATION AND LOOP-CLOSURE

The term recycling refers to tile process of continual re-use of the chcmical clc,ncms of a

life support system, and is the basis of the economies realized in a regenerative life

support system. Such a system requires an initial charge of chemical elements: C, N, H, O,
S. P, K, Na, CI, I, Ca, Fe, Mn, Mg, Mo, Cu and Zn and possibly others, such as Si, B, F, Se and

Co. Other elements, such as Ni, Cr, V, As, Ru, Rh, Pd, Au, Pt, Ba, Bi, Pb, Jig, Br, Ag and W, as
well as the rare earth elements are likely to be present in the machinery and electronics

that space systems depend upon. The goals of a bioregenerative life support system will

be to recycle the elements that are essential for the correct functioning of the biological
systems and to remove those elements that are poisonous or deleterious to them. It is

clearly recognized that while complete recycling is a goal, it is one that is tempered by
economic realities: when recycling is more expensive than resupply, in terms of mass
carried into orbit, volume, power or human labor, it will not be practised.

Regeneration refers to the processes of re-forming life support consumables from

elemental constituents and simple compounds. For purposes of life support regeneration
involves relatively few classes of materials: air (02 supply and CO2 removal), food and

water. Regeneration requires energy input. When photosynthetic organisms (higher

plants, algae, cyanobacteria, photosynthetic bacteria) are used to drive the system the

energy source is sunlight. When other organisms drive the system, for example, hydrogen
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oxidizingbacteria(e.g. Pseudomonas saccharophila) energy enters through processes that

electrolyze water to H2 and 02. Because a supply of energy is one of the major constraints
on operating a bioregenerative life support system, its economics are highly dependent

on how efficiently it uses energy to achieve life support goals.

The term 'loop closure' has been used to describe the extent to which elements and

compounds are recycled within a life support system. In terms of mass H and O (as

water) are by far the largest constituents of a life support system. Carbon is next,
followed by nitrogen. Each of these elements is freely transferred by organisms among
gaseous, liquid and solid states, and from one compound to another. It will be

economically advantageous to recycle these elements as rapidly and completely as
possible, and to minimize their mass in the system.

WASTE PROCESSING

The term waste processing in the context of bioregenerative life support refers to those

processes involved in converting materials that are not usable as human consumables

into the reactants that can be regenerated into consumables. This definition covers a

variety of materials: non-edible biomass, atmospheric contaminants (volatiles and

particulates), organic and inorganic materials dissolved in water, CO2 produced from
metabolism (crew and microbial), urine, feces and surface contaminants (condensed

volatiles, solids (including hair, skin, bacteria, etc.) and liquids). In addition to these

wastes, which are directly associated with crew life support, other materials from sources

such as scientific experiments, hygiene operations and machinery repairs must be

considered as wastes to be processed.

Each class of waste [Table 51 to be processed is likely to undergo several different

treatments depending on the characteristics of the waste materials. The input process
stream may undergo physical separation, mechanical treatment (e.g. grinding, milling

etc.), chemical treatment (e.g. pH adjustment, extraction), enzymatic or catalytic

treatment ( e.g. partial or complete hydrolysis, deamination etc.), fermentation (aerobic

or anaerobic) and oxidation. Final (post-oxidation) output streams may undergo processes
such as precipitation, mineral removal, filtration, ultrafiltration or reverse osmosis.

WASTE RECLAMATION

Because the consumption of energy will be a very strong constraint on the use and

operation of a bioregenerative life support system, it will be essential to rescue usable

organic materials from the waste stream as efficiently as possible. Two examples of the
advantages of waste reclamation will be given below. The first, focussing on the recovery

of fixed nitrogen, is brief; the second, dealing with reclamation of inedible biomass, will
include a more extensive discussion.

FIXED NITROGEN RECOVERY

The growth of higher plants and of algae depends upon a relatively constant source of

nitrogen in the 'fixed' (covalently bonded to other atoms) forms of ammonia (NH3), nitric
acid (HNO3), nitrous acid (HNO2) and in some cases urea (NH2-CO-NH2). These materials

are required by the plant for the construction of protein and other molecules, and are

accessible to the plants as ions (except for urea) and taken up primarily through the roots
of higher plants, or through the membranes of algae. In the natural environment such

fixed nitrogen is produced by lightning discharges during electrical storms, by decaying

vegetation, by artificial processes that generate fertilizers and by the actions of bacteria.

The two most significant bacterial sources of nitrogen are Cyanobacteria (blue-green
algae), which are photosynthetic organisms that live freely in aquatic environments (e.g.

Nostoc sp.), and non-photosynthetic bacteria (such as Azotobacter sp. or the Clostridia)

that live symbiotically within nodules in association with the roots of certain kinds of

75



higherplants.In general,the processof nitrificationcan be summarizedas:

N2+3 [H] +energy(app.16ATP)<---> 2NH3

Certainorganismsthat participatein the nitrogencycle in the terrestrialenvironment
alsoconducta denitrificationreaction,convertingNH3to N2. Suchorganisms(for
examplethe Pseudomonads)are expectedto be presentin bioregenerativelife support
systems,and studiesare in progressto understandhow their denitrificationactivitiescan
be inhibited/5/. Another locus of denitrification will be the physical-chemical oxidation

processes that are likely to be used in a bioregenerative life support system. In this area,

as well, studies are being conducted to minimize the extent to which oxidation processes
convert fixed nitrogen to N 2 131.

In a bioregenerative life support system most of the fixed nitrogen will enter the waste

streams through crew wastes, in particular, in the form of urea in urine. While direct use

of urine as a source of fixed N for plants may be possible, urine also contains salts and

other organic materials, such as sugars and degraded heine compounds. The latter are not

used by higher plants, and are excellent substrates for bacterial growth. To minimize

bacterial growth in the root environment it will be necessary to remove or separate the

fixed N from the bulk of the urine. One process that may be studied for use in a

bioregenerative system will be to concentrate urine solids, decompose the urea to CO2,
water and NH3 with an enzyme (urease), and to extract volatile NH3 from an acidified
solution.

TABLE 5 Waste Streams in a Bioregenerative Life Support System

Waste Stream Source Content Fate

1.Solid waste Crew activities Paper, plastics, Oxidation
feces, undefined
trash

2.Urine Crew Urine, urinal NH3 recovery,

flush water then oxidation

3.Domestic Crew

4.Nutrient Plant growth

5.Inedible Plant food

biomass processing

6.Volatiles Crew and plant
volatiles,
materials

outgassing

Shower water,

dish washing,
clothes washing,

oral hygiene

Spent plant and
algae nutrient
solutions

Roots, shoots,

food process

waste, water

Small organic
molecules

Removal of

organics, Ihci_
nutrient soln.

makeup

Oxidation

Digest cellulose,

remove sugars,
then oxidize

Oxidation
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INEDIBLE BIOMASS RECLAMATION

Salisbury, Bugbee and Bubenheim /6/ have estimated, based upon experimental data,

that about 12 square meters of plant growing area will be required to produce enoug.h
wheat to support the caloric demands, although not the nutrient requirements, of one

crew member for each day in space. This data assumes daily planting and harvesting of

the crop, and results in the production of about 850 g of wheat berries, equivalent to

about 2800 Calories, at each harvest. A wheat crop grown under stringently controlled
environment conditions produces about 40 to 45% of its total biomass as edible food. The

waste materials (about 1040 g) include leaves, stems and roots, the major constituents of
which are cellulose, hemicellulose and a small amount of lignin (about 6 to 10% of the

waste). The approximately 900 g of cellulose and hemicellulose in the waste represents

an energy investment in materials potentially usable to the crew. However, except as

inert dietary fiber, cellulosic materials do not contribute to human metabolic energy.

By conversion of celluloses and hemicelluloses to simple sugars the energy and carbon

stored in them could be made available to a crew, either directly as sugars, or indirectly

through conversion of the sugars into other food materials. If even 50% of the carbon and

energy in the cellulosic materials could be reclaimed for use by the crew a substantial

decrease (as much as 25% or 3 square meters) in food growing area could result. Such a
potential increase in the efficiency of a bioregenerative life support system, based on

volume and energy use, must be measured against the volume and energy required to

process and digest the cellulosic materials, to utilize the sugars to produce alternative
food sources, and the processing that might be required for such foods.

CHARACTERISTICS OF CELLULOSES

The cellulosic materials, consist of high molecular weight carbohydrates, namely,

cellulose and hemicellulose. Together these polysaccharides constitute about 90% of the

total non-edible biomass structure. Cellulose is the major component of cell walls and is a

linear polymer of D-glucose with a molecular weight of approximately half a million.

Individual cellulose molecules are linked together by beta-l,4 linkages to form a highly

crystalline material that is resistant to enzymatic hydrolysis.

Hemiceilulose is composed of shorter chain polysaccharides, and it is the principal non-

cellulose fraction of polysaccharides. The role of this component is to provide a linkage
between iignin and cellulose. In its natural state, it exists in an amorphous form and can

be divided into two categories, cellulosans and polyuronides.

Cellulosans are polymers whose building blocks are monomers of single sugars, including

hexosans, such as mannan, galactan and glucosan, and pentosans, such as xylan and

araban. Polyuronides are hemicelluloses which contain large amounts of hexuronic acids
and some methoxyl, acetyl, and free carboxylic groups.

To make the sugars in cellulosic materials available to metabolism the sugars in the high

molecular weight polymers must be separated by hydrolysis, that is by chemically or
enzymatically adding water to the chemical bonds linking the sugars. Chemical processing

usually requires high concentrations of acids, and recycling acids within a closed system

in space is likely to present major obstacles. Enzymatic digestion is slower and less

complete, but may be more controllable and easier to accomplish in space.

The obstacles to enzymatic hydrolysis of cellulose include: 1. the binding of lignin and

hemicellulose to the cellulose, thus forming a physical barrier to enzymatic attack; 2. the

crystailinity of native cellulose, which makes it highly resistant to enzymatic hydrolysis;
3. the limited number of enzymatic reaction sites that result from the structure of even

separated cellulose fibres; 4. products that arise during hydrolysis that inhibit enzymatic
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THECELLULOLYTICENZYMES

Threeenzymecomplexes,Cx, C1, and beta-glucosidase,are responsiblefor the conversion
of cellulosicmaterialsto glucose.For the mostefficientconversion,enzymeratiosof 1:2:4
of Cx:Cl:beta-glucosidaseare required.The componentenzymesof the complexesare
classifiedas:

!) Endo-beta1,4 glucanases- severalcomponentsvaryingin degreeof randomness,the
old Cx. Onecomponentmaybe theenzymethat actsfirst oncrystallinecellulose.
Specificactivity (SA) is greaterthan60 units/mg.

2) Exo-beta1,4, glucanases - several varieties:

a) Beta 1,4 glucan glucohydrolase - removing single glucose units from the nonreducing
end of the chain.

b) Beta 1,4 glucan cellobiohydrolase (CBH) - removing cellobiose units from the

nonreducing end of the chain. The CBH was equated with the old C1 enzyme and has a

specific activity of 0.7 units/mg. This is also the component having the greatest affinity
for cellulose.

3) Beta-glucosidase (cellobiase) - converts cellobiose and short chain oligosaccharides to
glucose. Some unknown factor converts native cellulose into an activated state which is

attacked by endo- and exo- - glucanases to liberate diglucose units. Native cellulose in

the presence of endo-glucanase goes to cellulose. Cellulose in the presence of exo-

glucanase goes to .cellobiose. Cellobiose in the presence of beta-glucosidase goes to 2-
glucose.

THE ENZYME SOURCES AND FERMENTATION

Trichoderma viride (Tv) is the best source of active cellulase, although many other

actively cellulolytic organisms exist and variations in media or growth conditions may

result in good cellulase preparations from other organisms /7/. It is possible to use a
combination of different sources of enzymes to increase the yield of glucose from

cellulosic materials. Because the pH for maximum growth of Tv is 4.5, while maximum

enzyme production occurs at pH 3.5, it is convenient to have one reactor at each pH.

Temperature, pll, substrate concentration, and enzyme concentration are important
factors in determining the rate of hydrolysis of the substrate. For a Tv cellulase

substrate system a temperature of 50 oC and pH of 4.5 - 5.5 are optimal. Rates of
hydrolysis increase with enzyme and substrate concentrations. Cellulase can be inhibited

at high concentrations by some of its substrates. Generally, end products exhibit

inhibitory effects on the rate of the forward reaction. Glucose inhibition is generally

weak. Cellobiose is the main inhibitor of the CI factor in the enzyme complexes. The
breakdown of the cellobiose by beta-glucosidase increases the reaction rate /7/.

The ultrafiltration technique relies upon the physical size of the molecules. The sugar

molecular weight is less than that of the cellulose, the enzyme, and the lignin. A

molecular sieve is placed in a position to filter liquid drawn off of the hydrolysis tank.
The sugar solution is separated and saved for further concentration, purification, or use.

CONCLUSIONS

The elements of waste processing in a bioregenerative life support system will include
collection of materials, separation to allow reclamation, reclamation of usable materials,

oxidation of organics and post-treatment of oxidation products. While the final recycling

process will be oxidation, the efficient functioning of a bioregenerative life support
system will depend on reclamation of materials, such as organics and fixed nitrogen, into

which a considerable amount of the system's energy has been invested.
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ABSTRACT

The production rate and solid content of waste streams found in a life support system
for a space habitat (in which plants are grown for food) are discussed. Two recycling
scenarios, derived from qualitative considerations as opposed to quantitative mass and
energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on
and responses to the waste stream formation rates and their composition, as well as
indicate the required products from waste treatment that are needed in a life support
system. The data presented demonstrate the magnitude of the challenge to developing
a life support system for a space habitat requiring a high degree of closure.

INTRODUCTION

Renewed interest in long duration human space missions, particularly the establishment
of a Lunar base or a mission to Mars, has prompted a critical evaluation of advanced life
support systems /1/. This evaluation has revealed that current methods available for
nearly complete recycling of water, oxygen, and food in space are technologically and
economically impractical. Such limitations prevent humans from spending long periods
of time in space. Therefore, current research emphasis is placed on developing
improved recycling techniques to overcome these limitations.

Nearly complete recycling can be theoretically accomplished by life support subsystems
which are dependent either on physical or chemical (P/C) principles or by subsystems
which include a living or biological component. (A life support system that relies
heavily on biological subsystems for recycling is becoming defined as a Controlled
Ecological Life Support System (CELSS) or bloregenerative system.) A subsystem which
is based on a physical or chemical principle, for example, is a water electrolysis unit
which provides oxygen for respiration by using electrical energy to decompose water
into hydrogen and oxygen. Higher plants are an example of a biological subsystem that
produces oxygen for respiration through photosynthesis, using sunlight for its source of
energy. If a high degree of closure of the life support system is required, wherein most
of the water, oxygen, and food is recycled, then a hybrid system consisting of a
combination of P/C and biological subsystems will undoubtedly be needed.

Recycling in a space habitat implies the conversion of waste streams derived from
several different sources into useable products. Some of the waste streams are common
to both the P/C and CELSS based life support systems. For example, all of the wastes
derived from a human are common to both systems. Certain waste streams are present
only in space habitats that use living subsystems as an integral part of the life support
system. To illustrate: if higher plants are used to produce food, then inedible biomass
(in substantial quantity), water derived from the transpiration of plants, and the spent,
organically rich plant nutrient solution are wastes not found in a solely P/C life support
system.

Not only are the input waste streams different in P/C and biological systems, but the
required outputs are also different. A CELSS requires plant nutrients as an output
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stream, a requirement unique to a photosynthetlc-based food producUon and llfe
support system.

For either the development of a computer model of a waste treatment or recycling
subsystem or the functional design itself, it is desirable to have well defined input feed
streams, including production rates and composition. In this paper, recent data are
presented, as specifically as possible, on the nature of the waste streams that would be

encountered in a human space habitat. Those streams that are characteristic of a given
type of life support system are identified, and two representative scenarios for
recycling wastes and nitrogen in a bioregenerative life support system are described.

TABLE 1. Waste Feed Stream Production Rates and Solids C'-ntent in a

Manned Space Habitat Containing a Higher Plan Jrowth Chamber

Stream [D Wet Weight

Formation Rate,

kg/person-ks

(ib/person-day)

Dry Weight
Formation Rate,

kg/person-ks

(lb/person-day)

Weight
Percent Solids,

%

toilet waste

urine 121,131

feces 121
wipes/2/
urinal flush
water/5/

hygiene water

dish/6/
shower and

hand wash/6/
laundry/6/

humidity
condensate/6/

food preparation
waste/3/

trash

respired CO2 in air/5/

contaminated
cabin air / 1 I/

inedible biomass
(wheat chaff)

transplraUon
water/7/

2.41xi0 -2 {4.59) (al

1.1 lxi0 -3 (0.210)
4.8xi0 -4 (0.091)

5.72xi0 3 (1.091

7.4xi0 -4 (0.14)
2.37x10 "4 (0.0452)

unknown

NA

6.3xi0 -2 (12)

6.3xi0 -2 {12)
0.15 (281

1.4x10-5 (2.6x10-3)

1.8xi0-5 (3.4xi0-3)
7.9xi0-6 (1.5xi0-3)

4.34xi0 -2 (8.261

3.1

21.4
unknown

6.9xi0 -4 (0.13)

1.2x10 -2 (2.2)

NA

NA

0.022 Ibl

0.028 [el
0.0054 Ib)

7.1x10 "2 (141

6.6xi0 -6 (l.3x10 "3) 0,016

2.3x10 -4 (0.044) 34

unknown unknown

I. 15x10 -2 (2.20) NA

See Table 3 and Appendix I.

7. Ixl0 "3 (1.4) i0

0.71-3.56 (136-678) See note (d).

Footnotes

(a) The density of urine was taken as 1.008 g/ml/4/to convert urine volume from
reference /2/ to weight.

(b) Detergent only: sodium dodecyl benzene sulfonate (an anionic detergent).
(c) Cleansing agent only: Economics Laboratory Cleansing Agent Forrnulation 6503.54.4

(an anionic detergent).
(d) The contaminant load in transpired water from plants is unknown.
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WASTE SOURCES

In determining the treatment to be applied to any waste stream of a life support system,
at least three pieces of information must be considered: l) stream composition, 2) rate
of stream production, and 3) required end product(s). Tables 1, 2, 3, and Appendix I,
summarize some of the important information concerning waste stream composition
and production rate for streams derived from a number of sources in a life support
system. A discussion of the data presented in Table I follows.

Wastes from General Human Activitie_

Parker and GaUagher/2/ reported results from a comprehensive study of human wastes
in which over 25,000 person-days of data was analyzed. They reported mean values for
the dry and wet weight of human feces, the volume of human urine (2,066
milliliters/person-day), solids per menstrual period (I0 grams), the average number of
pads or tampons used per period (15.2), the average weight of pads (10.65 grams) and
tampons (2.60 grams) from different manufacturers, and the total amount of toilet paper
usage for women for bowel movements and urination (41. I grams/woman-day). The
solids content of human urine shown in Table l was obtained from reference /3/. It

should be noted that the values reported by Parker and Gallagher are mean values and
these authors emphasize that a space habitat waste handling and treatment subsystem
must be designed to accomodate extremes and should not be designed on the basis of
mean values.

The type and amounts of organic and inorganic constituents in human urine can be
found in references /3/ and /4/. The elemental composition of human feces derived

from subjects fed a specified diet can also be found in reference /3/.

The amount of urinal flush water shown in Table 1 is being used for designing or sizing
the environmental control and life support system (ECLSS) for the US Space Station
/5/. The volumes of dish, laundry, shower, and hand wash water were obtained in a
private communication/6/and these amounts are also being used for designing the
Space Station ECLSS. The amount of cabin humidity condensate and its contaminant
concentration were derived from Space Shuttle data and are also part of the design load
for the Space Station ECLSS.

The amount of food preparation waste and details concerning its composition were
taken from reference /3/ and references cited therein. Reference /3/ cited the work
of M. Karel of the Massachusetts Institute of Technology, who was responsible for

designing a model food processing and preparation waste for the US CELSS program.
In designing this model waste, it was assumed that the CELSS population would be
small, that plants would be grown hydroponically, and that animals would not be part of
a CELSS.

In 1985, the NASA-Ames laboratory analyzed the trash brought back to Earth aboard

Space Shuttle Flight 51D. The objective of this analysis was to gain insight into the
composition, amount, and volume of trash produced during a representative human
space mission. This type of information will be needed for the design of long term
human space mission waste handling and treatment subsystems. The results from this
analysis are shown in Table 2.

Air (_ontaminants

Contaminated air from crew quarters is another waste stream that must be treated in
the closed environment of a space habitat. Wastes in cabin air include water and carbon
dioxide fro,_1 perspiration and respiration, volatile contaminants from people and
equipment, and airborne particles. The average amount of carbon dioxide produced by
an adult each day (Table 1) was taken from reference /5/. A contaminant load model
(including contaminant type and concentration) is a prerequisite for the design and
sizing of the contaminant control subsystem for a space habitat. The load model being
used for designing the Space Station contaminant removal subsystem is given in
Appendix I. We have included the extensive llst of representative volatile contaminants
shown in Appendix I to illustrate the broad spectrum of compounds one can expect to
find in a closed habitat. Appendix I also shows the space maximum allowable
concentrations (SMAC) for continuous exposure to a given contaminant.
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TABLE2. Composition and amount of trash derived from

Space Shuttle Flight 51D (49 person-day flight)

Trash Constituent Weight, Volume,
kg (Ibs) m 3 (ft 3)

Food containers [a} 23.0 (50.8) 0.093 (3.3) [b}

Paper 6.4 (14) 0.037 (1.3)

Biomedical 6.4 (14) 0.028 {I.0}

Leftover food &
garbage 4.8 [I0.5) 0.008 (0.3)

Plastic bags 3.2 (7} 0.062 (2.2)

Grey or duct tape 1.6 (3.5) 0.008 (0.3)

Cans, aluminum &

bimetallic 1.2 (2.8) 0.014 (0.5)

Miscellaneous 2.6 (5.8) 0.023 (0.8)

Total 49.0 (108) 0.280 (9.9)

Footnotes

(a) Includes 12.2 kg (27 Ibs) of uneaten food and beverages.
(b) After cleaning and stacking.

The estimated concentration and size of airborne particles which are expected to be
found aboard the Space Station are given in Table 3. These estimates are being used for
the design and sizing of the contaminant control subsystem. In estimating the rate of
generation of airborne particles expected aboard the Space Station, it was assumed that
about 90 percent of the particles would be derived from humans and their activities. To
obtain the total generation rate of particles or dust expected aboard the Space Station,
the numbers in Table 3 must be multiplied by the crew size and the factor 1.1 to
account for particle generation by sources other than people (assumed to be I0 percent
of the total).

TABLE 3, Estimation of Space Station Particle or

Dust Generation Rate by Humans /11/

Particle Size
(microns)

Particle Generation

(particles/hr/person)

0.3 - 0.5 81,341,426
0.5 - I 34,570,164
1 2 4,270,366
2 5 1,565,870
5 10 211,548
above I0 40,626

Wastes from Plant Production ActNitl¢s

In estimating the amount of inedible biomass and transpiration water {Table I}that
must be handled by the waste treatment subsystem in a CELSS, the following
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assumptions were made: a) the average amount of dry food required by each adult per

day is 0.617 kilograms /5/, b) wheat alone can meet a person's daily caloric but not

necessarily nutritional requirement, c) only 50 percent of the dry mass of a mature

wheat plant is Inedible (i.e., an optimistic harvest index of 50 percent), d) 90 percent of

the wet weight of the Inedible portion of a wheat plant ts comprised of water, and e)

depending upon carbon dioxide concentration, the amount of transpired water ranges

from 50-250 grams per gram of plant (edible plus inedible) dry weight /7/.

Transpiration water may contain volatile organic compounds that "qust be removed

before recycling the water. These compounds may come from plm_ts or materials in the

plant growth chamber. Currently, the type and concentration of contaminants in

transpiration water are poorly defined and therefore this stream must be considered as

a waste stream that will require some processing.

Wastes from Experimental Systems

Experiments being conducted in a space habitat will also contribute waste of varying

types and amounts that will require handling and treatment. The broad spectrum of

wastes that might be derived from experiments precludes this source of waste from

being considered here. However, a study has been conducted m which waste derived

from potential flight experiments is defined /8/.

WASTE PROCESSING

Given the quality and quantity of the waste streams presented in Table 1, there are a

number of different waste processing methods that one might consider for handling and

treating these wastes. These methods include both biological and physical/chemical

processes. The optimum combination of processing technologies remains to be
determined. However, a scenario based on qualitative considerations (as opposed to

detailed mass and energy balance calculations, tradeoff studies, etc.) is shown In

Figure 1.
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Fig. 1. Representative Water Pathways in a CELSS.
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Genersl Water and Gas Processin.g Scenario

Figure 1 graphically depicts a water pathway scenario in a CEILS. The scenario shows
how water may be processed or treated in order to attain the required quality standards
of each of the depicted water compartments. The different sizes of the solid boxes in
Figure 1 reflect proportional volumes {derived principally from Table I} of the major
water compartments on a per day per person basis (actual sizes are dependent upon the
rate of throughput and storage considerations).

It should be noted that the range for transpiration water production set forth in Table 1
is determined by the environmental conditions, predominantly the concentration of
carbon dioxide (CO 2) in the plant growth chamber. Transpiration water production is
inversely proportional to the CO2 partial pressure. When the CO2 pressure is low, the
stomates, openings in the leaves through which gas and water exchange occur, open,
and the transpiration rate is high (up to 250 grams water transpired per gram of dry
biomass produced); the reverse is true for high CO2 concentrations.

The ability to change the transpiration rate by varying the CO2 concentration can be an
important control factor in a CELSS. For example, under optimal plant growth
conditions, more than enough water is provided to meet crew requirements even
though the transpiration rate is low. Should an emergency occur whereby more water is
needed by the crew, the transpiration rate and the amount of water provided to the
crew can be quickly increased, by merely decreasing the CO2 concentration In the plant
growth chamber.

It is expected that transpiration water, having been derived from a phase change
process, will be relatively clean. Therefore, this waste stream may need only minimal
filtering and bacterial control to yield high quality water for drinking and other
applications. However, most of the condensed transpiration water will be used to
replenish water lost from the plant nutrient solution. This cycle as illustrated in Figure
1 shows nutrient solution make-up water also being introduced from other processors.

The condensate collected from the cabin environmental control system, having passed
through a phase change, is also expected to be quite clean (see Table 1). However,
humidity condensate may contain a high population of microbes derived from microbial
growth on the condense: or heat exchanger. Although the amount of condensate
collected is not enough to meet the hygiene and toilet water requirement, the water
recovered here can be combined and treated along with transpiration water and spent
nutrient solution. The nutrient solution will contain an unknown number of microbes as

well as organic compounds produced by root metabolism and detritus breakdown.
These contaminants can be filtered out and useable salts can be returned to the nutrient

solution, The filtrate or sludge would be treated in the solid waste processor.

Toilet water containing feces and the inedible biomass waste streams have relatively
high solids concentrations and also may contain potentially harmful microbes.
Therefore, these streams will require a more rigorous treatment. High temperature and
pressure processes, such as wet oxidation or supercritical water oxidation may be used
to treat these more concentrated streams and to assist In closing the water cycle
between the crew person and plant production unit. The water produced by the solid
and liquid waste processor {see Figure 1} includes the yield from Inedible blomass,
hygiene and toilet water treatment, and also from a certain amount inherent in some of
the items listed in Table 2, as well as from the root zone filtrate. This water Is not

necessarily potable, but after salts and potentially toxic metals {derived from corrosion}
are removed, it is benign to the plants growing from the nutrient solution to which it is
returned.

Gas exchange between the plant growth chamber and other parts of a CELSS is also an
important part of recycling. For example, oxygen produced by photosynthesis in the
plant growth chamber may be used for oxidation in the waste processor and for
respiration by the crew. Likewise, the CO2 produced by both crew and waste oxidation
is needed by the plants for their growth.

The crew consumes water-containing edible biomass, drinks potable water, and
produces waste. Consequently, the crew closes the life support loop in this generally
described scenario.
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Nitrogen Recycle through a Hybrid Waste Processing System

Figure 2 illustrates a more specific waste recycling scenario which includes methods for
recycling nitrogen and converting it into forms desirable for plant metabolism. In this
scenario, organic nitrogen is converted into ammonia (NH3) and nitrate ions (NO3-)
which are species desired by plants for their nutrition.
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Fig. 2. Waste Processing in a CELSS: Nitrogen Recovery.

As mentioned previously, waste processing, applied to closing a life support system, can
be achieved by three basic methods: physical/chemical processes, biological processes,
or a hybrid of the two. Processing of wastes by physical/chemical methods is directly
applicable to handling liquids as well as large quantities of solid materials but suffers a
significant limitation: the inability to produce a form of nitrogen which is reuseable
directly by higher plants. The physical/chemical waste processing methods
characteristically produce nitrogen gases (N2 and N20) while growing plants for a
CELSS require either nitrate or ammonium ions (NH4 +) as a source of nutrition. Aerobic
biological waste processing systems can produce either or both ions as a final end
product but do not handle solid wastes efficiently. With the above requirements and
characteristics in mind, a scenario of an integrated waste processing system is
discussed below. The hybrid system includes vapor compression distillation, wet
oxidation, biological oxidation, activated carbon adsorption, and ultraviolet disinfection.
A schematic diagram of the proposed system is presented in Figure 2. The treatment
scheme is simplified to show ",.he flow of nitrogen only.

The treatment scenario assumes processing of wastes generated by the plant growth
and human habitation units. Wastes from the plant growth unit include the inedible
blomass and the spent nutrient solution. The inedible biomass is principally solid waste
(wheat chaff, etc.) low in organic nitrogen (Org-N) content /3/ but overall represents a
potentially high mass of nitrogen due to the large amount of material generated. The
inedible biomass will first be ground and pulverized to reduce the total volume and
particle size. Final processing will be handled by wet oxidation operated at a
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temperature less than 300°C and a pressure of 1500 psig to minimize loss of nitrogen as
N2 gas and maximize recovery of ammonia nitrogen (NH3-N) /9/. The spent nutrient
solution is primarily water, inorganic salts, and organic residues exuded by the plants.
The spent nutrient solution will be sent to the preprocessing stage to act as a wetting
agent to slurry and maximize leaching of Org-N and NH3-N from the solid wastes
generated at the human habitation unit. Nitrogen leaching can be accomplished through
a combination of physical solids disintegration and an anaerobic fermentation-like
process.

The solid wastes from the human habitation unit include feces and food preparation or
processing waste. After preprocessing of the solid wastes, the slurry will be physically
separated into liquid and solid streams. The solid portion containing Org-N will be
further processed by wet oxidation to convert the Org-N to NH3-N. Liquid wastes from
the human habitation unit include urine and hygiene or wash water. These two waste
streams will be combined for processing by vapor compression distillation (VCD). The
final product of vapor compression disUllation will be returned to the human habitation
unit as drinking and hygiene water. Current state-of-the-art vapor compression
distillation technology requires that pre- and post-treatment be implemented to
optimize treatment efficiency and insure potable water quality/I0/. Pretreatment by
pH adjustment will maximize separation of NH3-N and other salts while post-treatment
by ultraviolet (UV) disinfecUon will slgnificanfly improve the bacteriological quality of
the final product. Additional potable water will be supplied by water condensed from
the evaporatlon/transpiration process occurring in the plant growth unit. The
concentrate from vapor compresslon distillation will be sent to the preprocessing stage
to be combined with the concentrated NH3-N liquid leachate. The liquid leachate from
the preprocessing stage as well as the liquid effluent from the wet oxidation step, both
of which will contain highly concentrated NH3-N, will be processed by biological
(microbial) oxidaUon such as suspended growth (activated sludge] or fixed film (rotating
biological contactor, trickling filter, etc.) systems. Carbon and nitrogen oxidation will

• occur, transforming the majority of the organic carbon to CO2 and water and the NH3-N
and Org-N to nitrate nitrogen (NO3-N]. Following separation of the microbial solids, the
liquid effluent from the biological oxidation unit will be returned to the plant growth
unit to supply water, as well as nitrogen and other necessary nutrients. The microbial
solids will be processed by wet oxidation to convert Org-N to NH3-N. Due to the
incomplete oxidation of carbon and separation of microbial cells during biological
processing, the liquid effluent will require additional polishing by activated carbon
adsorption and UV disinfection before being transferred to the plant growth unit. The
activated carbon system will remove residual carbon which can stimulate the growth of
bacteria while UV disinfection will destroy bacteria and viruses including potential plant
pathogens. The wet oxidation system will also be used to regenerate the spent activated
carbon.

CONCLUSION

The production rate and solid content of waste streams found In a life support system
for a space habitat (in which plants are grown for food) have been discussed. Two
recycling scenarios (Figures 1 and 2), derived from qualitative considerations as
opposed to quantitative mass and energy balances, tradeoff studies, etc., have been
presented; they reflect differing emphases on and responses to the waste stream
formation rates and their composition, as well as indicate the required products from
waste treatment that are needed in a life support system. The data presented here also
demonstrate the magnitude of the challenge to developing a life support system with a
high degree of closure.
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Appendix I Preliminary Space Station Trace Contaminant Load Model (8
crewmembers) /11/

Contaminant Alternate Names
-

ALCOHOLS

Methanol Methyl alcohol
Ethanol Ethyl alcohol

2-Propenol Allyl alcohol
l-Propanol N-propyl alcohol
2-Propanol Iso-propyl alcohol

1,2-Ethanediol Glycol or Ethylene glycol
1-Butanol N-butyl alcohol
2-Methyl-2-propanol Tert-butyl alcohol
2- Methyl- 1- propanol Iso-butyl alcohol
2-Butanol Sec-butyl alcohol

1,2-Propanedlol Propylene glycol
1-Pentanol N-amyl alcohol
3-Methyl- 1 -butanol lso-amyl alcohol
Phenol Benzol or Carbolic acid

Cyciohexanol Hexahydrophenol
2-Ethyl- 1-butanol
2-Hexanol 2-Hexyl alcohol

2-Butoxy-ethanol Glycol monobutyl ether
2-Ethyl-hexanol 2-Ethyl- 1 -hexanol

Nonanol Nonyl alcohol
1-Decanol Capryi alcohol

ALDEHYDES

Methanal Formaldehyde

Ethanal Acetaldehyde
Propenal Acrolein
Propanal Proplonaldehydde
Methacroleln 2-Methyl-propenal
Butanai Butyraldehyde

Pentanal Valeraldehyde
2,4-Hexadienal Sorbaldehyde
Hexanal Caprolc aldehyde
Benzaldehyde Benzene carbonal
Heptanal Enanthaldehyde

Tolualdehyde
Octanal Capril aldehyde

KETONES

2-Propanone
3-Butene-2-one
2-Butanone or MEK

Ketopentamethylene
3-Penten-2-one

Methyl cyclo propyl ketone
2-Pentanone

3-Methyl-2-butanone
Ketohexamethylene
4-Methyl- l-pentene-3-one
2,3- Epoxy- 1.4-dlmethyl-butane
4-Methyl-2-pentanone
3.3-Dlmethyl-2-butanone

Acetyl benzene or 1-Phenyl ethanone

Acetone

Methyl vinyl ketone
Methyl ethyl ketone
Cyciopentanone
Methyl propenyl ketone
Acetyl cyclopropane
Methyl propyl ketone
lsopropyl methyl ketone
Cyclohexanone
Mesltyl oxide
Tetramethyl oxirane
Methyl Isobutyl ketone
Plnacolone

5-Methyl-2-hexanone
2,4-Dimethyl 3- pentanone
2-Heptanone
3-Heptanone
Acetophenone
5-Methyl-3-heptanone
2-Octanone

Dl-lsobutyl-ketone 2,6- Dimethyl-4-heptanone

ALIPHATIC HYDROCARBONS

Methane

Acetylene Ethyne

89

32.04 1.50 707 52.40 F,M
46.07 4.00 5216 94.00 F,M
58.08 .00 3.2 1.00 F,M
60.09 .00 25.3 98.30 F.M
60.09 .00 2022 98.30 F,M
62.07 .00 9.5 127.00 F,M
74.12 1.33 6922 121.00 F,M

74.12 .00 15.8 121.00 F,M
74.12 1.20 728.4 121.00 F
74.12 .00 .7 121.00 F
76.10 .00 .5 O. 10 F,M
88.15 .00 134 126.00 F
88.15 .00 18 126.00 F
94. i l .00 7.9 7.70 F,M

100.16 .00 1288 123.00 F,M
102.17 .00 .2 O.10 F
102.18 .00 1.2 167.00 F

118.18 .00 .005 24,20 F,M
130.23 .00 4.5 186.40 F
144.26 .00 6.5 236.00 F
159.29 .00 9.5 259.00 F

30.03 .00 .02 O. 12 C,l
44.05 .09 48.18 54.00 F
56.06 .00 .06 0. I I F
58.08 .00 87 95.00 F
70.09 .00 .2 0.I0 F

72.10 .00 1470 118.00 F
86.13 .83 22.66 106.00 F
96.13 .00 1.5 4.70 F

100.16 .00 43 4.70 F
106.12 .00 I I 173.00 F

I14.19 ,00 4 0.10 F
120.15 .00 .4 0.10 F

128.22 .00 3.2 210.00 F

58.08 .20 4212.4 712.50 F,M
70.00 .00 .3 0.I0 F
72. I I .00 3760 59.00 F
84. I I .00 845 29.20 F

84.12 .00 .05 O.lO F
84.13 .00 .08 0.I0 F,M
86.13 .00 4.7 70.40 F
86.13 .00 4.7 70.40 F

98.14 .00 292 60.20 F
98,14 .00 47 40.10 F,M

100.12 .00 1.6 0.I0 F,M

100.16 .00 1335 82.00 F
I00.16 .00 6.3 81.90 F
114.18 .00 .6 23.50 F

I14.18 .00 2.4 23.50 F
114.18 .00 .4 23.50 F,M
I14.18 .00 35.50 F

120.14 .00 1.6 245.00 F
128.21 .00 1.6 0. I0 F

128.21 .00 .3 105.00 F
142.20 .00 711 58. I0 F

16.04 160 1620(e) 1771.00 C
26.04 .00 26 532.00 C



Appendix [ (continued)

Contaminant Alternate Names

Ethylene Ethene
Ethane

Methyl acetylene
Propadlene
Propylene
Propane
1,3-Butadiene
1 -Butene
Butane
lso-Butane

Cyclopentene
Isoprene
I -Pentene
Pentane
Iso-Pentane

Cyclohexene
Methyl cyclopentane
Cyclohexane
2-Hexene

2,2-D/methyl butane
3-Methyl pentane
Hexane

Methyl cyclohexene
Methyl cyclohexane
I -Heptene
2,2-D/methyl pentane
2.4 -Dlmethyl-pentane
3-Ethyl pentane
Heptane
I, I - Dlmethyl-cyclohe_ane
Trans- I, 2 -dimethyl-cyclohexane
6-Methyl- I -heptene
2-Octene

2.2,3 -Trimethyl - pentane
3.3-Dimethyl-hexane
3-Ethyl-hexane
Octane

4-Ethyl-heptane
Nonane
Llmonene

2- Methyl- 3-ethyl- heptane
Deeane
Undeeane
Dodeeane

Propyne
Allene or Dlmethylene methane
Propene

N-Butane

2-Methyl-propane

2-Methyl- 1.3-butadlene
I-Pentylene or Propylethene

2-Methyl-butane
1,2,3,4 -Tetrahydro-benzene

4-Methyl cyclohexene

Trlethyl methane

Ethyl-dlpropyl-methane

Cltrene

Hendeeane

AROMATIC HYDROCARBONS

Phene or Benzol

Methyl-benzene
Ethenyl-benzene

1,2-Dlmethyl-benzene
1,3-Dtmethyl-benzene
1,4-Dlmethyl-benzene

Indonaphthene
Methyl-ethenyl-benzene

Mesitylene
Pseudocumene

Iso-Propyl-benzene

Benzene
Toluene

Styrene

o-Xylene
m-Xylene
p-Xylene
Ethyl-benzene
Indene

Methyl-styrene

I, 3, 5 -Trlmethyl-benzene
I, 2,4 -Trlmet hyl -benzene
Propyi-benzene
Cumene

I -Ethyl-2- methyl-benzene
Naphthalene

N-Butyl-benzene
1 -Methyl-3-propyl benzene

p-Cymene l-lsopropyl-4 - methyl-benzene

HAlf)CARBONS

Methyl chloride
Vinyl chloride

Ethyl chloride
3-Chloro-propylene

Chloro-methane
Chloro-ethene
Chloro-ethane

Allyl chloride

9O

28.05
30.07
40.07
40.07
42.08
44.09
54.09
56.10
58.12
58.12
68.11
68.11
70.13
72.15
72,15
82.14
84.16
84.16
84.16
86.17
86.18
86.18
96.17
98.18
98.18

100.21
100.21
100.21
100,21
112.22

112.22
112.22
112.22

114,23
114.23
114.22
114.23
128.26
128.26
136.23

142.28
142.28
156.31

170.34

.00

.00

.0o

.00

.0o

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.oo

.00

.0o

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
,00
.00
.00

.00

.00

.00

.00

.4
166

8.7
180

.5

.5

4.7
40

1.6

95
130
148

35
134

3.2
35
51

624
.8

3.2
2.8

81
253

69
113

86
.4
.I

79
24

95
.02

22
t

1.3
.4

66
.06

1.7
6

2
.08

14

5.5

344.10
1230.00

409.50
81.90

860,30
901.40
221.20
458.00
237.60
237.60
167.00
557.00
186.00
590.00
295.00

86.00
51.60

206.00
172.00

88,10
1762,00

176.00
393.20

60.20
201.00
408.60
201.00
201.00
201.00
I 15.00

115.00

229,00
229.00

229.00
229.00
229.00
350.00
129.00
315.00
557.00

116.00
223.00
319.00

278.00

,.. =.-,
° 8

C
CY
F

C.F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

F
F
F

F
F
F
F

F
F
F
F
F
F

F
F
F

F

78.11 .00 27 0.32 F
98.13 .00 1351 75.30 F

104.14 .00 9.5 42.60 F

I06.16 .00 106 86.80 F
106.16 .00 3539 86.80 F
106.16 .00 780 86.80 F
106.16 .00 182 86.80 F
I16.16 .00 118 9.50 F
I18.18 .O0 1.2 145.00 F
120.20 .00 2 15.00 F
120,20 .00 16 15.00 F
120.20 .00 269 49.10 F
120,20 .00 II 73.70 F
120.20 .00 5 25.00 F
128.18 0.I0 F
134.12 .00 2.4 55.00 F
134.12 .00 2.7 II.00 F
134.22 .00 .5 0. I0 F

.00

.00

.00
.00

41.30
0.26

263.70
0.63

.3
1.6

545
34

50.49
62.50
64.52
76.53

C_

F

F

F



Appendix I (continued)

Contaminant Alternate Names

E

u

Dlchloro-methane
Freon 22
l-Chloro-butane
1,1-Dlchloro-et hene
1,2-Dlchloro-ethane
Freon 21

Propylene dichloride
1,2-Dlchloro-propane
Chloro-benzene

Methylene chloride
Chloro-difluoro-methane

Vlnylldlne chloride

Ethylene dichloride
Dlchloro-fluoro-methane

1.2-Dlchloro-propene

Phenyl chloride
l-Chloro- 1,2,2-trifluoro-ethane

Chloroform Trlchloro-methane
Freon 12 Dichloro-difluoro-methane

Iso-Butyl chloride 1.2-Dichloro-2-methyl-propane
1,3-Dlchloro-2-propanol
Trichloro-ethylene Trlchloro-ethene
1,2-Dlchloro- 1,2-difluoro-ethene

Methyl chloroform
I, 1,2-Trlchloro-ethane
Freon 124
Freon l I
1.2-Dichloro-benzene

3-Chloromethyl-heptane
Halon 1301

Carbon tetrachlorlde

Tetrachloro-ethylene
Freon 114

Freon 113

Freon TF

Freon 112

1,1,1 -Trlchloro-ethane

Chloro-tetrafluoro-ethane
Trlchloro-tluoro- methane

Bromo-trifluoro- methane
Tetrachloro-methane
Tetrachloro-ethene
1,1 -DIchloro- 1,2,2,2-tetrafluoro-ethane
1,1,2-Trlchloro- 1,2,2-trlfluoro-ethane
1,1,2-Trlchloro- 1,2.2-trlfluoro ethane
I, 1,2,2-Tc" " achloro- 1,2-difluoro-ethane

ESTE RS

Formic acid methyl ester

Formic acid ethyl ester
Acetic acid methyl ester

Acetic acid ethyl ester
Glycol monoethyl ester
Acetic acid allyl ester
2-Methyl-propenolc acid methyl ester
Formic acid butyl ester
Acetic acid propyl ester
AceUc acid Isopropyl ester
2-Methyl-propenoic acid ethyl ester
Acetic acid butyl ester
Acetic acid lso-butyl ester
2-Hydroxy-propanolc acid ethyl ester
Acetic acid 2-methoxy-ethyl ester

Acetic acid pentyl ester
Acetic acld3-pentyl ester

2-Ethoxyethyl acetate

Methyl formate
Ethyl formate
Methyl acetate
Ethyl acetate
2-Ethoxy-ethanol

Allyl acetate
Methyl methacrylate

N-Butyl formate
Propyl acetate
Iso-Propyl acetate
Ethyl methaerylate
BtltyI acetate
Iso-Butyl acetate
Ethyl lactate
2-Methoxy ethyl acetate
N-Amyl acetate
Iso-Amyl acetate
Cellosolve acetate
1,2-Ethane dlacetate
Dlbutyl oxalate Oxalic acld dlbutyl ester

ETHERS

I A-Epoxy- 1,2-butadtene
1,4- Epoxy butane
3- Methoxy- I - propene
Ethoxy-ethane or Ether

1,4-Dloxane or Glycol ethylene ether

F_-an

Tetrahydro furan
Allyl methyl ether
Diethyl ether
2-Methyl furan
2.3-Dlhydro-pyran
p-Dioxane
1,3,5-Trtoxane

1-Prolx:xxy' butane Butyl propyl ether

SlLANES & SILOXANES

Slloxane dlmer Dlsfloxane

Trimethyl sllanol Trimethyl slllcol
Dlphenyl silane
Stloxane tdmer Trlslloxane

91

84.93
86.47
92.57
96.95
98.97

102.90
106.97
112.99
112.56
118.50
119.38
120.91
127.01
128.99

131.39
132.93
133.41
133.41
136.48
137.40
147.01
148.68
148.90
153.82
165.83
170.92
187.40
187.40
204.00

60.05
74.08
74.08
88.11
90.12

100.12
100.12

102.13
102.13
102.13
114.15
116.16
116.16
118.13
I18.36
130.18
130.18
132.16
146.14
202.25

68.07
72.11
72.11
74.12
82.10
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3
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5.5
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9.5
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.01
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2.4
75O
174

II
.3

474
1.6
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.01
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13801
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.06

.8
II

371
1035

5
24

.05

585
3.2
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948
245
205

5
7O

3.2
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.7

.04

1.6
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.O6
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I
.4
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.02
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.02
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Appendix 1 (continued)

Contaminant Alternate Names

Hexamethyl-dlsfloxane
Slloxane tetramer Tetraslloxane

Hexamethyl-cyclo- trlslloxane
Octamethyl- trlsllo× ane
Octamethyi-cyclo-t,.tras|loxane
Decamethyl-tetraslloxane
Decamethyi-cyclo.pentaslloxane

Decamethyl-cyclo-hexaslioxane
Tetradecamethyicycloheptaslloxane

Hexadecame t hylcyclooc tas floxa ne

ORGANIC NITROGENS

162.48 .00 .08 96.60
170.40 .00 237 114.00
222.40 .00 47 227.00
236.54 .00 379 114.00
296.62 .00 71 151.70
310.58 .00 150.70
370.64 .00 316 150.70
444.71 .00 403 150.70
519.09 .00 555 150.70
593.24 .00 126

Acetonitrlle Ethane-nltrile or Methyl cyanide 41.05 .00 83 6.70
Mono-methyl hydrazlne Methylhydrazlne 46.07 .00 2.4 0.08
Nltromethane 61.04 .00 8 0.10
N,N-Dimethyl-formamlde Formic acld-N.N-dlmethyl amide 73.10 .00 .6 6.00
Nltroethane 75.07 .00 .02 0. I0
N-Ethyl-morphollne 4-Ethyl-morphollne 115.18 .00 213 16.00

Indole 117.15 25 I00 (d) 0.48

SULFIDES

Carbonyl sulfide Carbon oxisulfide 60.07 .00 5.4 12.00

Ethylene sulfide Thilrane 60.07 .00 .06 0.I0
Dlmethyl sulfide Methyl sulfide 62.14 .00 .3 2.50
Carbon dlsuhflde 76.14 .00 44 16.00
Pentamethylene sulfide Tetrahydro pyran 102.20 .00 .08 0. I 0

MISCELLANEOUS ORGANICS

Acetic acid Ethanlc acid 60.05 .00 .02 7.40
Eplchlorohydrln I -Chloro- 2,3 -e poxy-propane-dl 92.53 .00 5 1.20
2-Ethyl-hexanoic acid 144.21 .00 .6 0.I0

INORGANICS

Hydrogen 2.02 26 208 [I} 247.30
Ammonia 17.03 475 3806 17.40

Carbon monoxide 28.01 23 1843 (g) 28.60
Nitric oxide 30.01 .00 0.044 6.10
Hydrazlne 32.05 .00 1.68 0.05
Hydrogen sulfide 34.08 .09 .7 2.80
Nitrogen dioxide 46.01 .00 0.02 0.94
Nitrogen te troxide 92.01 .00 48 1.90
Mercury 200.59 .00 1.2 0.006

F
F
F
F
F
F
F
F
F
F

F.M
F
F
F.M
F
F
F

F,C
F
F
F
F

F,M,L
F
F

C
PA

O3,C
PU

F.M

C

F,L
F,M
F

Footnotes

(a) Metabolic generation rate per man.
(b) SP ST= Space Station. Predicted Space Station generation rate: 4 modules and 8

crewme tubers.
{el Contaminant removal methods:

F Fixed activated chareoal bed

M Sorption by moisture (condensing heat exchanger}
PA Sorption by phosphoric acid (impregnated on charcoal)
L Sorption by LIOH/LI2CO3 (pre- and post-sorber}
C O - Low temperature catalytic oxidizer
C High temperature catalytic oxidizer
CI CI type charcoal
PU Purafll

(d} Only 50% of metabolic rate was used to obtain total Space Station rate.
(e} For total methane generation rate add 43.334 mg/day from Bosch reactor bleed.
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Footnotes (continued)
(f}Fortotal hydrogengenerationrate add 7,334 rag/day from Bosch reactor bleed.
{g) For total carbon monoxide generation rate add 109,344 rag/day from Bosch reactor

bleed.
(h) SMAC=Space Maximum Allowable Concentration.
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ABSTRACT

Controlled-Ecological-Life-Support-System {CELSS) model wastes were wet-oxidized at
temperatures from 250 to 500°C, i.e., below and above the critical point of water (374°C
md 218 kg/cm 2 or 21.4 MPa}. A solution of ammonium hydroxide and acetic acid and a
furry of human urine, feces, and wipes were used as model wastes.

Jmost all of the organic matter in the model wastes was oxidized in the temperature
ange from 400 to 500°C, i.e., above the critical conditions for water. In contrast, only a

small portion of the organic matter was oxidized at subcriUcal conditions. Although the
extent of nitrogen oxidation to nitrous oxide (N20) and/or nitrogen gas (N2) increased
with reaction temperature, most of the nitrogen was retained in solution as ammonia
near 400°C. This important finding suggests that most of the nitrogen in the waste feed
can be retained in solution as ammonia during oxidation at low supercritical
temperatures and be subsequently used as a nitrogen source for plants in a CELSS while
at the same time organic matter is almost completely oxidized to carbon dioxide and
water.

It was also found in this study the Hastelloy C-276 alloy reactor corroded during waste
oxidation. The rate of corrosion was lower above than below the critical temperature for
rater.

INTRODUCTION

Subcritical water oxidation (wet-oxidation, WO) and supercritical water oxidation
(SCWO} are presently the most hopeful candidate techniques for the waste management
subsystem in a controlled-ecological-life-support-system (CELSS). Though many efforts
have been concentrated on these research fields /I to 7/, the waste treatment
techniques of WO and SCWO still have many problems to be solved. Among the concerns
for a waste treatment system in a CELSS are the fates of organic carbon and nitrogen in
a raw waste material. The fates of carbon and nitrogen are important because WO or
SCWO is intended to work as a complete oxidizer of organic matter and because the
nitrogen product is planned to be used as fertilizer for higher plants in a CELSS.

Subcritical water oxidation is a process where an aqueous slurry and/or dissolved
organic matter is oxidized in a pressure vessel. In CELSS related studies using WO, the
temperature range studied was from 110 to 310°C and the pressure range was from 60
to 115 kg/cm 2 (5.88 to 11.3 MPa} /1,3/. Oxidation with and without catalysts has been
studied.

Historically, WO without a catalyst, which was developed in the 1950's in the U.S.A. as
the "Zimpro Process" for the treatment of industrial wastewater and sewage sludge, is
the oldest technique/8/. The WO temperatures used for CELSS studies are given above
and the oxidation efficiency ranged from 70 to 80%/3/. This means that organic
matter in raw materials cannot be oxidized completely under these conditions, and it
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was found that refractory or non-combustible organic acids like acetic acid are
produced. On the other hand, most of the nitrogen in the raw material remained in
solution in the form of ammonia. This fact is favorable for a CELSS because the nitrogen
can be used as a liquid fertilizer for plants which are grown hydroponically in a CELSS.

In the case of WO with a catalyst/2, 4/. noble metal(s) such as gold (Au), ruthenium
(Ru), rhodium (Rh), palladium (Pd), and platinum (Pt), which are supported on
aluminum oxide (A1203) or titanium dioxide (TiO2) pellets, or a ceramic honeycomb, are
used as catalysts. Though copper (Cu) is a well known oxidation catalyst for organic
carbon, it cannot be used for a CELSS because copper is dissolved in solution and forms
a complex with ammonia. When noble metal(s) are used, the oxidation efficiency of
organic matter is near 100%, and almost all nitrogen in a raw material is oxidized to
nitrogen gas (N2). This denitrification occurs with much smaller amounts of catalyst
than is necessary for a high oxidation efficiency of organic matter. While the high
oxidation efficiency of carbon is desirable for a CELSS, denitrification is undesirable
because most plants cannot fUXN2.

In addition to the issue of denitrification, another disadvantage of catalytic wet-oxldation
is that slurries which contain suspended organic matter generally cannot be used as a
raw material because of catalyst poisoning. A third disadvantage of catalytic WO is that
there is the possibility of deterioration or dissolution of the noble metal catalyst and
subsequent poisoning of living things, such as higher plants and algae, in a CELSS
recycle loop.

In the case of supercritical water oxidation (SCWO), which has been studied by Modell,
Hong and others /6, 7/, oxidation is carried out over the temperature range of 500 to
700°C. and the pressure range from 220 to 250 kg/cm 2 (21.6 to 24.5 MPa). These
conditions may be too stringent for human safety in a space habitat. Though the
oxidation efficiency of organic matter is near 100% under these conditions, almost all
nitrogen in a raw material is gasified, which is not good from a plant-growth point of
view in a CELSS. At 650°C, 40% of the nitrogen In a raw material of mixed urine and
feces was oxidized to nitrous oxide (N20} and the rest to N2 /7/.

The most important thing to note from the above discussion is that comparative studies
have not been carried out under experimental conditions in the transition region
between WO and SCWO. In other words, the subcritical and supercritical conditions
ranging from 300 to 500°C have not yet been thoroughly investigated. Therefore, using
an ideal waste (a solution of acetic acid and ammonium hydroxide) and a typical
spacecraft waste stream (a slurry of human feces, urine, and wipes) as model wastes, the
authors performed experiments covering the WO and SCWO transition temperature
range. It was anticipated prior to performing the experiments that a high oxidation
efficiency of organic matter would be attained, but the nitrogen products in the reactor
output were not predictable. This paper will describe the details and results of these
experiments.

EXPERIMENTAL METHOD

IFlea©tor: Each experiment was carried out as a batch test using a stirred cylindrical
reactor made of Hastelloy C-276. The chemical composition of the reactor material is
shown in Table I.

The reactor Inside dimensions were 89 mm in diameter and 318 mm in depth. After
raw material and a stoichiometrically excess amount of oxygen were introduced to the
reactor, it was heated to a designated temperature. A mixture of oxygen and neon was
used as the oxygen source /I/. Residence time for oxidation as used here refers to the
time at the designated temperature and does not include the time needed for heating
and cooling. When the reaction period was over, the reactor was cooled by a fan to room
temperature. After cooling, the headspace gas in the reactor was analyzed by gas
chromatography and the liquid content was analyzed for chemical oxygen demand (COD)
and ammonia. Periodically the liquid was analyzed for corrosion products and KJeldahl
nitrogen.

Exveriment 1: Two series of experiments were carried out. In "Experiment I", a
mixture of acetic acid and ammonium hydroxide was used as raw material. The effects
of the reaction temperature and/or residence time on carbon and nitrogen oxidation
and on metal corrosion from the reactor material were studied. The pH of the raw
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Table 1 Chemical Composition of Hastelloy C-270.

Element

Molybdenum

Chromium

Iron

Tungsten

Cobalt

Manganese

Vanadium

Silicon

Phosphorus

Sulfur

Carbon

Nickel

Percent

15.00-17.00

14.50-16.50

4.00-7.00

3.00-4.50

2.502

1.002

0.352

0.082

0.042

0.032

0.022

B_l_nce

[I) Cabot Corporation, Haztelloy alloy C-97fi, High Technology MaterialJ Dim_ion, 1980

(e} Maximum

material was adjusted to 7.02 by adding ammonium hydroxide to a calculated amount of
acetic acid in distilled water. Chemical oxygen demand (COD), total organic carbon
(TOC) and ammonia in the feed as determined by analysis were 44.5 02 g/1, 16.5 C g/l,
and 8.72 N g/l, respectively. COD as used here means grams of oxygen required to
oxidize waste dry weight.

In studying the effects of temperature, five subcr/Ucal temperatures above 250°C and
seven supercritical ones below 500°C were selected. The residence time at each
temperature was fixed at 60 minutes. At suberiUcal temperatures, a constant amount of
the raw material and oxygen was added to the reactor (200 ml and 200 psi, 14.1
kg/cm 2 or 1.38 MPa). 3.7 times the stoichiometrleally required amount of oxygen was
added to the reactor at the start of an experiment. The pressure at each selected
temperature ranged from 679 to 2560 psi (47.7 to 180 kg/cm 2 or 4.68 to 17.7 MPa).
At supercritical temperatures, the highest pressure was limited to 3500 psi (246
kg/cm 2 or 24.1 MPa) because of the safety limits of the reactor. The average pressure
ranged from 3370 to 3490 psi (237 to 245 kg/cm 2 or 23.2 to 24.0 MPa). 1.1 to 1.7
times the stoiehiometric amount of oxygen required for complete oxidation was
introduced to the reactor for the supercritica/ temperature experiments.

In studying the effects of time on conversion efficiency, the temperature was set at 400
and 500°C. At each temper,,ture, five different residence times were selected (0. 15,
30, 45 and 60 minutes) and a corresponding five batch tests were carried out. (0
residence time means the reactor was heated to the desired temperature and
immediately cooled.) 1.2 and 1.7 times the stoichiometric amount of oxygen required
was introduced to the reactor for the reactions at 400 and 500°C, respectively.

In order to know the extent of metal corrosion products derived from the reactor, the
concentration In solution of the major components of Hastelloy C-276 (nickel,
molybdenum, and chromium) and other elements, Table 1, were measured by atomic
absorption spectroscopy. In addition, the elemental composition of the suspended
matter (which apparently arose from charring of the acetic acid) In a sample (400°C, 60
minutes) was also analyzed by X-ray photoelectron spectroscopy (ESCA).

ExDerlment 2: In "Experiment 2" a slurry made from freeze dried human feces and
urine, wipes, and distilled water was used as a raw material. The effects of reaction
temperature on carbon and nitrogen conversion and on metal corrosion from the
reactor material were studied.

Freeze-dried human feces and urine which had been prepared and analyzed by John L.
Carden, Jr., of the Georgia Institute of Technology /9/, and wipes, which were
representative of those used in the space shuttle missions, were used as components of
the raw material. The amount of each is shown in Table 2.
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Table 2 Toilet Waste Feed Solution.

Wastes

(dry. weight)

g/person/day

64 t

Nitrogen,

%
COD

Urine 22.0 0,267

Feces 44 t 10.2 1,09

Wipes 412 0 15 1.09

Total 149

Amount in 1 liter of solution

Waste l

constituent, g Nitrogen, g COD

28.6 6,29 7.6

19.6 2.00 21.4

18.3 0.03 19.9

8.32 48.966.5

(I) Freeze-dried and stored in ¢ dess,'cator prior to weighing.

($} Stored in dessicator prior to weighin 9.

The total solid (TS}, total nitrogen, COD, and pH of the raw material were 66.5 g/l, 8.32
N g/l, 48.9 02 g/l, and 6.25, respectively.

Three subcritlcal temperatures above 250°C and five supercrltical ones below 450°C
were selected as desired oxidation temperatures. The residence time for these
experiments was fixed at 60 minutes with the exception of the 400°C run, where an
additional 120 minute batch test was added. At subcritical temperatures, the same
volume of raw material and oxygen as "Experiment 1" was added to the reactor (200 ml
and 200 psi, 14. I kg/cm 2 or 1.38 MPa, respectively). The amount of oxygen was 3.0
times the stoichiometric amount required for complete oxidation. The pressure at each
designated temperature ranged from 739 to 2575 psi (52.0 to 181 kg/cm 2 or 5.10 to
17.8 MPa). At supercritical temperatures the average reaction pressure ranged from
3360 to 3510 psi (236 to 247 kg/cm 2 or 23.1 to 24.2 MPa). For these experiments 1.1
to 1.8 times the stoichiometric amount of oxygen required was added to the reactor.

The head space gas of the reactor was analyzed by gas chromatography after each batch
test. The gas chromatograph was equipped with a thermal conductivity detector (TCD)
and helium was used as the carrier gas. A column with an inner diameter of 0.085 inch
and a length of 20 feet packed with HayeSep D (100-120 mesh) was used at room
temperature. Nitrogen gas (N2), nitrous oxide (N20), methane (OH4), carbon dioxide
(CO2), neon (Ne), and oxygen (02) were separated and measured by this column. In
these experiments efforts were concentrated on closing the carbon and nitrogen
balance.

As in "Experiment 1", corrosion products were measured using atomic absorption
spectroscopy and the elemental composition of the suspended matter remaining after
oxidation was analyzed using ESCA.

Analytical Methods: The methods for analysis of COD, Kjeldahl nitrogen, and ammonia
were .rased on Environmental Protection Agency {EPA) Method 410.1, Standard
Methods for the Treatment of Water and Wastewater (SMWW) 417D, and Japanese
Industrial Standard (JIS) K 0102. respectively. In the measurement of nitrate, a
modified Brucine-nitrate assay based on EPA Method 352.1 was used. The atomic
absorption analyses were done by Carter Analytical Laboratory. Inc., Campbell, California.
ESCA was done by Surface Science Laboratories, Mountain View, Califomia.

RESULTS AND DISCUSSION

Experiment I
C and N Conversion: Figure I shows the oxidation efficiency for carbon and nitrogen,
which are defined as follows:

Oxidation efficiency of carbon (%) = [(CODiniUal - CODflnal)/CODlnltial] x I00
Oxidation efficiency of nitrogen (%) = [(NH3,initla I - NH3,final)/NH3,initia l] x I00

where NH3 refers to ammonia concentration in solution (N g/l),
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Fig. 1. Effect of temperature on the oxidation efficiency of
ammonium hydroxide and acetic acid.

In the case of carbon, the oxidation efficiency at 250°C was very low (less than 2%). But
with an increase in temperature, the oxidation efficiency increased and reached near
100% at 400°C. After that, the oxidation efficiency remained essentially constant.

In the case of nitrogen, the oxidation efficiency at 250°C was about 20°/0. With an
increase in temperature, the oxidation efficiency increased to about 30°/0 at 325°C and
then apparently decreased to less than 10% at 410°C. In the range 325 to 410°C, which
includes the transition temperature from subcritical to supercritical water at 374°C,

100

so m

0 400"C

• 500°C

0 I i i I

0 30 60

Residence time, mln.

Fig. 2. Effect of residence time on the oxidation efficiency of acetic
acid (based on COD); ammonium hydroxide and acetic acid
model waste feed.
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there was considerable scatter in the analytical data for ammonia. We have no
explanation to account for the apparent decrease in ammonia oxidation to lower values
around the critical temperature. Beyond 410°C, the oxidation efficiency continuously
increased with an increase in temperature.

At 410°C, the oxidation efficiency of carbon was greater than 95% and the oxidation
efficiency of nitrogen was only 30% or less. This means that most of the nitrogen in the
raw material was retained in solution as ammonia. It is possible for this nitrogen to be
used as a liquid fertilizer for plants grown hydroponically In a CELSS. Consequently, the
observed oxidation efficiency for carbon and nitrogen in the vicinity of 410°C has
important implications for a CELSS.

Figure 2 shows the effect of residence time on the oxidation efficiency of carbon.

At 500°C and 0 minutes residence time (defined earlier), the oxidation efficiency
reached almost 100o/0. After that, it remained constant with increasing residence time.
At 400°C, the oxidation efficiency increased with residence time and eventually reached
the same efficiency as 500°C. At 400°C, in order to attain the same oxidation efficiency
as 500°C, the residence time had to be increased to at least 60 minutes.

Figure 3 shows the effect of residence time on the oxidation efficiency of nitrogen.

At 500°C, the oxidation efficiency appeared to increase sllghfly with time. But, at
400°C, the oxidation efficiency was almost constant or increased only slightly with
duration of oxidation. These findings mean that the nitrogen oxidation had almost
finished at 0 minutes residence time or during the heating up period for the
experiment. It appears that after 0 minutes residence time, carbon oxidation and
nitrogen oxidation proceed separately.

q
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• J

o
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o
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0 30 60

Residence time. rain.

Fig. 3. Effect of residence time on the oxidation efficiency of
ammonia; ammonium hydroxide and acetic acid model
waste feed.

Metal Corrosion: Figure 4 shows the effects of temperature on metal corrosion from the
reactor material.

Nickel {NI), molybdenum (Mo)and chromium (Cr) shown in Figure 4 are the main
components of Hastelloy C-276 (see Table 1}. The concentration of each metal in
solution after 60 minutes oxidation ranged from I0 to 80 mg/l.
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Fig. 4. Effect of temperature on the corrosion of the HastelI'oy
C-276 reactor; ammonium hydroxide and acetic acid
model waste feed.

The change in the corrosion rate of nickel with oxidation temperature was most
dramatic. Below the critical point of water, the corrosion rate of nickel first increased
with reaction temperature and reached a maximum near 300°C. Beyond 300°C, it
decreased significantly, parUcularly near the critical point of water. Above the critical
point, the corrosion rate of nickel remained almost constant. Molybdenum and
chromium behaved similar to nickel, but their fluctuations were not as large as nickel.

When distilled water was used as a raw material and oxidation was carried cut at 450°C

for 60 minutes, the concentrations of nickel, molybdenum and chromium were 2.60.
4.80 and 6.75 mg/l, respectively (Table 3). In contrast, when a mixture of acetic acid
and ammonium hydroxide was used as the raw material, the corresponding
concentrations were 15.0, 18. I. and 11.5 mg/l, respectively. These results show that
the corrosion rate of the reactor was 1.7 to 5.8 times higher in the presence of acetic
acid and ammonium hydroxide than in distilled water and the rate varied with the metal
alloy component.

Results from the analysis by ESCA of the particles filtered from the product liquid
showed that after water oxidation at 400°C, 4.1 atom percent nickel was present in the
suspended solid (Table 4). This nickel came from the corrosion of the reactor material.
The remaining main components in the suspended matter were carbon and oxygen.
Judging from the carbon ESCA spectrum, it appeared to be in the form of graphitic or
amorphous carbon.

Experiment 2
,C and N Conversion: Figure 5 shows the oxidation efficiency for carbon and nitrogen.

The definition of the oxidation efficiency for carbon is the same as for "Experiment 1".
Below the critical point of water, the oxidation efficiency for carbon increased with
reaction temperature. The rate of its increase was much faster than in the case of acetic
acid and ammonium hydroxide model waste (see Figure 1). This difference was
probably due to the catalytic effect of minerals in the urine, feces, and wipes. Near the
critical point of water, the oxidation efficiency reached higher than 95%. After that, the
efficiency remained high and essenUally constant.

In order to identify the chemical forms of nitrogen in solution, three indicators were
used in this work: KJeldahl nitrogen before filtration (total). KJeldahl nitrogen after
filtration (filtrate), and ammonia. Generally, results from these three analyses so close
to each other that almost all nitrogen in the solution was considered to be in the form of
ammonia. But, since the reproducibility of the KJeldahl nitrogen analysis was better
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Fig. 5. Effect of temperature on the oxidation efficiency of
human urine, feces, and wipes. Residence tlme was
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than the ammonia analysis, the oxidation efficiency for nitrogen as used here is based on
KJeldahl nitrogen (total)and defined as follows:

Oxidation efficiency of nitrogen (%) = [(KJ-Nintttal - KJ-Nfmal)/KJ-Ninltial] x 100

where KJ-N is defined as KJeldahl nitrogen in solution (N g/l).
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Fig. 6. Effect of temperature on the COD of human
urine, feces, and wipes. Residence t/me was 60
minutes ( o total, • filtrate only) and
120 minutes ( D total, • filtrate).

Though the oxidation efficiency for nitrogen in the human waste samples was higher
than in the case of the acetic acid and ammonium hydroxide model waste, a substantial
amount of nitrogen (about 70%) still remained in solution as ammonia between 300 and
450°C. This finding again confirms the usefulness of supercritical water ox/daUon in the
vicinity of 400°C for CELSS wastes. The black dot (I) and square (n) in Figure 5 show
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the results of oxidation for 120 minutes. Even with an increase in residence time from

60 to 120 minutes, the oxidation efficiency of both carbon and nitrogen did not increase
significantly.

Figure 6 shows the temperature dependency of COD in the filtrate as well as total COD.

For reference, in Figure 5, the oxidation efficiency of carbon was based on total COD. In
Figure 6, below the critical point of water, the ratio of COD in the filtrate to total COD
increased with oxidation temperature. Above the critical point, COD in the filtrate was
almost the same as COD total.

Figure 7 shows the results of total (TS) and suspended solids (SS) after oxidation of
urine, feces, and wipes.

2° F
=o

L

",.:,oi "
200 300 400 500

Temperature, °C

Fi_. 7° Effect of temperature on the total (TS) and
suspended solids (SS} of human urine, feces,
and wipes. Residence time was 60 minutes
(o TS, • SS) and 120 minutes (a "IS. • SS).

TS minus SS can be thought of as dissolved solid (DS). At subcritical temperatures, both
TS and SS decreased with reaction temperature and reached a minimum near the
critical point of water. At supercrltieal temperatures, though SS remained constant, TS
increased with temperature, reaching its maximum at 430°C and remaining constant
after that.

This increase in TS above 400°C was unexpected. Since almost all organic matter was
oxidized above the critical point (see Figure 5 and 6), the content of DS above this point
should be only inorganic. Perhaps. at the time of the TS measurement, decomposition
and volatilization of some part of TS occurred in those samples taken from the 350 to
4'00°C runs yielding a low TS value in this range, or water was retained as water of
crystallization and measured as part of TS for runs above 400°C. yielding high values.
This phenomenon suggests that the chemical forms or situations of DS are different
below and above about 400°C.

Metal Corrosion: Figure 8 shows the concentration of chromium (Cr) in solution after
wet oxidation of urine, feces, and wipes.

Analysis of a representative sample of the feces used for the raw material contained no
chromium while a representative sample of the urine used had 0.5 mg chromium per
kilogram of dry urine/9/. We assumed wipes do not contain measurable amounts of
chromium. Therefore. the chromium concentration in Flgure 8 could not have come
from the raw material and its origin was thought to be the reactor material. The Cr
concentration reached a maximum at 350°C. On the other hand. nickel was not found
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Effect of temperature on the corrosion of the
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in either the representat/ve feces or urine used /9/ and no information regarding the
molybdenum content in feces, urine, and wipes was available. The concentration range
of nickel in this experiment ranged from 5 to 60 mg/l and that of molybdenum from 10
to 80 mg/l. These metals were also thought to have come from the reactor material.

Table 3 compares the corrosion rate of molybdenum, chromium, and nickel In different
wet oxidaUon environments.

Corrosion of the Hastelloy C-2Y0 Reactor during the Oxidation of" Dl_m-ent Fe_Is.

Distilled Water Feed NLOH "1"IKAc Fasd Human Waste 1qmd

Element ms/l ms/l ms/l

Molybdenum

Chromium

Nickel

IS.l

11.5

15.0

4.80

6.73

2.60

45

8.4

7.4

(1) 184 ml of diJtilled water w,_, heated at J50 e C/or 60 mi_w_s.
(8) 18J rrd of an NltiOH + HAc _olutlon warnwet ozidized at _50"C /or 60 miut*a.
($) Z50 rrd o/a human urifte, /¢cem, arid toip_s _olutio_ waJ wet ozidiz_ at 400° (7 /or 60 mi_tut_J.

The corrosion rate of molybdenum in the presence of human wastes was higher, that of
chromium was almost the same and that of nickel was lower than in the presence of the
ammonium hydroxide and acetic acid model waste.

_able 4 shows the results from ESCA analysis of the suspended matter in the samples.
_5

Nickel was found only in the sample run at 475°C. The origin of the other elements
could be the raw material itself. At 250°C. the atom percent of carbon in the suspended
matter was the highest which is consistent with the low carbon oxidation efficiency at
this temperature (see Figure 5). At the higher temperatures, the atom percent of
elements except carbon increased and this finding Is also consistent with a higher
carbon oxidation efficiency at these temperatures. The elemental composition of the
suspended solids appeared to be independent of treatment temperatures above 25&C.

The suspended solids remaining after oxidation of urtne, feces, and wipes were
generally black, except for the sample oxidized at 375aC. In this case the soluUon was
yellow and the particles were mostly off-whlte with some gray to black. We have no
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Table 4 ESCA Analysis of Suspended SoUds after Water Oxidation (atom _).

Simple and Oxid. T C O Mg P Ca N F Ni Na Zn 8i

400*C (NH4OH +HAc) x 70 21 .... 4. I - - 4.0

2500C (Human Waste) 2 67 24 3.1 1.8 1.6 1.4 1, 3 ....

350°C 23 45 6.2 13 11 - - - 1.2 - -

375°C 19 47 6.4 15 11 - - - 0.9 0.2 -

400oc 32 39 3.9 II I0 2.7 - - 0.7 0.3 -

475°C 26 43 5.7 13 8.6 - - 1.5 1.4 0.6 -

(I) The suspended solids after the wet ozidation of an ammonium hydrozide and acetic acid solution.

(_J The suspended solid_ after the wet oxidation of human _r/ne, feces, and wil_a.

(3) Samples were dried in a vacuum oven at 50° C.

explanation for the different appearance of the sample oxidized very close to the critical
temperature of water.

SUMMARY AND CONCLUSION

Subcritlcal and supercritlcal water oxidation of CELSS model wastes were carried out
using a batch type reactor. A mixture of acetic acid and ammonium hydroxide and a
slurry of human feces, urine, and wipes were used as wastes. The effects of oxidation
temperature and residence time on carbon and nitrogen conversion and on metal
corrosion from the reactor material were studied. The temperature range studied was
from 250 to 500°C and the residence time ranged from 0 to 120 minutes.

Almost complete oxidation of organic carbon in the waste feeds occurred above the
critical temperature and pressure of water. On the other hand, a substantial amount of
nitro_,crl remained in solution in the form of ammonia at temperatures from 350 to
450°C. These findings suggest that in the vicinity of 4000C. which is a little higher than
the critical temperature of water, organic carbon is completely oxidized and most of the
nitrogen is retained in solution. Both the oxidized form of carbon (carbon dioxide} and
the ammonia can be used as nutrients by plants or algae grown in a CELSS. Other
temperature ranges or methods of water oxidation cannot realize these two advantages
simultaneously (Table 5).

Table 6 Comparison of Different Techniques of Wet-oxidation.

Wet-oxidatlon Wet-axldatlon Supzreritlcal Low T Supererltleal

without catalyst with catalyst Water Oxidation Water Oxidation

Temperature II0- 310 ° 225 - 300 ° $60- 670" nesz 400 °

Carbon incomplete complete complete complete
(Oxidation)

Nitrogen remdnJ in solution g*-ified gl_.ified remains in solution

u NH4 + u N2 M N20 and N2 M NH4 + (70-90%)

Reference /5/ /3,$/ /8/ /This paper/

Therefore, wet oxidation temperatures near 400°C appear from this study to be

desirable for a CELSS waste processor.

Regarding the percentage of ammonia remaining in solution, there was some
discrepancy between the case of acetic acid and ammonium hydroxide and that of feces,
urine, and wipes and therefore more experiments are needed to clarify this
phenomenon. But the trends themselves appear to be identified in this work.

The Hastelloy C-276 alloy reactor corroded during WO and SCWO of wastes. The rate of
corrosion depended on the type of waste being oxidized and the temperature of
oxidation. The corrosion rate was generally lower above than below the critical
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temperatureof water. Corrosion products from a waste processor could be detrimental
to the growth of plants in a CELSS.
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ABSTRACT

Studies for every level of CELSS : Waste processing, food production, photosynthesis system,

and so on..., Imply an automatic system to control, round and quantify gases, water and

chemical compounds. Used for many years in plant phyaloloay studies, the C23A system

mmnltors the analysis and quantifies gssea (02, CO2, N2 .... ), physical parameters

(tempera_re, htualdity .... ) and chemical compounds (IQI4+, NO3-, ...) on numerous

experiments. In the new version, the architecture of the computing system is near of the

space requirements. We have chosen a structure with three independent levels : acquisition,

nonltorlng and supervision. Moreover, we use multiplexed analysers : IRGA. mass spectrometer
and cheminal analyser. The multiplexing increases the accuracy of the measurements and could

facilitate the spatlalization. Thus the whole structure anticipates the entire separation

between automation in space and control-co--rid on ground.

INTRODUCTION

All present studies of the CELSS project, whether they are concerned with waste recycling,

food production, photosynthesis system, and so on..., entail a mlniaua of functioning and

therefore an efficient system of measurement and control-command /I, 2/. If st the

present tlne one part of the munltoring procedures has been yet studied (being based on
the known industrial process : water recycling, Sosch and Sabatler reactor, and so on...)

/3, &, 5. 6, 7, 8/, another part, the control of atmosphere and of plant cultivation, are at

math less autoalzed /9/. For the last 15 years, at the CEN Cadarache, an automatic control

system has been used in research on plant gases exchanges : the' C23A (chsmbre de culture

aucomatique en atmosph&re artificielle /10/. In order to benefit from the moat recent

developments in electronics and automatization we restructured our system taking into

account, as far as possible, apace requirements /11/ : remote control, independent

functioning, multiplication of alarms and their control, multlplexing of analyzers,

rellabiUty, quality of measurements. /12/.

STRUCTURE AND FUNCTIONING

Figure I illustrates the architecture of the C23A system, as It stays now. It can be divided

into three independent levels : input and output, automatic functioning and supe rvislon.

, Irmut and OuCout (Level O)

It coaprlses all of the sensors (temperature, husldlty, llsht, pressure, weight, as well as

the different actuators (electrovalve, motor, control shutter, security devices). Hone of

these elements are "intelligent" but are linked directly to a higher level situated a short

distance away. This latter aspect enables us to avoid a part of the problem of interference.
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Automatic Functionin_ (Level 1)

It has the task of collecting the signals from the sensors and converting them to binary

language as well as to effectuate the different functions demanded by programming and

thereby to interreact with the process via level O. The progrmation of the automatic

controllers Is carried out by assembling macro-instructions which allow the most common

arithmetical and logical functions to be carried out. They can be carried out either on the

site (using a lateral keyboard) or at distance (with the help of level 2). At the present

time, the frequency of measurement taking is 100 ms minimum, and the time necessary for

collection, processing and resultant action is 200 as waximum. In addition, if one uses the

lateral link (network 1), absolutely any of the parameters picked up from the different

points of the network can be incorporated in calculations. We thus benefit from the
independence of each structure, from increased safety and the possibility of redundancy

without drawbacks (the necessity of gathering two identical parameters, overloading of

memories, and so on...). We shall see that this advantage exists also for level 2.

Suoervision (Level 2)

Linked to the lower level by the RS232 line and capable of being as far as 6 kilometers

away, this level is also divided into different sub-systems to form a network (network 2).
Nevertheless, for this level, each sub-system has a specific function : control-command,

data-processing, alarm centralization.

Control-Commend

It enables on-line remote control configuration of all second level automatic controllers or

regulators. All the parameters of level 1 devices {set-points. measurement, local memory.

calculation program) can be consulted and modified in real time. Control-command can also be

fscilited by the use of tendency graphs showing the collected data with respect to elapsed

time. The operator can thereby follow the evolution of the process in real time and react if

necessary.

To simplify keeping track of the experiments, which sometimes necessitate a large number of

parameters, a synthetic view can be obtained by means of animated synopses. Finally, it

should be pointed out that whilst all of the parameters of the second level can be commanded

from this sub-system, the access to any individual parameter can be linked to a password.

Historical Record and Storaee

This sub-system is charged with saving on a hard disk or floppy the data circulating on the

network. Data can have its origin in the different stations of the network, but also from

the different aub-aystemo of level 1. Records can be taken in three different ways :

unprocessed, averaged by minute or averaged by hour. In this way, and to avoid overloading

momory, it is possible to correlate the speed of variation of a parameter with its

frequency of storage.

Processina Station

This sub-system provides for the arithmetical and graphic processing of data collected in

real timo, but originating also from previously stored data. It is worth noting that the

particular structure of the files was chosen to enable the use of commercially available

software (Hultiplan, Lotus, and so on...).

_larl Station

It enables not only the centralization of all alarms, but also their processing. Indeed,

each alarm is characterized by its origin and its degree of intensity ; the operator can

thus react rapidly. It is also to be noted that the different alarms and their graduation

level are defined during configuration.

The choices we have made allow us to increase the degree of automatic functioning and the

reliability of our experiments. At the present time, for a single plant, we check 16 analog

and 24 digital parameters (light intensity, 02, CO2, N2, humidity, pressure, mineral
nutrition, transpiration, temperature) and this 24 hours a day without an operator and

sometimes for periods of 6 months /13, 14/.

It is obvious that somo of the technological choices made (speed of communication, type of

ne_ork, choice of components .... ) do not correspond to space requirements ; nevertheless

we have -mde an effort to guaranty a maximum of transfer toward other materials (software

using hiBh-level and structures languages).
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STRUCTURE OF MULTIPLEX ANALYZERS AND RESULTS

As we saw in the description of level 0, we use a great number of sensors ; however, this

sort of device is not capable of fulfilling all our analytical needs (isotope. biochemistry.

measurement precision). We were thus rapidly brought to use more powerful and more complex

instruments (mass spectrometer. IRGA. continuous flux. and so on...). These sorts of

analyzers, when used continuously and automatlcally, pose several problems. Being intended

for laboratory studies, they are exclusively designed with a view to taking ad hoc

measurements. We were obliged to assure the totality of their automatic functioning
ourselves.

Before carrying out this work, we similarly attempted to take Into account a part of the

space requirements : remote control, automatic calibration, temporal stability of

measurements. We resolved one part of the problem by multiplexing these analyzers. Each of

them belng controlled by an automatic controller. It controls a multl-channel introduction

system, (about 20), and each measurement channel is scanned at a specific frequency recorded

in the controller. After the introduction of the analysis sample, the automatic controllar

converts the analyzer's output slgnal which itself is dependent on the concentration co be

measured and carries out the various correction calculations : thermal drift, component

ageing, impurity accumulaCion. These calculatlons are carried out by comparison with

measurements of reference samples, one or two introduction channels being set aside for this

purpose. At the present time, the precision of our measurements in 02 is ± 0.2 • on the

21.6 • present in the atmosphere, in C02 _ 1 ppm on the 340 ppm present in the atmosphere,
and ION NH4+ _ 1.5 • on the full scale.

We encountered another important drawback with this system : the need for a minimum analysis

volume relatively large in comparison to that of the process being checked. Contrary to what

one may imagine, this defect is not simply due to the physical properties of the device, It

also concerns the structure of the introduction system. A system was therefore conceived

which •flows the introduction of a volume of only 0.5 ml ; this work has been patented.

Finally. it should be noted that in using automatic controllers to run our equipments, we

maintain • maximum degree of reliability, as well as the possibility of remote

control-coaland and the lateral and vertical coaeeunicatlon previously defined.

The quality of a measuring system can be Judged by Its precision, but the fundamental

parameter of a control-command system is precisely the accuracy of its control. At the

present time, for a container of 700 i, simulating photosynthesis of a 40 day wheat cover on

e surface of 0.5 m2. with a 14 hour photoperiod and an illumination of 2200 ue m2/s at • CO 2
concentration of 340 ppm, the standard deviation Is 3 ppm (fig. 2).
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Fig. 2. CO2 concentration in • growthcLmmber of 700 liters containing a culture of

wheat. The photosynthesis is about 880 ml of C02 by hour and the frequency of
measurements used to monitor is 15 by houz.
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The sudden stopping of thls photosynthesis simulation gives a maximum variation of around

20 ppm (fl s. 3) spread over a maximum of I0 minutes. It should be remembered chat these

results were obtained by carryin s out • m•ssurement of CO2 every three minutes only. This

shows clemrly that the reduction in the frequency of measurement due to the multiplexing of

the analyzer Is not a drawback if ones uses • hlgh performance regulator.
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Fig. 3. CO2 concentration in a growthchasber where we have simulated sudden vari•tlons

of photos]mthesls, The frequency of aeasurements used to monitor Is 20 by hour.

CONCLUSION

It's clemr that we need to carry out the autosatlzation by video control, robots (for plant

cutting, seed harvesting, and so on...) and maximize the funcclonal optlslzation by •n

expert eysteB /15/ (m study is in progress to insert an expert software on the network).
Nevertheless, the structure mnd the performances of the C23A have allowed to increase the

level of autoaatizstion (currently we control •round 250 parameters) and co tackle the

problems of telemetry : remote control, quality of measurements, ... By this way. the C23A

system could be a possible control system for several processes of CELSS.
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ABSTRACT

Iodine is used to disinfect potable water on United States spacecraft.

Iodinated potable water will likely be used to grow plants in space. Little

is known about the effects of iodine disinfection products on pIants. Seeds

of select higher plants were germinated in water iodinated using the Shuttle

Microbial Check Valve, and water to which measured amounts of iodide was

added. Percent germination was decreased in seeds of most species

germinated in iodinated water. Beans were most affected. Germination

rates, determined from germination half-times, were decreased for beans

germinated in iodinated water, and water to which iodide was added.

Development was retarded and rootiets were conspicuously absent in bean and

several other plant species germinated in iodinated water. Iodide alone did

not elicit these responses. Clearly iodine disinfection products can affect

higher plants. These effects must be carefully considered for plant

experimentation and cultivation in space, and in design and testing of

closed environmental life support systems.

INTRODUCTION

Iodine has been used to disinfect potable water on US spacecraft since

Apollo /i/. A Microbial Check Valve (MCV; Umpqua Reserch Company, Myrtle

Creek, OR, USA) is used to impart 2 parts per million (ppm = mg/l) of iodine

to potable water /2,3/. Crews of future missions (for example, US space

station) as presently conceived will reuse and recycle MCV-iodinated water.

Future crews and, as such, consumers, will undoubtedly include plants.

At these concentratie-s, iodine can cause measurable physiological changes

in human consumers at: may be toxic over long periods /4/. The effects of

iodinated water on plants are less well known. Plants are not known to have

an iodide-based hormone system as do humans and animals. Iodine and iodide

at# considered by some plant physiologists to be nontoxic and possibly even

_o_-essential to plants /5/. However, after critical review of the

literature, at least one group has concluded that the more iodine there is

available the more a plant will absorb, until toxic levels are ultimately

reached /6/. Aquaculture data further suggest that "...no [plant] species

_ithstands a concentration greater than 1 part of iodide in 1 million parts

_f solution. Indeed, at this strength the growth of peas and mustard is

retarded, and any higher concentration is definitely harmful. Only when the

concentration is reduced to I part of iodide in 5 or 10 million parts of

solution has any favourable stimulatory effect been observed /6/."

We examined germination numbers and rates of seeds sprouted in glass

_istilled (GDW), MCV-iodinated (I2W), sodium iodide (NaIW) and potassium

iodide (KIW) water.

METHODOLOGY

_II glassware was multiply rinsed with Class III GDW, and where appropriate

uultiply rerinsed with I2W prior to use. I2W was prepared by passing GDW
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through a newly-charged MCV, and was scanned from 210 to 750 nm with a

scanning visible UV spectrophotometer (Shimadzu, Kyoto, Japan) for specific

iodine disinfection products (IDP). I2W was stored in dark,

tetrafluoroethylene (TFE) sealed, glass bottles.

Percent Germination (% GERM) Experiment

Seeds of ten higher plant species important for plant physiological

experimentation, food or life support in space were obtained (Tabie I;

Northrup King Seed Company, Minneapolis, MN, USA). All seeds for a

particular species were from the same 1988 seed lot. Abnormal-appearing

seeds were discarded. Remaining seeds were equally distributed between two

250 ml Erlenmeyer flasks. Flask entrances were then covered with 0.5 mm

internal mesh, TFE screens (Spectrum Medical Company, Carson, CA, USA) and

secured with rubber bands. Seeds were soaked for 4 hours in either I2W or

GDW, drained, and rewetted with respective solutions for 10 minutes

approximately every 12 hours. Between rewettings, flasks were randomly

reassembled into a tight square and placed in a protected area in a large,

windowless, fluorescently-illuminated room. Upon first appearance of any

primary leaves, all seeds of that species were harvested and examined for

visible plant tissue (germination). % GERM's were calculated and analyzed

using a standard Chi-square statistic at 99% confidence.

Germination Half-time (GERM 1/2) Experiment

Using the above techniques, multiple serial dilutions of NaIW and KIW were

made up, scanned and solutions with an iodide concentration similar to 12W

identified.

Seeds of Gl_cine max, Zea mays and Triticum aestivum were inbibed in 12W,

NaIW, KIW and GDW, transferred onto TFE screens inside inverted petri plate

covers, covered with petri plate bottoms, and incubated in a plant growth

chamber for 5 days. Seeds were automatically photographed every 2 hours on

70 mm Kodak Tri-X film (Eastman Kodak Company, Rochester, NY, USA). Plates

were maintained at 24 degrees Centigrade inside the chamber using a

temperature-controlled, circulating water bath. The chamber was constantly

illuminated with fluorescent light at 20 micromols/square meter-second.

Photographs were analyzed using low power stereo dissecting microscopy using

a slide viewing box for illumination. Cumulative % GERMS were calculated,

plotted, and GERM i/2's were determined graphically and finally verified by

linear regression extrapolation.

RESULTS

12W was determined spectrophotometrically to contain at least iodine, iodide

and tri-iodide IDP species.

% GERMS were significantly lower in I2W compared to GDW exposed seeds for

all species taken together, and for GIycine max (soybean), Brassica oleracea

cv Italica (broccoli), and Phaseolus vul_aris---[pole bean) in order of

decreasing significance (Table i). Other seeds, except Ra_hanus sativus

(r_ddish), showed the same trend, but were not statistically significant.

Cl_arly, beans were most affected.

On further examination, several other differences were noted. Soybeans,

pole beans and broccoli exposed to I2W germinated faster than GDW controls,

while Zea mays (corn), and Brassica oleracea cv capitata (cabbage)

germinated slower and were shorter than GDW controls. Soybeans, pole beans

and corn exposed to I2W appeared, however, to be less developmentally

mature, and to have strikingly fewer rootlets than GDW controls.

GERM i/2's from the second experiment are summarized in Table 2. The GERM

1/2 for I2W-exposed soybeans was about half that for GDW-exposed controls.

GERM i/2's for NaIW and KIW exposed soybeans were intermediate between I2W

and GDW exposed seeds. Similar differences were not observed for corn or

Triticum aestivum cv yecora rojo (wheat). In this experiment, corn cultures

were serendipitously retained to primary leaf formation. As noted in the

first experiment, I2W-exposed corn seedlings appeared to be less

_evelopmentally mature and to have fewer rootlets than NaIW, KIW or GDW

exposed seeds.
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TABLE 1 Percent Germination (% GERM) of Select Seeds

Sprouted in Iodinated (I2W)* and Uniodinated (GDW) Water

% Germ Statistic

Species/Cultivar I2W GDW Chi-sq

Gl_cine ma____x
3rassica oleracea cv italica

Phaseolus vul_aris

ze___asays
B. oleracea cv botrytis

Daucus carota

B. oleracea cv capitata

3. campestris cv rapisera

Lactuca sativa

Raphanus sativus

All species

78 (41/52) 100 (52/52) 10"*

15 (15/100) 32 (32/100) 8.0**

89 (86/96) 99 (95/96) 7.8**

95 (40/42) 100 (42/42) 2.1

84 (22/26) 96 (25/26) 2.0

82 (82/100) 87 (87/100) 1.0

81 (81/100) 85 (85/100) 0.6
95 (95/100) 97 (97/100) 0.5

87 (87/100) 88 (88/100) 0.1

99 (99/100) 96 (96/100) 1.9

79 (648/816) 85 (699/816) II**

* GDW passed through Shuttle Microbial Check Valve

** Significant at 99% confidence (p < .01, Chi-sq > 6.63, df = i)

TABLE 2 Germination Half-times (GERM 1/2) for select

Seeds Sprouted in Iodinated (I2W)*, Iodated (NaIW and

KIW)** and Uniodinated (GDW) Water

Species/Cultivar

GERM 1/2 (hours) Statistic

I2W NaIW KIW GDW Z (one-tail)

G. max*** 58 @ 8 71 @ 7 72 @ ii 78 @ 8 -3.5 (p<0.01)

Z. mays 26 27 25 26 n/a

T. aestivum cv yecora rojo 16 18 16 18 n/a

* GDW passed through Shuttle Microbial Check Valve

** 5 ppm iodide as sodium iodide or potassium iodide in GDW

*** N=4, @ = plus or minus one standard deviation

DISCUSSION

Higher plants are affected by IDP's. Of plants examined, soybeans, pole

beans and corn were most affected. Not all affected species appeared to be

affected the same way.

IDP's specifically affected seed germination, growth and development. Some

but not all of these effects are attributable to iodide. However, the

presence of iodine, iodide, tri-iodide and probably other IDP's in

MCV-iodinated water complicates any attempt to ascribe observed differences

to specific IDP's other than iodide. IDP's are unique water "contaminants"

in that they are purposefully added to disinfect potable water. Further

elaboration regarding their effects and toxicity is clearly warranted.

Both bean germination experiments produced an acrid, formaldehyde-like odor.

It is possible that substance(s) associated with this odor could have been

responsible for differences in % GERM and GERM 1/2 noted, if, for example,

they were metabolic inhibitors and were produced in quantities proportional

to germination rates.

Soybean germination is influenced by a number of environmental cofactors.

Several merit special discussion.
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Relatively pure, corrosive GDW could have caused seed or seed coat damage in

zontrols. In the former case, differences in GERM I/2's would be less

significant. In the later case, if cell hydration were augmented,

differences could be more significant.

Any bacteria present which participate in germination may have been effected

by iodine disinfection products. Pure glass distilled water, iodine, and

possibly some iodine disinfection products might decrease bacterial types or

aumbers, while iodide, triiodide and possibly some other iodine disinfection

products might support or increase bacterial types or numbers. Effects, if

any, on GERM % or GERM 1/2 are difficult to predict.

Humidity and aeration, while the same for experimental and control seeds,

probably varied during the course of the experiments. Seeds at different

developmental levels due to different germination rates could react

differently to variations in humidity or oxygen, causing exaggerated

results.

In neither experiment was the effect of I2W on mature plants, their progeny,

or consumers of such plants examined.
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ABSTRACT

Using conventional means of process development, it would take decades and hundreds of millions

_f dollars to develop technology for recycling of water and solid waste for lunar missions

_thin the next thirty years. Since we anticipate neither that amount of time nor level of

funding, new methodologies for developing life support systems (LSS) technologies are essential.

Computerized modeling and simulation (CMAS) is a tool that can greatly reduce both the time

and cost of technology development. By CMAS, we refer to computer methods for correlating,

storing and retrieving property data for chemical species and for solving the phenomenological

equations of physical/chemical processes (i.e., process conditions based on properties of

materials and mass and energy balances, equipment sizing based on rate processes and the

governing equations for unit operations). In particular, GMAS systems can be used to evaluate

a LSS process design with minimal requirements for laboratory experimentation. A CMAS model

using ASPEN PLUS is presented for a vapor compression distillation (VCD) system designed for

reclaiming water from urine.

INTRODUCTION

Physical/chemical systems are expected to play a major role in reducing the resources required

to sustain humans in long duration missions. In some quarters, life support technology is

viewed as "pacing" technology for advanced manned missions. Such conclusions are based, in

part, on acknowledgment that once-through usage of materials represents a prohibitive launch

weight and an unacceptable resupply burden and, in part, on the lack of fully developed

subsystems to accomplish such tasks.

Life support technology development was actively pursued by NASA during the 1960's and early

1970's. Some of those technologies are shown in Figure i in a conceptual design of a life

support system for a Lunar base. Each of the boxes describes a life support function, under

which are listed the technologies in development by NASA. During the 1970's, the emphasis was

on air revitalization. Those subsystems are now fairly well developed. However, we can see

from Table 1 that air consumption involves far less resources than water. From the mid 70's

to, mid 80's, funding for LSS technology development was cut to very low levels. Thus, we find

ourselves today with an urgent need to develop, perfect and demonstrate new LSS technology for

Space Station and beyond.

In the past, the development of LSS technology had been a drawn out and costly process. For

example, the type of air revitalization System anticipated to be used on Space Station was

developed over a period of I0 to 15 years and at a cost in the range of $20 to 30 million. At

that rate, it would take decades and hundreds of millions of dollars to develop technology for

recycling of water and solid waste for lunar missions. Since we anticipate neither that amount

of time nor level of funding, we must find quicker and less costly ways of developing LSS

technologies.

LSS TECHNOLOGY DEVELOPMENT

The goal of LSS technology development is to devise processes to meet LSS functional requirements

in a cost- and resource-effective manner, and with sufficient reliability and safety so as not

to endanger the crew or compromise the objectives of the mission. In general, the functional

requirements for long duration manned missions are more stringent than present practices on

earth. The degree of recovery of air and water on a Lunar base will be far more demanding than

that required for Space Station. Waste treatment for missions that include food production by
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Fig. 1. A fifo support system for a lunar base scenario.

TABLE 1. LSS Resource Requirements

Inouts (k_/oerson_

Domestic Water

Clothes wash

Shower

Hand wash

Atmospheric leakage

Drinking water

Metabolic oxygen

Food preparation water

Dry food solids

Urinal flush water

Totals

12.5

3.6

1.8

2.38 840

1.8 660

0.9 330

0.7 260

0.6 220

O.5 180
24.7 3,140

* represents 90% recycle.

plant growth will require oxidation systems

that "burn" far more effectively than earth-

based refuse incinerators and far more ef-

ficiently than hazardous waste incinerators.

The subsystems which will be flown on future

manned missions will probably not follow from

existing terrestrial technology, but will

have to be developed with specific space

applications in mind.

In general, LSS requirements are mission-

specific (e.g., oxygen recovery from carbon

dioxide is less problematic if food is

regenerated by plant growth). The trade-oils

of resupply versus regeneration of LSS mate-

rials are somewhat sensitive to the mission

scenario (e.g., the type of power generators

affect the power penalty which, in turn, may

impact each of the options differently).

Thus, the selection of LSS subsystems for a

given mission usually occurs during the

mission definition phase. At that point in

time, planners are usually very hesitant to select processes that are not fully developed. Their

focus is primarily systems integration and their job is made considerably harder if they choose

to consider technologies still under development.

Thus, we have the Catch-22 of LSS technologies. There is usually little funding available to

do development work for potential missions, yet there is not enough time to develop technology

for a defined mission. Hence, we must develop less costly methods of LSS technology development

so that we can build capabilities prior to the definition of missions.

DEVELOPING LSS PROCESSES

Process development of physlcal/chemlcsl systems has traditionally been an art rather than a dis-

cipline. There are few books written on the subject and practically no formal trainin 8 offered

on It at the universities. Given that process development is usually a costly and tlmo-consumlng

activity, the challenge is to devise new processes as quickly and as cheaply as possible.
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activity, the challenge is to devise new processes as quickly and as cheaply as possible.

The tools available to the process cleveloper are theory, empiricism, and reasoning (uslla[]y b/

analogy). The theory is embodied ,n equations governing (i) the properties (thermodynamic,

kinetic and transport properties) of materials and (ii) the mass and energy balances for the

unit operations. Experimentation is used to characterize those phenomena which are not

adequately defined by theory or which cannot be estimated accurately by using analogies.

The conventional wisdom is that experimentation is far more expensive than calculations. Today,

where algorithms are available for computer calculations of many phenomena, there is no question

that computation should supercede experimentation wherever possible.

There are three levels of experimentation: laboratory scale, preprototypes and integrated

testbeds. By laboratory scale we mean relatively simple experiments which are devised to

evaluate parameters which cannot be estimated accurately by calculation (e.g., a bench scale

reactor to obtain kinetic data). A preprototype is usually an entire system built to demonstrate

the process as a functional unit in a real environment (e.g., a washwater recovery unit at a

realistic scale using real wastes). It should include process control hardware and software so

that safety and reliability issues are adequately addressed at the preprototype stage. Testbeds

are integrated subsystems which are used to demonstrate the adequacies of interfaces in chambers

which simulate the isolation of a space environment.

Preprototypes are usually very costly to design, build and test. Prior to entering this phase,

the entire process should be evaluated as rigorously and as stringently as possible. For LSS

applications, sufficient calculations and laboratory experiments should have been performed so

that trade-off analyses can be made vis-a-vis alternatives.

In the past, a number of processes have reached the preprototype stage and subsequently have

been found not to be appropriate to the LSS requirement. Whereas 15 years ago, the lack of

available theory and computational capacity may have dictated more costly experimentation, it

is possible today to prove technical feasibility and appropriateness of candidate p_ocesses to

LSS requirements prior to building preprototypes and conducting costly experimental programs.

COMPUTERIZED MODELING AND SIMULATION

Computerized modeling and simulation (CMAS) is a tool that can greatly reduce both the time and

cost of technology development. By CHAS, we refer to computerized methods for solving the

phenomenological equations of physical/chemical processes (i.e., process cot tions based on

properties of materials and mass and energy balances, equipment sizing based rate processes

and the governing equations for unit operations). Over the past ten years, several such

computerized packages have become sophisticated enough to be used to design and simulate highly

complex and integrated chemical and petrochemical facilities. The one we illustrate herein is

ASPEN PLUS, offered commercially by Aspen Technologies, Inc. (Cambridge, Massachusetts, USA).

CHAS systems, in general, operate as follows:

I. The inputs required are a flowsheet, compositions of inlet streams and stoichiometries of

chemical reactions.

2. The user selects physical property correlations to describe the different streams, appropriate

models for each of the unit operations, and design specifications and constraints.

3. The CMAS system internally calculates mass and energy balances, including self-consistent

compositions and conditions of all streams.

4. The system outputs reports, in user-speclfied formats, which can include compositions and

conditions of all streams as well as heat and power requirements of each device and unit

operation.

Some of the major advances provided by CMAS systems in the past ten years are:

I. Highly sophisticated and complex correlations for physical properties of non-ideal gases,

liquids, supercritical fluids, multicomponent mixtures, and aqueous solutions including

concentrated electrolytes.

2. Highly efficient convergence methods to solve for multicomponent phase equilibria and

simultaneous chemical equilibria of multiple reactions, even in processes with multiple

recycle streams.

3. Increased speed and memory, along with reduced cost of a new generation of computers,

increasing the market for CMAS systems.

The result is a powerful tool for developing LSS technology. In particular, CMAS systems can

be used to evaluate a process design with minimal requirements for laboratory experimentation.

Specifically, we foresee the application of CMAS in the following typical steps in process

development leading up to the preprototype stage.

I. Evaluate proposed processes to determine if they warrant development. Use best case
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assumptions and determine resource requirements. Are they prohibitive?

2. Propose and evaluate alternative process designs. Can reconfigurlng of process steps lead

to significant reductions in resource requirements?

3. Identify critical assumptions. Through sensitivity analysis, determine which steps in the

..rocess are the key to meeting performance goals.

4. _evelop lab scale experimental design. Devise relatively simple experiments to demonstrate

technical feasibility of key steps and to verify critical assumptions for meeting performance

goals.

5. Define stable operating conditions. Develop the supervisory control logic. Define the fault

tree, devise off-spec conditions, and develop responses to alarms,

6. Reevaluate potential performance and resource requirements based on laboratory results.

Conduct trade-off analyses and compare to existing alternatives for meeting LSS requirements.

AN EXAMPLE: ASPEN MODEL OF A VAPOR COMPRESSION DISTILLATION (VCD) SYSTEM

VCD is considered to be a mature process for water recovery from urine, flush water and wash

water concentrate. It has been '_nder development for aerospace applications for about 25 years

and is considered to be a prime ,ndidate for deployment on the Space Station. The only existing

computational model of a VCD system is the G189 thermal model to calculate the heat rejection

rate /1,2,3,4,5,6/.

process Description

Figure 2 is a schematic of the type of VCD system developed by NASA /6/. Urine and flushwater

are collected and stored, usually with addition of pretreatment chemicals to reduce the carryover

of ammonia. When the Storage Tank reaches a high level mark, the VCD system is activated in a

batch mode. The pressure in the VCD recycle loop is reduced by opening the purge (to vacuum)

valve. When the Evaporator Cylinder pressure falls to the vapor pressure of the waste at ambient

temperature, the purge valve is closed. The pumps and compressor are then turned on to begin

the batch. The Vapor Compressor draws vapors out of the Evaporator Cylinder, reducing that

pressure and creating the driving force for vaporizing water (and volatiles) from the waste.

The vapor stream leaves the Vapor Compressor at an elevated pressure. Provided that this

pressure is higher than the dew point pressure of the vapor at the temperature of the Condenser

Cylinder, condensate will form. The condensing surface is the outer wall of the Evaporator

Cylinder. Therefor=, the heat of condensation provides the heat of evaporation.

The condensate is withdrawn through the product pump and passed through a Polishing Column for

posttreatment. The Ion Conductivity Monitor is a failure mode detector that activates the

Diverter Valve if the condensate conductivity exceeds a set point.

As water is evaporated, the waste becomes more concentrated. Eventually, the solution reaches

a saturated condition with respect to some solute and solid precipitate begins to form in the

Evaporator Cylinder. In order to remove the solid and prevent clogging, the Recycle Pump

provides a waste flowrate through the Evaporator Cylinder that is large relative to the

evaporation rate. Thus, the recycle stream flushes the solids out of the Evaporator Cylinder

and carries them to the Waste Recycle Tank, where they accumulate. As the level in the Waste

Recycle Tank decreases, more feed is transferred from the Waste Storage Tank. The process

continues until the level in the Storage Tank drops below a preset value.

The process is terminated and the Waste Recycle Tank is emptied (or replaced with an empty one)

when the Ion Conductivity Monitor exceeds the high limit set point or the product water flow

rate drops below a minimum production rate.

Th_ fall in production rate results from the following phenomenon. As a cycle proceeds, the

solute concentration in the recycle waste continues to increase with consequential decrease of

the vapor pressure in the Evaporator Cylinder. (There is no external heating applied to

Condenser/Evaporator Cycllnder. This "passive" control means that the cylinders always operate

near ambient temperature,) The Vapor Compressor, which operates at a constant rotational eed,

provides a constant compression ratio. Thus, the outlet pressure of the compressor de_. ases

as the solute concentration increases, and the production rate falls, At some point in the

cycle, the outlet pressure of the compressor will drop below the dew point pressure at the

condenser temperature and the unit will cease to produce condensate.

The first step in developing a model is to translate the process flowsheet into a model block

diagram. Figure 3 is an ASPEN PLUS block diagram corresponding to the floweheet of Figure 2.

Each of the boxes represents one or more unit operations in the actual process. The lines

between boxes represent material streams. The dotted lines represent heat and work interactions

(which are called heat and work 'streams'). The labels in the boxes correspond to block

identification names supplied by the user and ASPEN PLUS unit operation types in parentheses.

The stream labels are names provided by the user.
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The simulation of Figure 3 involves six types of unit operations: separators, mixers, heaters,

flashers, pumps, and compressors. Examples of each are shown in Figure 4, along with the

allowed inputs and outputs. In this example, the separator block is used to simply split a

multiphase stream into separate phases. Mixers combine two or more streams. A mixer block

performs material and energy balances. It also performs an adiabatic flash calculation on the

exit stream so that if multiple phases are present, they will be at thermodynamic equilibrium.

Heater blocks allow input of heat streams, while flash blocks provide for separate outlet streams

for vapor, liquid and solid phases. Pumps and compressor blocks perform polyisentropic

calculations for noncompressible and compressible fluids, respectively.

After generating the ASPEN PLUS block diagram, the chemical composition of the feed and physical

property models need to be specified. Urine is a complex mixture of inorganic and organic

compounds, as shown in Table 2 /7/. For the purpose of simulating the operation of the VCD

unit. the physical properties of importance are aqueous phase solubilities and activity

coefficients, and vapor pressures above the aqueous solution for water and solutes. To

illustrate the methodology, we shall simplify urine composition to a five component mixture:

water, sodium chloride, potassium chloride, urea and creatinine. The four solutes represent

roughly 66% of the total dissolved solids typically found in urine.

The ASPEN PLUS input file for the VCD process, as described and simplified above, is shown in

Table 3. The first statement is the user-defined title. [The semicolon denotes comments which

are ignored by the ASPEN PLUS compiler.] Statements 2 to 4 concern default overrides for units,

run time control and reports. Statements 5 to 7 define the components in terms of a user-defined

name and the ASPEN PLUS database name (for those components that are present in one or more of

the databases). The 'S' after component names (e.g., NACLS) indicates a solid phase. As defined

in statement 8, this simulation will access the ASPEN PLUS Aqueous and Solids databases, in

addition to the ASPEN PLUS pure component database (by default). For components that are not

yet incorporated in one of the databases, additional property data are required. For this case,

we have entered molecular weight for creatinine and urea in statements 9 to 14. Vapor pressures

would have been entered here if they were known.

Statement 15 defines the default property models to be used in the simulation. SYSOPISH is used

for aqueous mixtures with electr :vte and molecular solutes, as we have here. The CHEMISTRY-UREA

declaration in statement 15 re_=rs to the chemical reaction stoichiometries and equilibrium

constants given in statements 16 to 26.

Statements 27 to 36 define the connectivity of blocks by input and output streams. These

statements provide the simulator with the type of information shown in Figure 3. Statements

38 to 40 define the feed stream condition, while Statements 41 to 60 define each of the unit

operation blocks (type of unit operation and values of independent variables, as defined in

Figure 4).

Statements 61 to 67 define a Design Specification, which was given the user-deflned name of

HETBAL. As shown in Figure 3, this design specification relates the heat of evaporation and

the heat of condensation. Alternatively, one could incorporate here a block of user-written

Fortran code to describe the rate of heat transfer to and from the Evaporator and Condenser

Cylinders.

Statements 68 to 71 and 72 to 73 are convergence statements used to define the method of solution

of iterative processes such as the trial-and-error solution of the HETBAL design specification.

Of special interest here is the convergence block named CVI, statements 68 to 71. This

convergence statement was devised to simulate the batch process by which VCD occurs. The TEAR

FEED statement indicates that the stream FEED is to be the tear stream in solving for the

conditions around the recycle loop (see Figure 2). The term DIRECT in statement 68 indicates

that we want the iteration to proceed by direct substitution. In other words, the calculation

begins by assuming the initial estimates of mass flow rates for stream FEED are correct as given

in statements 38 to 40, and proceeds to calculate subsequent stream conditions around the

recycle loop until it gets back to stream FEED through block FILTER. (The SEQUENCE statements

of 127 to 129 give the user-defined order of calculations so that the ASPEN PLUS-generated

default sequence is overridden.) If the final and initial compositions of stream FEED are not

equal (within the default tolerance), then the new values of FEED are substituted directly for

the old ones, and the next iteration begins. Because we have specified that a fraction of the

stream entering block BOILER is to be vaporized every time this block is executed, we insure

that the convergence block CVI is never satisfied. Thus, the feed stream becomes more and more

concentrated every time the calculation proceeds around the loop.

Statements 75 to 126 are Fortran statements for writing out the intermediate stage values for

steps during the iterations. It is in this manner that we obtain the conditions during the

batch.
t

For the simplified, five component mixture we used in Table 3, the results obtained by our
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TABLE Z An Analog ReF:esentin% the Composlt±on of Typical Human Urine {Putrid. 19_0)

FORMULA AMOUNT

CHEMICAL SPECIES FORMULA WEIGHT (mg/1)

INORGANIC SALTS [_-_-,-L_[

Scdlum Chloride NaCI 56.4 8.001

Potassium Chloride KCI 745 1.541

Potassitun Sulfate K,SO. 1743 2.632

Ma&neslum Sulfate M_SO. 120 & 783

Ma&nesium Carbonate MgCO, 84.3 143

Potasslu/a Bicarbonate KHCO, I001 6Bl

Potassium Phosphate K_PO. 2123 234

Calcium Phosphate Ca.(PO.), 3102 62

UR_ H,NCONH, 60.1 13 400

O_6_IC COHPOUNDS 5 369

Creatinlne C.H N_O 113.1 1.504

Uropepsin (as Tyroslne) HO.C,H,.C,H,(NH,).CC_ 181.2 381

Creatzne HN:C[NH,)N(CH,).CH,.CO_H.H_) 149.2 373

Glycine NH,.CH, CO,R 75 1 315

Phenol C.H OH 94 I 292

Histid_ne C.H.tJCH_H.(NH.)CCH 155.2 233

Androsterone C,H.O: 290.5 174

l-Hethylhlstidlne C,H,N_CH_CH(NH.CH,).COOH 169.2 173

Imidazole C.H.N, 68.1 143

Glucose C,H O,(COC_,), 390.4 155

Taurlne NH,.CH,.CH,.SO,H 1252 138

Cystlne [HOC.CH(NH_)CH,S]. 2403 96

C_trulllne NH,CONH(CH,)_CH.(NH.).CO,H 175.2 88

H:NCH,
Aminoisobutyri¢ acld >CH.COOH 1031 84

CH,

Th_eonine C.H.G,N i19,I 83

Lysine {NR,) _,H,.CO,H 146.2 73

Incloxysulfuric acid C,H ON.H,SO. 231.2 77

m-BydroxMhippur ic acid C.H.COHC (CONH. CH_OOH ) 195.2 70

Inosltol C,H ,_ 180.2 70

Urobilin C,,H._O,N. 588.7 63

Tyrosine HO. C,H.. C_, (NM,) .CO,H 181.2 54

Asparag Ino HO_ CH (NH,). CH,. CONH, 132.1 53

Organics >50 mB/l 606

CRGANIC AMMONIUM SALTS

Ammonium:

Hippur ate NH,C,H,CO. NHCH,. CO. 196.2 1.250

C_trate (NR,),HC,H,O, 226.2 756

Glucu=onate NH.C,B.O. 211.1 663

Urate NH,C_H_J_. 185.1 518

Lactate (NH.) ,C_H_O_ 127. i 394

L-Glutamato NH.HO_. CHNH,. (CH,) ,.CO, 164.1 246

Aspazats NH.C.H,OJ_ 150. I 135

Formate NH.HCO_ 63.1 88

Pyruvat • NH.CH_. CO. CO, 88. I &4

C_xa Ia te (NH,),C,O, 124.0 37

Total Solutes 37,057

'pseudo-steady-state' approach are shown in Figs. 5 and 6. The vapor pressure in the Evaporator

Cylinder is shown in Figure 5 as a function of water recovery. We note that the vapor pressure

falls very slowly until about 80% water recovery. At 90% water recover, the vapor pressure has

dropped to 10% below the initial value, while at 98%, it has dropped to 67% of the initial value.

Figure 6 is a blowup of the 90 to 100% water recovery region. Also shown are the salt

precipitation curves for the four solutes. We note that these solutes begin precipitating out

at 97% water recovery. [Although the four solutes chosen represent the species of highest

concentration, they are not necessarily the first to precipitate out.]

The final step in the CMAS process is model validation. Given results such as those of Figure

6, a relatively few, quite simple batch distillation experiments would provide sufficient data

for either validating the model or providing additional data to derive activity coefficient

correlations for the molecular solutes in concentrated solutions. (ASPEN PLUS already has an

excellent correlation for salt activity coefficients in dilute to concentrated solutions.)

Given a validated model, the process development could proceed in a rapid and very efficient

fashion. For example, the compression ratio of vapor compression impacts the power required:

124 '_ -_ _ (_[alI_'i



TABLE 3. ASPEN PLUS INPUT FILE FOR THE VCD SIMULATION.

1 TITLE ' SIMULATION OF A VCD UNIT WITH PSEUDO-SS APPROACH'

2 IN-UNITS ENG

3 RUN CONTROL MAX-TIME=500

_. STREAM-REPORT MASSFLOW HOZERCFLOW

MODEL THE FEED AS A MIXTURE OF H20, NACL. KCL, UREA, AND

CREATININE_ NACL AND KCL DISSOCIATE TO NA+, KCL+ AND CL

5 CO_,PCNENTS H20 H20/NACL NACL'NACLS NACL 'KCL KCL KCLS KCL/

5 NA* NA* CL- CL'/K+ K+'UREAS M_A L'REA MEA/

7 --REATS MEA CREAT _EA

DATADA_[S ASCESSED FOR i fRE CCMPgII!NT FRCPERTIES

8 DATABA_<S AQUEOUS SDLIDS

PROVIDE DATA FOR CC_PONENTS NOT IN ASPEN DATABANKS

9 PROP DATA

i0 PROP-LIST _4

ii PVAL CREAT 113.1

12 PVAL CREATS i13.1

13 PVAL UREA 50 1

14 PVAL UREAS 60 1

: ELECTROLYTE NRTL ACTIVITY COEFFITIENT MODEL USED FOR

• SOLVENT-SOLUTE INTERACTIONS IN THE AQUEOUS PHASE

15 PROPERTIES SYSCPI5M CH_4ISTR'f=L_REA

SPECIFY CC_PLETE DISSOCIATION DF NACL AND KCL;

ALSO, SPECIFY SALT DISSOLUTICN RELATIONSHIPS AND

SOLUBILITY PRODUCT CONSTANTS

15 CHIRMISTRY UREA

17 DISS NACL NA+ I / CL I

I8 DISS KCL K+ i / CL- I

19 SALT NACLS NA+ I / CL- i

20 SALT KCLS K+ 1 / CL- I

21 SALT CREATS CREAT I

•22. SALT UREAS UREA i

23 K-SALT KCLS 2 159 -i165.

2_ K-SALT NACLS 3.584 52_ 0

25 K-SALT CREATS - & 2928

28. K-SALT UREAS -1.3359

SPECIFY PRCCESS FLOWSHEET

27 FLOWSHEET

28 BLOCK BOILER IN=FEE_ UUT=VAPI LIQI QBOIL

28 BLOCK D£1MI ST IN=VAPI OUT=VAP2 MIST

30 BLOCK LIQMIX IN=LIQI MIST OUT=REOYCI

31 BLOCK VAPC_MP IN=VAP2 WCCOMP OUT=VAP3

32 BLOCK CONDENS IN:VAP3 OUT=PURGEGAS LIQ2 QCOND

33 BLOCK CONDPUMP IN=LIQ2 WCpUMp OUT=LIO3

34 BLOCK REOYpUMp IN=RECYCI WRPUMP OUT:RECYC2

35, BLOCK VALVE IN=RECYC2 OUT=SLURRY

36 BLOCK FILTER IN=SLLq%RY OUT_PPT FEED

; SPECIFY INITIAL FEED STREAM CONDITIONS

38. STREAM FEED TI_4P=II5 VFRAC=O

39, MASS-FLOW H20 1000[GM/SEC]/NACL 8 0|GM/SEC]/

40. KCL 1 64[C,M/SEO]/UREA 13,_[GM/SEC]/CREAT 1 50[GM/SEC]

: SPECIFY HEAT AND WORK STREAMS

41. DEF-STREAMS HEAT QBOIL QCOND

42. DEF-STREAMS WORK WVCOMF WCPUMP WRPUMP

SPECIFY CONDITIONS FOR EACH UNIT OPERATION BLOCK

_3. BLOCK BOILER FLASH2

_4, PA_ TEMP=II5 VFRAC=.OO5 ENTRN: 0Ol

_5. BLOCK DEMIST FLASB2

45 PARAM PRES=0 DUTY=O

47. BLOCK LIQMIX MIXER

48. BLOCK VAPCOMF COMFR

_,9. PARAM TYPE:POLYTRUPIO PRATIO:2

50. BLOCK CONDENS FLASH2

51. PARAM TE24P=I25 VFRAC=O;

52. BLOCK RECYPUMP PUMP

53. PARA/g PRATIC_I. 25

54. BLOCK CONDPUMP POMP

55. PARAM PRATIO'I.25

55. BLOCK VALVE HEATER

57. PAOJ%M TEMP=I!5 VFRAO=O

58. BLOCK FILTER SEP2

59 FRAC STREAM'PPT COMPS:NACLS KCLS UREAS CREATS &

60. FRACS= I i i 1

61. FLASH-SPECS FEED KODE'O

62. FLASH-SPECS PPT KODE=0

125

; DESIGN-SPED TO MATCH DUTY OF BOILER TO CONDENS BLOCK

63 DESIGN SPEC HETBAL

6_ DEFINE QCOND BLOCK-VAR BLOCK=CONDENS SENTENCE=PARAM &

VAR IABLE=QCALC

65 DEFINE QBOIL BLOCK-VAR BLOCK=BOILER SENTENCE=FARAM &

VARI ABLE=QCALC

68 SPED 'DABS(QBOIL/( 95D0*QCOND) ) ' TO ID0

67 TOL SPEC ID-_

68 VARY BLOCK-VAR BLCCK-BOILER _ENTENCE_PAKAM &

VARIABLE=VFKAC

69 LIt4:TS 901 900

USE _IRECT SUBSTITUTION FOR RECYCLE SO THAT NEW BATCH

CCMPCSIT[ON 12 NOT CHANGED BY STEADY-STATE

i CON_ERGENCE METHOD

70. CONVERGENCE CVI DIRECT

71 TEAR FEED

72. PA_ MAXIT=100

DEFINE A CONVERGENCE BLOCK FOR THE DESIGN-SPECIFICATION

CONVERGENCE CV2 SECANT

SPEC HETBAL

DEFINE A FORTRAN BLOCK TO WRITE THE LIQUID AND VAPOR

STREAM VECTORS AT EACH 'TIME INCRI_gENT' TO A

SEPARATE FILE <FILE 55}

75 FORTRAN RESUL

_'6 F REAL*8 LIQH20, LIQNAC. LIQKCL, LIQURE, LIOCRE

77 F DIMENSION IPROG(2 )

78 P DATA INCR / O /

78 F DATA SUMH20, SUMAC, SUMURE, SUMCRE. SU_CL 15*ODO/

80 F DATA IPROG / 'ZZFO', 'RT ' /

81, DEFINE VAPH20 MASS-FLOW STREAM=VAP3 COMPONERT:H20

82, DEFINE LIQH20 MASS-FLOW STR£AM=LIQI COMPONENT=H20

83 DEFINE LIQNAC MASS-FLOW STREAM-LIQI CCMPONENT=NACLS

84 DEFINE LIQKCL MASS-FLOW STREAM=LIQI COMPONENT=KCLS

85 DEFINE LIQURE MASS-FLOW STREAM=LIQ1 COMPONERT=UREAS

8B, DEFINE LIOCRE MASS-FLOW STREAM=LIQI COMPONENT=CREATS

87 DEFINE PRESI STREAM-VAR STREAM-LIQI VARIABLE=PRESSURE

88, DEFINE PRES2 STREAM-VAR STREAM=VAP3 VARIABLE-PRESSURE

89. DEFINE PRES3 STREAM-VAR STR/_LIQ2 VARIABLE=PRESSURE

90 F INCR. = INCR + 1

91. F SUMH20 - SU_20 + VAPH20

92. F SUMAC = SUMAC + LIQNAC

93. F SUMKCL = SL_CL + LIQKCL

94 F SUMURE - SLM/RE + LIQURE

95. F SUMCRE : SUMCRE + LIOCRE

96. F REOH20 = SOMH20 / (IO00D0/454D0*36OODO) * ID2

97 F RECNAC = SUMAC / ( 8D0/454D0_36O0D0) * ID2

98. F RECKCL = SU_CL / (I 64D0/454DO*3BOOD0) * ID2

99 F RECURE = SUMU_E / (13.4D0/45_D0*36O0DD) * ID2

10g. F RECCRE = SUMCRE / (I.50DO/454D0*3600D0) * ID2

I01, F WRITE(55. 8) INCR

i02 F WRITE(55, 9) PRESI, PRES2, PRES3

103 F WRITE(55,10) VAPH20, SU_20, RECH20,

104 F & LIQNAC, SUMAC. REONAC,

105. F & LIQKCL, SU_CL. RECKCL,

I05. F & LIQURE. SUMURE, RECURE,

107. F & LIQCRE, SUMCRE. RECCRE

i08. F IF ( PRES2 .LT FRES3 THEN

109 F WRITE(55,12)

llO, F WRITE(NHSTRY, 12)

III F CALL QUIT

i12 F ENDIF

113. F 8 FORMAT(/2X,'INCREMENT ', 14 )

114 F 9 FORMAT( 2X,' PRESSURES (PSIA): BOILER = '.

515 F & FI0.3/ 2X,' COMPRESSOR

116. F & El0.3/ 2X,' CONDENSER = ',F10.3)

I17. F I0 FORMAT (2X,' INCRI_4ENTAL TOTAL

I18, F &RECOVERY'2K. ' (LB/_] (LB/HR)

119. F & (WT %)'/ 2X,' H20 VAPOR ', FIO.3, _X, FI0.3,

120 F & 2X,FIO 3/ 2X,' NACL SOLID PPT ', FIO.3. 4X, F10.3,

121 F & 2X.FIO,3/ 2X.' KCL SOLID PPT ', F10.3. 4X. FIB.3,

122. F & 2X.FIO.3/ 2X,' UREA SOLID PPT ', FIO.3. 4X. F10.3,

123 F & 2X,FI0.3/ ZX," CREATININE PPT '. FI0.3, 4X. FI0.3.

2X, F1O 3)

124, F 12 FORMAT (/2X,'CALCULATIONS STOPPED. REASON:

COMPRESSOR OUTLET'

125. F &/ 2X, "PRESSURE DROPPED BELOW CONDENSER PRESSURE. '/

128. F & 2X, '"CONDFUMP" NOT EXECUTED. ' )

: SPECIFY THE CC_4PUTATIONAL SEQUENCE

127. SEOUKNOE TOT CVl CV2 BOILER D_4IST VAPCOMP CONDERS

128. (RETURN CV2) & LIQMIX RECYPUMP VALVE FILTER RESUL

129. (RETURN CVI) & CONDPt_
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a high compression ratio results in wasted power during the early part of the cycle when the

vapor pressure is still high, but it allows one to reach a high water recovery factor near the

end of the process. In other words, there is an optimum compression ratio. An ASPEN PLUS case

study to locate that optimum could run in a matter of hours. Similarly, some relatively simple

lab scale experiments to measure vapor pressure of solutes would allow us to calculate the

carry-over organics to the condenser which, in turn, would allow us to estlmate the amount of

carbon needed for posttreatment.

CONCLUSIONS

We have tried to demonstrate, by example, the process of developing a CMAS model. The VCD

technology is a good one for illustrating a number of points where CMAS can help to make the

overall technology development effort more efficient. The necessity of generating a flowsheet

and choosing unit operations to simulate the real process forces the engineer to better

understand the process (e+g., what terminates the VCD process in the absence of an on-line

measure of dissolved solids?). The model validation process will usually help to identify

relatively simple, but very important lab scale experiments. Case studies and sensitivity

an._+++ses will provide a good assessment of which variables are truly important and which others

we _ed not spend much time on.

As we have also seen herein, the CMAS systems developed for the chemical industry are not ideally

suited to LSS technology for small colonies. Most systems designed for space life support are

small and batch-operated. Although the commercial CMAS systems were designed for large,

steady-state processes, we have shown that they can be readily modified to simulate batch

operation.
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PRODUCTIVITY AND FOOD VALUE OF AMARANTHUS CRUENTUS UNDER NON-LETHAL
SALT STRESS

Bruce A. Macler and Robert D. MacEIroy

National Aeronautics and Space Administration,
Ames Research Center, Moffett Field, California, 94035, U.S.A.

ABSTRACT

Stress effects from the accumulation of metal salts may pose a problem for plants in closed
biological systems such as spacecraft. This work examined the effects of salinity on growth,
photosynthesis and carbon allocation in the crop plant, Amaranthus. Plants were germinated and
grown in modified Hoagland's solution with NaCI concentrations of 0 to 1.(1%. Plants received salt
treatments at various times in development to assess effects on particular life history Dhases. For
Amaranthus cruentus, germination, vegetative growth, flowering, seed development and yield were
normal at salinities from 0 to 0.2%. Inhibition of these phases increased from 0.2 to 0.4% salinity
and was total above 0.5%. 1.0% salinity was lethal to all developmental phases. Onset of growth
phases were not affected by salinity. Plants could not be adapted by gradually increasing salinity
over days or weeks.

Water uptake increased, while photosynthetic CO 2 uptake decreased with increasing salinity on a
dry weight basis during vegetative growth. Respiration was not affected by salinity. After flowering,
respiration and photosynthesis decreased markedly, such that 1.0% NaCI inhibited photosynthesis
completely. Protein levels were unchanged with increasing salinity. Leaf starch levels were lower
at salinities of 0.5% and above, while stem starch levels were not affected by these salinities. The
evidence supports salt inhibition arising from changes in primary biochemical processes rather than
from effects on water relations. While not addressing the toxic effects of specific ions, it suggests
that moderate salinity per se need not be a problem in space systems.

INTRODUCTION

Amaranthus is a genus of broadleaf plant found througnout the world. Originally a basic food of the
Aztecs and Incas, it is now widely utilized in Africa, the Mideast, southern India, southern China and
Southeast Asia as well/1/. It is cultivated both for its grain and as a leafy vegetable. Amaranth
grain is about 16% protein and is unusually high in lysine/2/. Vegetable amaranth may be greater
than 30% protein on a dry weight basis. For vegetable use, amaranth is harvested after 3 to 6
weeks of growth, when nearly all of the plant may be eaten. Thus as a candidate for use as a crop
plant in space or as part of a plant-based closed-loop lifo'support system (CELSS'), a significant
advantage of amaranth is its high edibility and potentially low waste.

As a plant genus including many weed species, Amaranthus is generally hardy and can grow
under a broad range of conditions. In the closed space environment, water and gases will

undoubtedly be recycled and will be subject to the build-up of a variety ol contaminants. Of concern
will be the effe_ of metal salts that may accumulate in the plant nutrient system from repeated
excess application of essential trace minerals, leachate from metalic spacecraft hardware, or
residue from recycling systems. For example, excess sodium chloride may interfere with plant ion
transport, metabolism and mineral nutrition, ultimately affecting growth, productivity and food value
13/. Amaranthus has beeen little studied with respect to salt effects. As typical of a C4 plant, a
sodium requirement has been demonstrated 14/, but toxic levels have not been determined. To
examine the effects of salts on Amaranthus, we undertook a series of experiments to quantify
growth, development, photosynthesis and selected metabolites under increasing salinity stress.
While the work reported here does not assess the effects of all ions, it gives a general view to the
limits of total salinity in the plant growth medium.
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METHODOLOGY

Amaranthus cruentus seeds, collecled in Kenya during 1987, were a gracious gift of Daniel Harder,
U.C. Berkeley. These were planted in equal parts pedite, peat moss and sand in 4" pots and
maintained under full sunlight in a greenhouse. Plants were watered daily for the first 2 or 4 weeks
with half-strength NaCI-free Hoagland's solution. Subsequently, the plants were watered daily with
Hoagland's containing either 0, 0.1, 0.2, 0.5, 1.0 or 2.0% NaCI (1.0% NaCI = 0.17 M). Plants were
watered until run-through was observed, allowed to stand in the solution for 5 min, then the excess
solution removed.

Seed germination studies were done using 100mm petri dishes lined with glass fiber filter paper
(Whatman GFIC). Dishes and filters were rinsed 10x with the appropriate salinity Hoagland's
solution, seeds placed on the moist papers, dishes covered and incubated in the light at 27oc in a
controlled temperature chamber. Seeds were checked daily for germination.

Photosynthesis and respiration were estimated by measurement of (302 uptake using an infra-red
gas analyzer (IRGA, Lira Model 303). Plants were placed in 25 I. clear plexiglas and Lexan
chambers under 400-500 p.mol/m2s photosynthetic photon flux density (PFD) from cool-white
fluorescent lamps. Chambers were temperature- controlled via water jackets. Gases were
delivered to the chambers at 1.86 Ipm.

Protein was measured by the method of Lowry, et a1151. Starch was quantified by enzymatic
hydrolysis to glucose using amyloglucosidase, followed by enzymatic determination of glucose 161.

RESULTS

Seed Germination

Seeds were germinated in Hoagland's solution with salinities from 0 to 2.0% NaCI. A. cruentus
germination was unaffected at salinities of 0 to 0.3% (Table 1). Seed germination was inhibited at
0.4% NaCI and above and did not occur above 0.6%.

TABLE 1 Inhibition of A. cruentus Germination by NaCI

Salinity: 0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 1.0% 2.0%

Percent
germination: 68% 62% 58% 61% 40% 8% 6% 0% 0%

Average of 3 experiments of about 150 seeds each condition.

Vegetative Plant Growth.

Seedling and vegetative stage growth were similar to seed germination in their sensitivities to NaCI.
Seedlings germinated in NaCI-free Hoagland's, then given Hoagland's with NaCI after one, two or
four weeks of growth were severely inhibited by salinities of 0.5°/° and killed by salinities of 1.0%
and above (Table 2). Plants did not develop tolerance to higher salinities by gradual increase in
salinity over periods of weeks, but rather showed increasing inhibition. Water uptake increased on
a dry weight basis with increasing salinity during vegetative growth (Table 2). Wilting was not
observed at any salinity.

Flowerina and Seed Develooment

Flowering occurred at 9 weeks after planting in plants at all non-lethal salinities and was not
daylength dependent. Flowering was not inhibited by salinities to at least 1.0%. Plants grown at
salinities of 0, 0.1, 0.2 and 0.5% NaCI for six weeks, then given 1.0% Na(31, flowered at the same
time as controls. However, seed development was inhibited by salinities of 0.5% and above. These
plants died within days of flowering.
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TABLE2 A. cruentus Vegetative Yield under NaCI Stress

Salinity: 0% 0.1% 0.2% 0.5% 1.0% 2.0%

Yield:
(g dry wt/plant) 6.5 5.8 3.9 1.9 0.2 0.2

Water uptake: 6.4 7.0 8.5 9.8 18" 0
(ml/day/g dry wt)

Plants watered with NaCI-free Hoagland's for first 2 weeks of experiment, then watered with
Hoagland's at the indicated salinities. Values are averages of 2 experiments of about 10 plants
each condition. *Prior to plant death.

Photosynthesis and Resoiration

Plants initally on NaCI-free Hoagland's, followed by 6 weeks of NaCI-Hoagland's were assayed for
photosynthesis and dark respiration by measuring CO 2 uptake and release respectively in
environmentally-controlled chambers. The watering conditions were selected to provide plants
before and during flowering with the same periods of salt treatment. Prior to flowering,
photosynthesis decreased with increasing salinity, while respiration was unaffected (Figure 1). With
the onset of flowering, photosynthesis decreased by 70% and was salinity independent from 0 to
0.5% NaCI. At 1.0% NaCI, plants showed a negative CO 2 uptake rate in the light. Respiration was
inhibited 20 to 40% across all salinities tested, but was increasing with increasing salinity to 0.5%.
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Fig. 1. Photosynthesis and respiration vs. salinity in A. cruentus. D, photosynthesis, vegetative
plant; O, respiration, vegetative plant; &, photosynthesis, flowering plant; +, respiration, flowedng
plant
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Plants were sampled periodically throughout the experiments and assayed for protein and starch
content. Protein levels in A. cruentus leaves were found to consistently increase at 0.1% NaCI,
then decrease with increasing salinity (Table 3). Protein levels in plants treated with 1.0% or
greater NaCI are those of the plants prior to beginning NaCI application and are consistent with the
observed inhibition of metabolism. Protein levels in plant roots and stems appeared to be
insensitive to NaCI and were the same before and after flowering. Stem and root protein levels
were about half those found in leaf material. Starch levels were similar In leaves and stems at 0
and 0.2% NaCI (Table 3). Leaf starch levels were lower in plants at higher salinities, while stem
starch levels were unchanged. Starch levels were constant from 6 weeks to 10 weeks, which
included initiation of flowering.

TABLE 3 Protein and Starch at Different Salinities

Salinity: 0% 0.1% 0.2% 0.5% 1.0%

Protein: leaf: 150 200 140 94 140

(mg/g dry wt)
stem: 52 51 52 55 58

Starch: leaf: 49 68 52 18 21

(mg/g dry wt)
stem: 50 59 44 50 55

Values are averages of 3 experiments. Samples taken at 6 (vegetative), 8 (pre-flowering) and
10 (flowering) weeks of growth.

DISCUSSION

A. cruentus may be grown as a leafy vegetable or for its grain. Our work focused primarily on
vegetative cultivation, since for space applications there are needs to minimize food preparation
and waste recycling requirements. Also, as the data indicated, there was a marked decrease in
photosynthesis and increase in respiration after flowering, which would limit air regeneration, a
principal goal of a CELSS. As young vegetables, amaranth leaves in this lab were up to 20%
protein and 5 to 10% starch under conditions not necessarily optimized for maximal food value. The
complete mass balance yielded in addition 25% soluble materials (primarily sugars and amino
acids), 40% cellulose and lignin, and 5% ash.

A. cruentus was tolerant of salinity to 0.5% NaCI, although partially inhibited by salinity above 0.2%.
Plants could be grown from seed at 0.5% NaCI (although with lower germination rates), but grew
much more slowly, and had lower dry weight yields. The data showed that 1.0% NaCI was lethal,
inhibiting seed germination and, when added to healthy plants, suppressing photosynthesis below
that level needed to replace respiratory losses. Leaf starch levels were markedly lower at 1.0%
NaCI, indicating use of this for respiration prior to plant death. Since water relations and time
course of development did not appear to be affected by increasing salinity, the decrease in
photosynthetic CO 2 fixation may be the primary cause of decreased productivity. Kaiser, et al 18/
demonstrated these effects on photosynthetic dark reactions and ATP synthesis, but found no effect
on primary photoreactions and electron transport.

From other work in this laboratory, it was found that other Amaranthus species, particularly A.
tricolor, thrive at salinities to at least 1.5%, indicating that A. cruentus amongst members of the
genus is particularly sensitive to NaCI. This suggests that salinity in the nutrient medium of a
CELSS may not be a problem for some plants at the concentrations envisioned. Ballou/71
determined for a typical CELSS that NaCI in recycled water would reach only 0.5% after 6 months
of operation without any salt separation.
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ABSTRACT

The exchange coefficient of carbon dioxide between air an_4sea can be determined on a global

scale in several ways. Geochemical methods (natural or bomb C oce'_a_ic inventor_ rado n deficien._y

method) give global averaged values ranging between 4.8 and 6 x 10 "_ mole . m'" . yr" . patm-'.

Only wind speed field based methods can monitor the space and time variations of the exchange

coefficient. The average exchan__e coefficients obtained from wind fields range from 2.9 to 4.2
x 10 .2 mole . m -2, yr .[ . patm , always below the geochemical values. The results obtained from

the SEASAT scatterometer and microwave radiometer are compared, for each ocean, averaged

over three months. The SMMR overestimates the exchange coefficient nearly everywhere, but the

global net flux is not changed due to a compensation of the variations of the outgasing and absorbed
flux. The net COz fluxes obtained using a spatially constant or variable exchange coefficient are

also computed. This sensitivity test shows the importance of the spatial variability of the exchange
coefficient for the net flux determination" the net flux which was - 1.17 Gtons per year with a

variable exchange coefficient becomes -0.155 when a constant exchange coefficient is assumed.

We conclude by stressing the primary importance of the spatial and temporal variability of the

exchange coefficient and of the concentration gradient.

INTRODUCTION

The flux of carbon dioxide exchanged between ocean and atmosphere is controlled by the air-sea

concentration gradient zS P and the exchange coefficient of the gas between the two media K =

cp = K . A P. The exchange coefficient itself is a combination o£ the transfer velocity k and the

solubil!ty s, of the gas in water with K = k . s.

Different attempts have been made to determine the carbon dioxide exchange coefficient on a

global scale. These determinations rest on two methods ¢

- one based on geochemical approaches : the carbon 14 inventory (natural and artificial) in the

ocean gives a mean value averaged over the global ocean and the radon deficiency method gives

an estimation of the local value,

- the other one uses a relationship between the transfer velocity and the wind speed, based on wind

tunnel and lake experiments, to deduce an exchange coefficient field from a wind speed field.

We will compare the various results obtained, looking in more detail into the results of the second

method. We will make a test to show the consequences of assuming a spatially constant exchange

coefficient on the net flux of gas exchanged between ocean and atmosphere. We will also compare

the exchange coefficients determined by using wind fields obtained from the SEASAT scatterometer
and microwave radiometer.

GEOCHEMICAL DETERMINATIONS

This determination can be done either from the 14C naturally produced in the high altitude atmo-

sphere or from atmospheric 14C induced by nuclear explosions. For more detailed information,

see Bcoecker et al. [ I].

The principle of the natural 14C determination is based on the idea that in the pre-industrial phase,

the 14C/12C ratios respectively in the atmosphere, surface and deep ocean were fixed by the ba-

lance between the net influx of 14CO= at the air-water interface and the 14C decay in the deep

ocean. The Broecker et al. determination assumed the exchange coefficient and/or the concentration

gradient to be spatially constant all over the l_lobai ocean. They obtained an average exchange
coefficient of t (8.1 +- !.4) x 10 -2 mole . m'2.yr ". patm -I. It was pointed out in [2] that the homo-
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8enelty hypothesis was very crude and the computation was repeated usin8 a spatially varying ex-
change coefficient deduced from cll'matological winds by the method described in next chapter

and the concentration gradient map in [I]. The resulting exchange coefficient is 5.7 x 10-2 mole

• m -2 . yr "l. atm -1.

The method for using bomb 14C is more complicated since the hypothesis of a stationary regime
no longer holds. Here, the time history of the isotopic ratio in air and water is used, while the

net flux of i2C is still assumed to be zero. The time dependent isotopic ratios 14C/12C in the

atmosphere and in the ocean are compared ; the evolution of the oceanic one is assumed to be
• 14

inferred by the influx of atmospheric bomb C. Under the same assumption ok spatial homogeneity

as a_ve the average exchange coefficient is found to be ¢ (6.1 + 0.9) x 10 "z mole . m"L . yr "j.
palm- . This computation was redone in [2]taking into?account the sisi_tial variations as above and
the sea ice coverage, and found to be 6.0x|0 -" mole . m-" . yr °" . patm" .

Finally, we should report another method using vertical profiles of radon concentration measured
in the ocean. In the deep ocean the radon concentration is supposed to be in equilibrium with radium
through radioactive decay. In the surface mixed layer, the radon concentration is less than its value
at greater depth, this deficiency being due to the escape of the gas toward the atmosphere. This
method, which assumes the exchange coefficient to be constant for several days (a rather unrealis-

tic hypothesis), gives an average exchange coefficient of ." (_.g + 1.2) x l0 -2 mole . m-2 . yr "i.
patm" , [[].

WIND FIELD BASED DETERMINATIONS

The method used here is to deduce transfer velocity from wind through a relationship determined
from wind tunnel and lake experiments. The transfer velocity, k, not only depends on the wind
speed, U, and sea state, but also on the sea surface temperature, varyin 8 by about a factor of
three for the temperature range observed in the ocean. It is shown in [:3] that for CO= this varia-
tion is compensated by an inverse variation of the solubility so that the exchange coefficient differs
from its value at 20°C by no more than 1096 in the observed temperature range. This is less than
the accuracy of the relation and o£ the wind speed fields, so that to compute the transfer velocity
at 20"C is sufficient for global studies. The most recent k(U) relationship has been given in [4]
at 20"C t

k20 = 0.17 UIO 0 _< UIO _< 3.6 m.s "1

k20 = 2.85 UlO-9.6,S 3.6< UIO-,< 13m . s"l

-1
k20 = 5.9 UI0- 49.3 UI0 > 13 m . s

-| o
where k20 is the liquid I)hase gas transfer velocity in cm.h at 20 C and UI0 the wind speed at
10 meters height in re.s" . This relation is non-linear, and in particular results in a threshold effect
at ).6 m/s, the exchange being nearly blocked below this velocity. Due to this non-linearity, the
transfer velocity can only be computed _[rom high resolution wind speeds and, when averaged values
are used, the variability has to be restored. All the studies described below used this relation, the
limitations of which are discussed in detail in [3] and [4]. The main advantage of deducing the exchan-
ge coefficient from the wind field is that it allows the study of spatial and temporal variat_ohns
on a global scale, which is completely impossible from radioactive tracers measurements ". "_C
gives only the global mean, averaged over many years, while the measurements of radon profiles
are necessarily too few to provide a monitoring of the world ocean.

A climatology of the wind speed and of its variance, with a ._°x._" resolution, obtained from the
NOAA National Climatic Data Center, was used in [_i]. They assumed for the wind speed a Gaussian
frequency distribution having the average wind speed and variance of this climatology and computed
monthly maps of the transfer velocity at 20"C. A large seasonal variation islobser_ved in the Northern
Hemisphere with small areas having a transfer velocity above 3_cm. h" in 3anuary, decreasing
by about a factor of three in August. The seasonal variation islweaker in the Southern Hemisphere

with a few a[eas with a transfer velocity in excess of 30cm . h" in July while small areas lin excess
of 2_cm. h" are observed in 3anuary. The monsoon winds give values above 30cm. h" in 3uly.

The wind speeds at ten meters height provided by the European Meteorological Center (ECMWF)
for year 1992, every 6 hours, on a 1.$7_ ° grid were used in [6] to compute monthly averaged maps
of the transfer velocity at 20°C. The results for February and August are shown on Figure h They

are qualitatively similar to those in [_], giving a global yearly averaged exchange coefficient of
2.9 x 10" mole . m "2 . yr "l . palm "| without temperature or ice coverage correction, and are
lower than the previous determinations. They also computed a map of the transfer velocity in the
North Atlantic ocean during August 197g, using a climatology for temperature corrections and the
wind speed measured by the SEASAT altimeter.

Two different wind data sets were used in [2], He made temperature corrections and took into account
the sea ice coverage, as deduced from climatologies. First, he used a climatology of wind speeds
from the program COADS (Comprehensive Ocean - Atmosphere Data .Set, 19g_) on a .%62_ x .%62_P
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Fig. 1. Transfer velocity at 20°C during February (top) and August (bottom) 1992 deduced from

ECMWF ten meters wind field, after [6].
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grid, together with a variance map deduced from the General Circulation Model T21 of the Max
Planck Institut f(ir Meteorologic in Hamburg. Second, he used the wind speeds at 1000 mlJar provided

every 12 h on a 3.75 x 3.75 ° grid by the ECMWF for the period December 197g-November 1979,

during the FGGE experiment. The monthly maps of exchange coefficient thus obtained_ despite

minor differences, were qualitatively in agreement, and coherent with maps previously obtained

by other authors. Figure 2 shows yearly zonal means of the exchange coefficient obtained from

the two wind data sets after temperature corrections and taking into account the sea ice cove, rage.
The result has been divided by the solubility of CO 2 at 20°C in order to get units of cm.h-'. The

exchange coefficient obtained from the monthly average of the climatological winds, taking neither

the variability nor the temperature or sea ice coverage into account, is shown for comparison.
The two wind fields differ mainly in the equatorial region and the author attributes this difference

to a lack of measurements in this region for the meteorological model while both wind fields lack

measurements in the Austral Ocean. The underestimation of the exchange coefficient when the

variability is neglected can be as high as a factor 1.5, the order of magnitude found in JJJ for a

particular case. He studied also the seasonal variation in several latitudinal zones and showed that

the main variation (by a factor 3) is in the band _i to 50 ° N. The variation is also large in the

regions covered by sea ice in winter but it can be seen from figure 2 that in these regions the

exchange coefficient is small. The yearly averaged global exchange coefficient obtained after tempe-
-2 -2 -I -I

rature correction and taking into account sea ice coverage ns /_.17 x I0 mole . m . yr . palm
-2 -2 -I -I

from the COADS climatology and 3.69 x I0 mole . m . yr . patm from the ECMWF wind

speeds during the FGGE period.

The same type of analysis was done in [3], without temperature corrections, from the SEASAT scatte-

romeler wind speed measurements integrated over the three months of the satellite lifetime (July

7 to October 9, 1978,). The sea ice (overage was deduced from the altimeter signal. The resulting

transfer velocity map is shown on Figure 3. The results are in qualitative agreement with previous

ones. They computed the exchange coefficient averaged2over three months for the various oceans.
Its value on the global ocean is 3.63 x 10 -2 mole . m- . yr "I . patm -I, They combined this map

of the exchange coefficient with the map of the air-sea concentration gradient of CO 2 given in

[[] and obtained a net [lux of I.[7 glgatons of carbon per year absorbed in the ocean.
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The comparison of the various determinations of the average exchange coefficient is made in [3]

and their validity is discussed at length. Tile I_C determinations are higher than the results from

wind speed fields by about 40%, except the determination in [6[ which is well below the others.
If the wind field based determinations only are considered, the result of [.3] is lower than those

of [2] by 15% for the COADS climatology and by 3% for the ECMWF wind field at 1000 mBar during

the FGGE period, and higher than the one in [6] for the ECMWF wind field at 10 meters in 1982

by 20%. The temperature corrections modify the average exchange coefficient by no more than

a few per cent (the maximum variation of K in the ocean temperature range is 10%) and the sea

ice coverage by 3°6, {21. Thus the main source of discrepancies between the various results arises

trom diflerences in the wind fields. I[ the same analysis is performed on various wind fields, the

average exchange coefficient can be considered as representative of the wind field. Due to the

non-linearity of the relations of Liss a_d Merlivat, this measurement emphasizes the influence of

high _ind speeds. It can be used as a test of the algorithms run for data reduction of spatial measu-
rements, which are usually tested on average wind speeds. This we will do in a subsequent section

of this paper to compare the SEASAT scatterometer and SMMR wind speed fields, but before that

we will test the influence o[ assuming, a spatially uniform exchange coefficient on the determination
of the carbon dioxide net flux.

INFLUENCE OF A SPATIALLY VARYING EXCHANGE COEFFICIENT

To get an insight into the influence on the determination of the net CO 2 flux of assuming a constant

exchange coefficient all over the world, as is frequently done for global modelling of carbon dioxide,

we will take the approach used in [3]. We will use the map of the air-sea concentration gradient

of CO2 from [1] and combine it with the exchange coefficient map of [3]. We will then compute

the flux exchanged in the various oceans and the global net flux_ and cornpare it to the results

obtained when a constant exchange coefficient, equal to the average exchange coefficient in [3],

is used. This should be taken as a sensitivity test only and can in no way be considered as repre-

sentative of the reality, since the combination of the Broecker et al. map, a (rude yearly average,

with a three month average of the exchange coefficient does not take into account the seasonal

variations, which are of primary importan('e for the flux ([2], [31, [6]). The results which are highly

dependept on the map of air-sea concentration _eradient used, are shown in table I.

I__Z_!_Li--_I. Com!_arq..o,, of Corl_.tant Versus V,_lr) ing Exchange Coefficient

OUTGASING ABSORPTION NET FLUX

area 102 x K flux area 102 x K flux area 102 x K flux

(I06 km 2) (mole.m -2. (Gtons.yr -I) (106 km 2) (mole.m -2. (Gtons.yr -I) (I0 G km 2) (mole.m "2. (Gtons.yr -I}

yr" l .pat m- I) yr -I .palm" I) yr -l .palm- I )

Atlantic var 3.20 0.132 2.70 -0.3/_0 2.92 -0.208

ocean 33.20 /_1.5 7/&.7
cst 3.63 0.1914 3.63 -O.t_17 3.63 -0.22t_

II_dian var 3.03 0.106 3.99 -0.I_2 3.60 -0.036

ocean L9.9 29.6 _.9.6
cst 3.63 0.123 3.63 -0.129 3.63 -0.005

PacHic var 2.33 0.554 3.67 -0.160 2.76 O.t_20

ocean 55.0 t_6.6 1_6.g
cst 3.63 0.97_ 3.63 -0.162 3.63 0.812

Antarctic var 6.81 -1.350 6;,81 -! .350
ocean 0 cst $7.3 $7.3

3.63 -0.73g 3.63 -0.73g

Global vat 2.73 0.822 /_.52 -1.995 3.63 - 1.I 7/,_

ocean 105.2 175.1 328._
c_t 3.63 1.292 3.63 - I.t_O7 3,63 -0.15._

The limit of the Antarctic Ocean has been taken to be a0°S. The global net flux is significantly

changed : 0.16 gigatons of carbon per year absorbed by the ocean instead of 1.17. The reason

for that is that generally the outgasmg regions are low latitude areas with a weak exchange coeffi-

cient, while the absorbing regions are high latitude areas with a large exchange coefficient. Hence,

to take a constant exchange coefficient everywhere tends to enhance the outgasing and decrease

the absorption. This is true everywhere except in the absorbing part of the Atlantic Ocean : all

the north Atlantic Ocean down to latitude of IO°N is absorbing, including tropical and subtropical

latitudes where the exchange coefficient is weak, well below the global average. During the arctic

summer, the exchange coelficient in the north Atlantic is above the global average only north
of z_0°N.

141



The determining factors for this change in net flux are :

- the large decrease of the flux absorbed in the Antarctic Ocean (-0.61 Gtons) due to a decrease

of the exchange coefficient by nearly a factor of two in the region where two third of the world

absorption occurs

to a lesser extent, the increase of

exchange coefficient has increased by

occurs.

The effect on the net flux is very

outgasing flux and an absorbed flux

tile outgasing in the Pacific Ocean (+0.39 Gtons) where the
more than 50% in tile region where two third of the outgasing

large because it is the result of the dilference between an

of similar magnitudes, so that a variation of 50% on each

flux can result in a variation of one order of magnitude in the difference. We should stress again

that this is completely dependent on the concentration gradient map used, both for the definition

of the outgasing and absorbing regions and for the magnitude of the fluxes. One should note that

the same effect would appear for the temporal variations, especially seasonal, since both the concen-

tration gradient and the exchange coelficient have large seasonal variations. This has been shown

for particular examples in [3] and [6].

Thus no reasonable global modelling of the carbon dioxide can be made without taking into account

the spatial and temporal variations of the exchange coefficient and of the concentration gradient
of carbon dioxide at the air-sea interface. For the former only the determination from wind fields

can provide this information. It explains the significance of this method.

COMPARISON OF SEASAT SMMR AND SCATTEROMETER WIND FIELDS

We will now compare the results obtained using wind fields determined from the SEASAT scattero-
meter (SCATT) and the SEASAT micro-wave radiometer (SMMR).

The SEASAT satellite was launched in June 197g in a quasi-circular orbit having an inclination

of 10S degrees, a period of 101 minutes and an altitude of approximately g00 kin. It carried, among
other instruments, a microwave radiometer and a scatterometer. We used the wind data obtained
from these two devices after reduction by F. Wentz ([7], [g]) for the period July 7 to October 9,

197S.

The scatterometer measured in two swaths, 600 km wide, one on each side of the track between

150 and 750 km (we did not use the nadir measurements) and, after data reduction, one wind speed

value was obtained for each lO0xl00 km square in the swath.

The SMMR measured in one 600 km wide swath on one side of the track, approximatly from the

subtrack to 600 km starboard. We used the wind speeds given for a g5xg5 km square using a combi-

nation of the brightness temperatures at 10.7 H/37VI21V gigahertz. The sea ice coverage was

determined from the 6.6V brightness temperature : when this temperature was above 172 ° K over

the ocean, the radiometer was assumed to be looking at sea ice. The sea ice coverage was deter-

mined for each month, using the measurements during a six days period in the middle of the month :

3uly 13 to lg, August 13-23, September 7-22. The data for each month were cleaned using the

corresponding sea ice coverage. The data had to be masked when they were at less than 350 kilo-

meters from large land masses or sea ice. For "small islands" or peninsulas, defined approximatly

as being less than 3 ° wide either in latitude or in longitude, the mask is only 120 kilometers wide.

The data flagged as bad or questionable from an algorithmic point of view (eg. brightness) tempe-

rature out of the usual range, heavy rain, no solution |ound by the algorithm ...) and the measu-

rements made in masked area are suppressed. Then the average of the transfer velocity in a square

the size of which can be specilied and during a given time is computed, giving a map of averaged

transfer velocities oil a grid. These results are integrated in space, weighted by the area of the

square concerned after removing the area covered with land or sea ice. The September sea ice

coverage was used for this integration. It results in an average exchange coefficient per ocean,

after multiplying by the solubility of carbon dioxide at 20°C for a salinity 35°/°°, that is 33 mole.
-3

m .palm -I, separately for the outgasing and absorbing areas, as defined in [1]. This has been

done in [3] for the scatterometer, averaging over the lifetime of the satellitp and using a lO °

grid. In order to make a comparison, we did exactly the same for the SMMR data and the results

are shown in table 2. The exchanged fluxes have also been computed for comparison, using the

concentration gradient map of [1]. The same reservations as above about the significance of these
fluxes are valid here.

The wind speeds obtained from the SMMR are compared to those obtained from the scatterometer
-1

in [g]. They concluded that between 3 and 17 m.s , the difference between the two data sets
-1

was nearly zero, while the SMMR underestimatled the low wind s_eeds (below 3 m.s ) and over-
estimated the high wind speeds (above 17 m.s- ), by I to 2 re.s" . The effect of this underesti-

mation below 3 m.s -1 has no effect on the transfer velocity since at these wind speeds the g.as

exchange is blocked anyway. On _ le other hand, the overestimation at high wind speeds is effective

and the exchange coefficient is in eased in all regions, except in the outgasing area of the Atlantic

Ocean where it is not changed. TIe global average exchange coefficient is increased by 13% while

in [.g] it is reported that the globa' average wind speed is changed by about 1% only ; this reflects

the effect of wind speed dependent biases on the exchange coefficient. The "equivalent wind speed",

corresponding to an exchange coeff cient of 0,.09x10 -2 mole.m-2.yr-l.patm -i is g.3 ms -1, on which

a 13% difference corresponds to I m.s -1, This seems to indicate that the overestimation of the
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TABLE 2. Comparison Of SMMR And 5catterometer Dala

OUTGASING ABSORPTION NET FLUX

area 102 x K flux area 102 x K flux area 102 x K flux

(106 km2) (mole.m "2. (Gtons.yr "1) (106 km2) (mole.m "2. (Gtons.yr "l) (106 km 2) (mole.m -2. (Gtons.yr +l

yr-I patm "I) yr'l,patm "1) yr-l.patm "l )

SCATT 3.20 O.132 2.70 -0.340 2.92 -O.208
Atlantic 33.2 41.`5 74.7
ocean SMMR 32.3 3.21 0,123 36.8 2.90 -0,291 69.3 3.0,_ -0.167

SCATT 3,03 O.I 06 3.99 -0.142 3.60 -0.036
Indian 19.9 29.6 49.6
ocean SMMR 19.0 3.4`5 O. IIS 29Ai 4.17 -0,148 48.3 3.89 -0.030

SCATT 2.33 0.384 3.67 -0.164 2,76 0.420
Pacific _`5.0 46.6 106.8
ocean SMMR _4.3 2.82 0.7 ._7 46.0 4.07 -0.180 144.4 3.27 0.`577

SCATT 6.81 -I.3`50 6.81 -IAI_O
Antarctic 0 37.3 $7.3
ocean SMMR 56.7 7.63 -I.48/_ 56.7 7.63 -I.484

SCATT 2.73 0.822 4-52 -I.99,5 3.63 -l.174
Global 108.2 173.1 328.4
ocean SMMR 103.7 }.03 0.999 169,0 5.02 -2,102 318.8 4.09 -I.104

SMMR wind speed, with respect to that by scatterometer, does exist at wind speeds lower than

reported in [8]. The tact that in the Antarctic Ocean, where the exchange coe|ficient is about

twice what it is elsewhere ("equivalent velocity" 12.6 re.s-l), the increase is only 1296 (no more

than in other regions) confirms this tendency. There could be also an effect of the variance. The
variance of the SMMR data is larger than the one of the scatterometer data and this could change

the transfer velocity when it is close to the points of non linearity of the k(U) relationship. And

finally, one should notice that the area of the regions concerned is slightly smaller for the SMMR

data than it is tor the scatterometer data. This is a consequence of the mask applied to the measu-

rements 3_i0 km off land or ice, which results in regions without measurements which are not

considered in the integration.

As far as the exchanged flux is concerned, it is increased by about the same amount as the exchange

coefficient, as would be expected, except in the Atlantic Ocean where it is decreased even in

the outgasing area where the exchange coefficient is increased. A possible explanation is that
the difference between the SMMR and the scatterometer varies spatially probably depending on

latitude. The pressure gradient map used to compute carbon dioxide fluxes has a dependence on
latitude which differs in the Atlantic Ocean from that in other oceans, and this could be the reason

for this surprising behavior of the flux. Another factor for decreasing the flux is that the aera

has decreased, by as much as 11% in the absorbing region, thus decreasing the exchanged flux.

This change in area is particularly large in the Atlantic Ocean where the coast lines are relatively
close to each other, resulting in a masked area larger compared to the global area than in other

oceans. The results for the global net tlux is nearly the same as the one from the scatterometer

because both the outgasing flux and the absorbed flux are increased by about the same amount

and they compensate.

CONCLUSION

The average exchange coef|icient of carbon dioxide between air and sea can be determined on

a global scale either from geochemical measurements or from global wind speed fields.

The first class of determinations cannot give access to the spatial and temporal variability of

the exchange coefficient. They give results about L$0% larger than those of the second class.

The second class of determinations is able to monitor the space and time variations of the exchange

coefficient, through a relationship between wind speed and transfer velocity.

We have shown, through a sensitivity test, the importance of these variations for determining

the net COz Ilux on a global scale. This test concerns only the spatial variability, since there
has been no attempt up to now to map the seasonal variation of the pressure gradient on a global

scale.

We have also compared the SEASAT wind speed measurements made simultaneously by two instru-

ments, the microwave radiometer and the scatterometer.
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The SMMR has a tendency to underestimate the low wind speeds (in the range where the CO=

exchange is blocked) and to overestimate the high wind speeds, compared to the scatterometer.

It results in an overestimate of the global average exchange coefficient by 13%, but does not

change the global net flux.
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CARBON CYCLING BY CELLULOSE-FEI_NTING NITROGEN-FIXING BACTERIA
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ABSTRACT

The most abundant organic materials on Earth are plant polysaccharides such as cellulose and hemicelluloses.
Inasmuch as vast quantities of these polymers are present in anaerobic environments (e.g., in soils and sediments),
anaerobic microorganisms that ferment plant polysaccharides play a central role in carbon cycling on the planet as a
source of CO 2 and, indirectly, of CH 4. Cellulose-fermenting bacteria from soil and pond sediment were isolated in

a medium (incubated in N 2) which lacked a source of combined nitrogen. The isolates had the ability to utilize

atmospheric N 2 as the nitrogen source for cell growth. Nitrogenase (the enzyme which catalyzes the reduction of

N 2 to ammonia) was demonstrated by means of the acetylene reduction lest in these isolates and in several previous-
ly described anaerobic cellulolytic bacteria isolated from various natural environments. Thus, cellulose-fermenting
bacteria that fix N 2 may be widespread and may play a role in nitrogen cycling as well as in carbon cycling on a
global scale. Knowledge of the physiology and ecology of these organisms is crucial to detailing the mechanisms
producing local sources and sinks of atmospheric gases, interpreting data obtained using space-based sensors, and
understanding the effects of atmospheric wanning on fermentations as major sources of CO 2 and CH 4 .

IIN'TRODUC'IION

Key processes of biogeochemical cycles are mediated by microorganisms. For example, an important step in the
global carbon cycle is the microbial degradation of cellulose, the most abundant organic material on Earth/1/.

Photosynthesis yields annually up to 1.5 x 101 ! tons of dry plant material worldwide, ahnost half of which consists
of cellulose/2/. For life to continue on Earth, the carbon present in this polymer must be reintroduced into the
atmosphere in the form of CO 2.

A substantial amount of cellulose (5-10%) is degraded in anaerobic environments/2/. Anaerobic activity occurs in
proximity to the surface in soils, composts, and freshwater, marine, and estuarine sediments, indicating that aerobic
conditions normally prevail only in a thin crest/2/. In anaerobic environments, cellulose is initially decomposed by
cellulose-fermenting microorganisms yielding CO2, H2, organic acids, and ethanol. Some products of cellulose
fermentation serve as growth substrates for other bacteria which produce acetate, CO 2, and H 2. These products are

then converted to CH,, by methanogenic bacteria. Thus, as a source of CO 2 and, indirectly; of CH 4, anaerobic cellu-

lolytic microorganisms play a major role in carbon cycling on the planet (Fig. 1). Although the microbiota involved
directly and indirectly in cellulose degradation in the rumen has been studied extensively f3,4/, relatively little is
known about the complex interactions among free-living microorganisms involved in the anaerobic degradation of
cellulose in other natural habitats/2/. The distribution of anaerobic cellulolytic bacteria in nature is largely unknown.

Due primarily to recent interest in the potential use of cellulolytic bacteria for alcohol fuel production from biomass,
several species of anaerobic cellulolytic bacteria from sediments, compost, and sewage sludge have been de-
scribed/5-11/. The long-term goal of our research is to advance understanding of the physiology and ecology of
these microorganisms. Mostly, we have studied strains of a Clostridium species (referred to as "C strains") that we
isolated from the sediment of a freshwater swamp. These strains actively ferment not only cellulose but also
components of the hemicellulosic portion of biomass (e.g., xylan, pentoses), forming prhnarily ethanol, acetic acid,

H2, and CO 2/5/. Information obtained from these studies may help us predict the response of cellulose-fermenting

bacteria to current global wanning and probable altered precipitation patterns. For example, if anaerobic cellulose
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degradationis enhanced and the rate of CO 2 and CH 4 production is increased, there will be a positive feedback on

the rate of climate change by this microbial activity/12,13/.

Environments rich in cellulose are frequently deficient in nitrogen (e.g., peat softs, agricuhural wastes, composts).
Thus, ceUulose-fermenting bacteria that satisfy their nitrogen requirements through the fixation of N 2 would he ex-

pected to have a mx,ong selective advantage over those which require a source of combined nitrogen. Moreover, such
microorganisms might be expected to play a major role in nitrogen cycling, as well as in carbon cycling, on a global
scare. However, it has not been determined whether cellulose is widely used as an energy source by nitrogen-fbdng

bacteria. This is surprising given the abundance of cellulose and the suggestion/14/that nitrogen fixation by free-
living beterotrophic bacteria in natural ecosystems is limited by the availability of oxidizable growth substrates.
Waterbury and coworkers /15/ have shown that cellulose serves as a growth substrate for a nitrogen-fixing aerobic
bacterium which exists in a symbiotic relationship with shipworms. Their findings demonstrate that these two com-
plex physiological processes, nitrogen fixation and cellulose degradation, can be performed by a single bacterium. A

major objective of our research was to determine whether free-living anaerobic cellulolytic bacteria that are wide-
spread in terrestrial environments fix nitrogen when they utilize cellulose as the fermentable substrate for growth.

r'=<q_%-..-

-,- o

11

[C6HtzO6lx "' -_.....

I. Cellulose -_ Organic Acids + Ethanol + CO 2 ¢ H z

2. Organic Acids, Ethanol -_ Acetate ¢ CO z + H 2

J'Acetate ,4> co z ¢ CH_
3. i,COz + H z "_ CH,_

CELLULOSE .O CO z ÷ CH4I

Fig. 1. Role of cellulose-fermenting bacteria in carbon cycling. Cellulose [(C6Hl206)x], a major product of the
photosynthetic f'utation of CO 2, is fermented by anaerobic cellulolytic bacteria (step 1). Ethanol and the acidic

products of cellulose fermentation serve as growth substrates for other bacteria which produce acetate, CO 2,

and H 2 (step 2). Methanogenic bacteria produce CH 4 from acetate or by reduction of CO 2 with H 2 (step 3).

In anaerobic environments, the complete disshnilation of cellulose results in the formation of CO 2 and CH 4.

ISOLATION OF NITROGEN-FIXING CELLULOSE-FERMEN'HNG BACTERIA

Four strains of anaerobic cellulolytic bacteria were isolated from forest soil and freshwater mud using a procedure
that selected for nitrogen-fixing strains/16/. Enrichment cultures were prepared by serially diluting soil or mud
samples into anaerobic culture tubes containing a liquid growth medium, designated "MW-C". This medium (which
was similar to one described by Daesch and Mortenson/17/) lacked a source of combined nitrogen, included
cellulose (ball-milled Whatman No. I f'dter paper; 0.6%, dry wt/vol) as the fermentable substrate, was prereduced

/18/, and was maintained in an N 2 atmosphere. After 7-14 days of incubation at 30oC, enrichment cultures showed

significant disappearance of cellulose. Spent medium and remaining cellulose fibers from enrichment cultures were
serially diluted into melted cellulose soft agar medium in tubes. The contents of these tubes were poured onto plates
of agar medium within an anaerobic chamber. After 2-4 weeks of incubation, colonies surrounded by zones of
clearing appeared in the otherwise opaque medium. These colonies were transferred by streaking onto plates of
cellobiose agar medium, and restreaked several times to obtain pure cultures. Colonies were then transferred into
liquid cellulose medium (MW-C) to confirm whether the isolate was cellulolytic. Three strains (BIA, BIB, and
B 1C) were isolated from mud from the bottom of a shallow pond (Beaver's Pond, Shutesbury, Massachusetts) and
one (strain B3B) from forest soil near Beaver's Pond.

CHARACTERIZATION OF NITROGEN-FIXING CELLULOLYTIC ISOLATES

The isolates resembled one another morphologically (Fig.2). All were motile curved rods measuring 0.6 to 0.8 p.m

x 3 to 6 Ixm. Under the growth conditions used, spores were never observed either within cells or free in culture
supematant fluids. Cells of all four strains stained gram-negative. Electron microscopy of thin sections of strain
B 1A cells/16/showed that the cytoplasmic membrane was surrounded by a multilayered cell wall that differed from
typical cell walls of most gram-negative anaerobic bacteria (eg., those of most Bacteroidaceae/19/), but resembled
those of other gram-negative mesophilic cellulolytic bacteria/5,20/. All isolates were obligately anaerobic and

fermented polysaccharides, hexoses, and pentoses that are commonly present in plant materials. None of the strains
utilized maltose, glycerol, or amino acids as fermentable substrates. Further phenotypic and genotypic
characterization of the isolates is required to determine their taxonomic position.
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FIG. 2 A-C. Phase-contrast photomicrographs of nitrogen-fixing cellulolytic isolates (wet-mount pre-
parations), strains (A) elA, (e) BIB, (C) BIC, and (D) B3B. Cells were cultured to lat.e-_.x.pone_..ti_ ph_ in
a celiobiose-containing medium. Cells of strams BIC (C) and B3B (D) are entangneo m ceuutose nuers
introduced into the culture along with the inoculum (a 7-day culture in cellulose medium). Scale bar, 10 pM.

The presence of nitrogenase in the isolates was demonstrated by means of the acetylene reduction test/21/. Cells
reduced acetylene to ethylene (e.g., 1310 n_l/h/mg ceU protein) when grow'm.g _ medium MW-C b.ut n.ot when
growing in the same medium supplemented with 0.2% NH4CI. Inasmucn as ti_e nsolates grew m a meemm ,acgmg
combined nitrogen and containing cellulose as the fermentable substrate, it was concluded/16/that they utilized this
polysaccharide as the energy source for N 2 fixation.

NITROGENASE AC'ITVITY IN OTHER CELLULOSE-FERMENTING BACTERIA

Several previously described anaerobic celluiolytic species [CIos_ridium strain C7, from mud of a freshwater
swamp in Woods Hole, Massachusetts, U.S.A./5/;CIostridium papyrosolvens, from estuarine sediments of the
River Don in Aberdeenshire, Scotland/6/; strain JW-2, from wetwood of an elm in Amherst, Massachusetts,
U.S.A./20/] were cultured in a def'med, cellulose-containing medium/16/. The previously described callulolytic
species, as well as the new isolates, reduced acetylene to ethylene when grown in this medium, but not when grown
in the same medium supplemented with NH4CI, a result that indicated the presence of nitrogenase in these bacteria.
Moreover, growth in a cellobiose-containing medium lacking combined nitrogen was dependent on N 2/16/. No

growth occurred when cultures were incubated in an argon atmosphere. These observations indicated that N 2 served

as the nitrogen source for the growing cells. Thus, cellulolytic bacteria .from a variety of envirmun_, ts syn! .h_!ze_d
active nitmgenase and apparently incorporated N 2 into cell material durm 8 growth. Although outer cettutolytlc
bacteria may possess nitrogenase/15.22/, this is the ftrst demonstration of nitr?gen f'ixat!on, d.ur_ the anaero.bic
degradation of cellulose. Our finding of nitrogenase activity _ cellulose-fermenting bacteria tsotateo from a variety
of envoi is consistent with the view /16/that nitrogen-feting cellulolytic bacteria are widespread in nature.

DISCUSSION

In the study described above, we did not attempt to enumerate nitrogen-fixing cellulolytic bacteria in. sp_. ific
terrestrial environments. The results of such experiments, if performed using classical methods revolving viable

counts, prof,_ .y would not be _ful because these bacteria often adhere to of are entangled in cellulcee fibers
(e.g., Ftg. 2C,D). Furthermore, the growth requirements of diverse nitrogen-fixing cellulolytic, bacteria are.not
known. Future a_udies aimed at identifying cellulolytic species in their natural env_ts lind estunatmg tl_etg
activities will be conducted with the use of oligonucleotide probes compleroe?t, sty to ribosomal ribonucleic acid
(rRNA) sequences unique to members of groups of cellulose-f_ orgemsms. Since the probes are comple-

mentary to rRNAs, and actively growing cells may contain more than 104 ribosomes/'23/, each a potential probe
target, single cells may he labeled and identified by in s/tu hybridization and microautoradiographic procedures/24/.
This method permits the identification of single cells microscopically (cultivation is not required) and offers a very
powerful tool to identify the presence of members of paqicular bacterial groups in natural ecosystems. The metabolic
activity of populations of cellululytic bacteria in natural rumples may he esthnated by measuring the amount of probe
bound to bulk extracted rRNA. Since the rRNA come It of cells is propogtinnal to growth rate over a wide range of
growth rates/25/, the amount of group-specific probe hybridized _ unit.of bi .on_m. would provide an .elt.imate of
the metabolic activity of that group/24.26/. Resul'a of these atudtes will contribute to our understanding of the
diversity of cellulose-fermenting nitrogen-feting bac,eria, their quantitative contributin._, to cellulose b.t_. dovm., and
nitrogen fetstion, their potential for improving soil fertility, and the effect of atmospheric wanning on thetg actwtty.
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EFFECT ON ATMOSPHERIC CO2 FROM SEASONAL

VARIATIONS IN THE HIGH LATITUDE OCEAN

Tyler Volk

Earth Systems Group, Department of Applied Science,
New York University, New York, NY 10003, U.S.A.

ABSTRACT

Data from the North Pacific gyre, Bering Sea, and North Atlantic show large seasonal fluctuations in the pCO2 of
surface waters. The seasonal variation in these high latitudes apparently has a generic pattern: higher surface water
pCO2 in winter and lower in summer. Satellite data will eventually help decipher the relative effects of temperature
and biological production in the seasonal carbon cycle, but as yet little work has been done on what possible role the
seasonality of pCO2 in the high latitudes might have on the average value of atmospheric pCO2. Here I develop a
model that shows the average value for atmospheric pCO2 depends upon the ratio of the rates at which the
ocean/atmosphere system moves toward equilibrium values during the summer and winter conditions of the high
latitude ocean.

SEASONALITY OF 1:h202 IN THE HIGH LATITUDE OCEAN SURFACES

Data for two sites off Iceland in the north Atlantic shows an important seasonal pattern in many properties of the
surface waters IlL The pCO2 is lower in the summer than in the winter, which is the opposite the trend expected if
the surface temperature, being relatively high in summer, were the determining factor. The nutriehts, such as
phosphate and nitrate, are relatively low in the summer months, apparently a result of photosynthesis, which
removes CO2 from the surface water as well as nutrients. Higher nutrients in winter are due to a lack of
photosynthesis and increased exchange between surface and deep waters. This cycle of nutrients corresponds to a
cycle in the organic matter, which controls the seasonality of surface pCO2. This cycle has been modeled by Peng
et al./2/.

Data from the Bering Sea/3,4/exhibits a qualitatively similar seasonal cycle. There pCO2 in the water drops from
approximate equilibrium with atmospheric pCO2 in March and April to become about 50% undersaturated by May
and June. The close correspondence in the seasonal cycles of pCO2 and nitrate content of the surface waters is
strong evidence that the reduction in nutrients by photosynthesis is the main factor responsible for reducing the
pCO2 by incorporating carbon into organic tissues.

The same pattern occurs over a broad region of the northern Pacific/5,6/. Four of the five I_ge sectors of the high
latitude Pacific have higher surface water pCO2 in winter months and lower pCO2 in summer months. Again, this
trend is opposite that due to the temperature forcing upon CO2 solubility and generally agrees with the cycle of
organic carbon shown by the nuirients. The importance of nutrients in the seasonal cycle differs from the dominance
of temperature in determining the annually-averaged sign of the disequilibrium between ocean and atmosphere in
many ocean surface regions/TL

The question of possible effects from this seasona/Ry on atmospheric CO2 arises because of the critical role of the
high latitude surface ocean in partitioning of carbon dioxide between the ocean and atmosphere/8-11L These
studies used box models to explore the possibility of different steady states, but one study by Wenk and
Siegenthaler /11/ is particularly relevant here. They perfomaed a transient calculation to see how the system moved
from one state to the other. They found a strictly exponential transient between the states and reasoned why this
should be so. The reason was that the transient essentially involved moving an "excess" or a "deficit" of CO2 with a
particular exchange rate between the combined atmosphere and surface boxes and the deep ocean box.
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MODEL CONSIDERATIONS

It is instructive to follow this reasoning to examine what the average atmospheric pCO2 would be if the ocean

circulation and surface temperatures and nutrients oscillated between two states, perhaps corresponding to the

seasonal variation. Here we consider the seasons as two distinct states, switched instantaneously between one and

the other in a repeating cycle. Each state can be characterized by an equilibrium condition, which is the state of the

ocean and atmosphere if particular values of ocean circulation, gas exchange coefficients, and distributions of

temperatures and chemical properties like nutrients and alkalinity were held for a sufficiently long period of time. In

a model with three ocean boxes, equilibrium was approached with a time constant of about 250 years/11L

Consider, then, two states "a" and "b", which differ primarily in the "summer" and "winter" conditions of their high

latitude waters. The two equilibrium values of atmospheric pCO2 for the total ocean/atmosphere system arc,

respectively, Peq,a and Peq.b- During the time interval when conditions have the equilibrium state Peq.a, assume the

atmosphere relaxes toward Peq,a with a time constant of ka "1. Similarly, during the time interval when the

equilibrium state of atmosphere is Pcq,b, assume the atmosphere relaxes toward Peq,b with a time constant of kb "1.

The two governing differential equations are therefore:

dP
"di"= ka (Pcq_ - P) during interval Peq = Pcq_ (la)

dP kb (Peqb - P) duringintervalPeq = Pcq.b (Ib)dt '=

Since we consider that state "b" corresponds to the time when the high latitude ocean surface waters arc in their

winter condition, which has higher surface pCO2 than during their summer condition, Peq,b is greater than Peq,a.

Atmospheric pCO2 at the end of each interval where Peq = Pcq,b will be the highest P of the seasonal cycle (Pmax),

while P at the end of each interval where Peq = Peq.a will be the lowest P of the seasonal cycle (Pmin). This means

Pmax is the initial condition for the beginning of every interval Peq = Peq,a and Pmin is the initial condition at the

beginning of every interval Peq = Pcq,b. Solving equations (I a,b) with these initializing conditions gives

P = Peq,a+ (Pmax - Pcq_ ) e-kat

P = Pcq,b+ ( Pmin - Pcq.b)e-kb t

during interval Peq = Peq_

during interval Peq = Peq.b

(2a)

(2b)

Assuming the equilibrium states and time constants can be known, equations (2a,b) have four unknowns: P for the

two time intervals, Pmin, and Pmax. However, two additional equations come from continuity of the value of P at

the two times when Peq is discontinuous: when Peq switches from Peq,a to Peq,b and when Peq switches from Pcq,b to

Peq.a •

P = Pmin = Pcq,a + ( Pmax - Pcq_) e-ka t*

P = Pmax = Peq,b + ( Pmin - Peq,b) e -kb t*

at point when Peq switches from Peq,a to Pcq,b (3a)

at point when Peq switches from Peq,b to Peq_a (3b)

The time t* is the length of the interval during which Pcq = Pcq_t, and here is also equal to the interval during which

Peq -- Pcq,b. In this system where the alternation of Peq,a and Peq,b forms a seasonal cycle, t* = 0.5 yr.

Defining 0 = leot* and ot = ka/k b, we can solve for Pmin and Pmax using equations (2a,b) and (3a,b):

Pmin = Peq a + [Peq b (l-e-9) - Peq a] e -a9
l-c-_l+a)

(4a)

Pm_ = Pcq.b+(Pmin-P_a.b)e--# (4b)

It is convenient to define APeq = Peq.b - Peqj to be able to express Pmin mad Pmax in terms of Peqat and APcq. Then

150



Pmin= Pcq,a+ Y APcq (5a)

Pmax = Pcq_ + _.APcq (5b)

e¢ - I e(1+a)¢ - ea¢
= X = (5c)

where y e(l+oO¢- 1 ' c(l+ot)¢- 1

We are interested in the average amlospheric pC02, defined here as Pay = (Pmin+Pmax)/2 :

Pay = Pm,a + 0.5 (_,+_.)AP_ (6)

For the special case where the summer and winter time constants are identical (a = 1), Pay = Peq,a + 0.5 APeq, A

way of thinking about this is that the atmosphere is between the two equilibrium states, with summer and winter

high latitude conditions about equally important in determining the atmospheric pCO2. However, as is most

certainly the case, if the summer equilibration time is greater than that of the winter, in other words ka is less than

kb, then Pay is closer to that of the winter equilibrium state, Pcq,b. This is shown graphically in Figure la. As a

limiting case, if ka = 0, then Pay = Pcq,b. In Figure 1a with Pay as a function of 0_, any variation in _ if q is less than

about 1 does not significantly affect the relation between Pay and ct.

Another property of this system of potential interest is the oscillation relative to its maximum possible. This

quantity, (Pmax-Pmin)/APeq is

Pmax - Pmin

APeq = _"- "/ (7)

The time scale for gas exchange of CO2 between the ocean surface and atmosphere is of the order of year to years.

That it is at least a year is evident from the fact that strong seasonality in the pCO2 of surface waters exists.

However, adjustment of the entire ocean/atmosphere system to changes in high latitude surface waters takes longer,

on times scales of hundreds of years/I 1t. The relaxation time of about 250 years followes equilibration of the

atmosphere and surface ocean, and thus this time may not be appropriate for the seasonal cycle. However, here we

have only assumed that there exists some time constant which applies during the seasonal cycle. It is therefore

appropriate to examine the behavior of the system from k-l=l yr. to k-I = 100 yr., or since ¢ = kbt* and t*=0.5

yr.=l.0, we need to examine values of ¢ approximately between 0.01 and 1.0.

Figure 1 shows how varying ¢ affects (Pmax-Pmin)/APeq with three different values of 0_. As qualitatively expected,
large values of _ ( which correspond to small values of the relaxation time, k-l) yield large atmospheric CO2

fluctuations. Since the changes in surface water nutrients in the glacial/interglacial models is approximately that

observed during the seasonal cycle in the high latitudes, it is reasonable that the difference between Peq,a and Peq,b is

on the order of the glacial/interglacial atmospheric CO2 changes, about 60 l.tatm /8-111. If ¢ = 1, figure 1 shows that

atmospheric CO2 would vary as a significant fraction of the difference between Peq.b and Peq,a, but the air-sea gas

exchange coefficient is too low to allow such rapid, large changes. Thus, smaller values of ¢ seem more likely, but

this can be tested by running models of the ocean/atmosphere system in transient modes.

CONCLUSIONS

Even though the ocean/atmosphere system moves toward equilibrium over time scales of hundreds of years, this
work indicates that seasonality in the high latitudes could affect the steady-state average value of atmospheric CO2.

This effect would exist if the equilibration rates differ between the summer and winter conditions. The fact that the

two hemispheres of Earth are in opposite seasons would not affect this result. Winter conditions certainly have

faster rates of exchange between the atmosphere and ocean (higher gas exchange coefficients during high latitude

winters than summers/12/) and faster rates of exchange between the surface and deep waters (deep convection

during winter and stratification during summer/2/). This indicates that seasonality could affect the global average

atmospheric pCO2 by moving this average closer to that of the long-term equilibrium conditions of the winter

surface water states. This finding suggests phenomena that should be explored further by converting the steady-

state box models into models with time-dependent seasonality in the high latitudes.
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ABSTRACT

An experiment was carried out to determine the ch•racterlstlcs of an operations system that

can support fast cultivation of algae at high donsltlos in the weightlessness of space.

The experiment was conducted in glass bloraactor tanks, in which light was supplied by

radiator rods connected to optical fiber cables. The illumination areas of the tanks were

2600 cm 2, 6000 cm 2. and 9200 cm 2 per liter of solution. The characteristics of 02-CO 2 gas

exchange, concentration and separation of chlorella in the growth medium, dialysis of ionic

salts in the growth medium, etc. were examined.

ChZor•Zla ellipsoids• was used in the experiment, yielding the following results:

(i) By increasing the ratio of illumination area to volume, growth rates of up to

approximately 0.6 g/L-h could be obtained in a highly concentrated solution (one

that contains 20 g/L or more of ale•e).

(2) The most suitable proportions of carbon dioxide and oxygen gases for growing algae

quickly at high concentrations were found to be 10t CO 2 and 10t 02 (by volume).

(3) There was • high optimum concentration for fast cultivation, and the data obtained

re•enabled the theoretical curve postulated by P. Behrens •¢ el.

(4) It was possible to exchange carbon dioxide and oxygen using gas-permeable membrane

modules.

(5) It was possible to separate the chlorella from the growth medium and recycle the

medium.

INTRODUCTION

A system for apace usa similar to the one doacrlbed in this experiment, which wlll con•let

of • bloraactor and • solar light collection system, will be able to filter most of the

harmful ultravlolat and infrared radiation from sunlight and transfer the concentrated

visible light through optical fiber cables to illuminate cultivation tanks. Visible light

can also be obtained by passing artificial light, such as light from xenon lamps, through

lenses and filters and then into optical fibers [1-4|. This photosynthetic bloroactor

system may prove practical not only for rod, green, and blue.green algae and photosynthetic

bacteria, but also for cell cultures from higher plants.

A previous CELS8 paper described the planning and construction of • photosynthetic

bioresctor system using the same solar light collection and transmission system end else •

silicon membrane module, a CO2-0 2 gas exchange device, and an acrylic bioreactor tank.

Short-time operation experiments wore carried out, and • simulation was d_ne to determine

the specifications of a system which would allow one person to survive in space [5].

In this experiment, a glass tank was designed end constructed, and • carbon dioxide and

oxygen gas exchange device, an ion dialyser, and • filter tO separate the culture from the

growth medium were fitted to the tank. This operations experiment incorporated In

automatic regulation device which received information from DO, DCO2, pH, and temperature

sensors and used it to control other devices. By investigating the characteristics of each

device, the optimum parameters for increasing and maintaining the yield of algae ware

determined.

METHODOLOGY

The Deslcn of • Photosynthetic Bier•actor System uslno a Solar Lioht Collection Device [6-

EL

The centrists system. The blorsaotor system for use in space conalate of 5 major components

(aS shown in Figure 1):

(I) Tank illumination subsystem

(2) Light supply subsystem

_IH'tTNI'IOHA_IP Bt:AHI
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(3) CO 2 supply and 0 2 collection

subsystem

(4) Culture supply and separation

subsystem

(S) Nutrient supply and recycling

subsystem

All of these components operate within •

closed system consisting of the tank, a

network of tubes, and several devices

which are necessary to monitor the DO,

DCO2, pH, temperature, light intensity,

etc. of the growth environment [9-11].

The system must be capable of operating

for long periods of time without
_ainten•nce.

Bioraactor deslun. The glass

photosynthetic big=easter which we

developed and built for this experiment

i8 shown in Figure 2. With this system,

solar light or light from • xenon lamp

can be tr•nsmltted through optical fibers

either directly into the tank, or

indirectly into light radiator rods,
whore it can be dispersed very precisely

throughout the medium. The radiator rode

are protected by glass tubes, but tubes

Of other materials such as plastic,

polymer, and quartz can also be used.

Thl8 setup also makes it possible to

disinfect the tank with steam or

chemicals.

This particular big=santo= system has the

following advantages:

(1) Since the illumination area can

be changed by altering the

density of the radiator rods in

the tank the setup allows for a

greater degree of freedom than

that obtained with previous

photosynthetic bioreactore.

(2) It 18 possible to disperse solar

or xenon light, from which

ultraviolet and Inf rated

radiation has boon removed, with

arbitrary intensity and quality.

Hence, it is possible to achieve fast

growth at high concentration by

dispersing large amounts of light with •

spectrum silllar to that of sunlight into
a closed blare•clot system; it should

therefore he possible to design a compact

and productive system for a space

station.

I SOI|r |upply System

| IIIIi -%
! i llllJ -: "°'

C_Loceile lap•ratios S_lxuKel_nt and e_ttzol
modulo

system

Fig.1 Schexmtl= for a bioreactor with sunlight supply and
operatises syltem for ule An the sp6ce anviros,,mont.

act radiatlox tube

The solar linht collection and

transmission system. We re c antly

developed • flat-dome solar collecting ray.2 P_tesynt_tic lie=oat=or

in Figure 3) issystem (shown which

similar to the one which is being planned _ J..concentrate it by a factor of 10,000,

end focus it into the input end of an // _ _Iie

optical fiber cable The focal points of _ __P_te_t°i_ _

different wavelengths of light ere at

different distances from the lens: the

focal point of ultraviolet light is

closest to the lens, followed by the

focal points of the visible wavelengths,

and the focal point of infrared light la

farthest from the Ions Hence, it 18

possible to choose • particular range of

wavel.ngth, d.p.nding on th. plac--nt of _ _ / ,
the optical fiber input end

Of course, light from xenon lamps can

also be transmitted through optical rlg.) _lar light _llootor "Simwwari"
(terrestrial ty_ for elqperlmatatioa}

tobit

Fiber =able

)
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fibers aftaruslng reflecting mirrors end

filterato cut infrared and ultraviolet

radiation; it Is thus possible to provlda

the system with stable hlgh-quallty light.

A xenon lamp unit for supplying artificial

solar rays 18 shown in Figure 4. Figure S

shows the spectrum of light from the solar

light collecting device and the xenon llm_.

Thls system can provide light with 8 stable

quality end intensity for photosynthesis

experiments.

Methods end Materials

A diagram of the operations system used in

this experiment is sho_n in Figure 6. The

algal culture used in the experlmont was C.

elllpaoidea. The composition of the

culture medium was as follows: in I liter,

5 g KNO3; 2.5 g MgSO4"7H20; 1.25 g KH2PO4;

0.028 g FoSO4"?H20; and I mL A 5 solvent.

The temperature of the medium was kept at

25°C during the oxparlmont.

A xenon lamp was used to provldo light

roaombllng sunlight in space, and the light

was fed into the blorsactor by optical

fibers. The experimental methods are

described below.

The ohotoavnthetlc bloreactors. The

bloroactor8 uood in the experiment consisted

of glass tanks of three different sizes

{diameters 40 mm, 34 mm, and 28 mm; height

250 mm) and light radiator rods {plastic

fibers with a diameter of 3 mm) with glass

protection tubes (outside diameter I0 mm,

inside diameter 8 mm). Thooe throe

bloroactors had radiation areas of 2600

¢m2/L, 6000 cm2/L, and 9200 cm2/L. (In the

case of the bloraactor with • radiation area

of 9200 cm2/L, plastic fibers wore inserted

directly into the chlorella culture without

the usa Of protective tubes.) The gas used

was a combination of varying amounts of

carbon dioxide, oxygen, and nitrogen, and a

gas flow of about 1 vvm was administered
from the bottom of the tank. For each

bioreactor tank, the light intensity,

initial concentration, and gao composition

were varied, and changes in ths growth rate

(g/L.h) were measured.

Gas exchanoe devices. The gas

exchange modulo used (manufactured

by Mitaubiohl Rayon Corp.)

contained polypropylene membranes.

The chloralla solution was

circulated inolde the membranes,

end a mixture of carbon dioxide,

oxygen, and nitrogen gas was

circulated outside th0 membranes.

The rata of exchange of carbon

dioxide and oxygen between the gas

side and the liquid side was

calculated from the changes in the

concentration of dissolved oxygen

(DO) and the concentration of

dissolved carbon dioxide (DC02).

Chlorella filtration_ Two

dlfforsnt filtration devices wore

used to separate the chlorella

culture from the growth medium in

order to Investigate the

filtration characterlatica of the

chlorolla: a 0.45 _ mlcrofiltar

module, and an ultrafiltratlon

device {with a molecular mass of

separation of 15,000 to 20,000).
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Determlnatlon of ion dlelvei8 characterintlca. 8mNpioa el ohlorolle medium taken after

growth at high concentrations for long periods of tim and than passed through the 0.45 l_a
_rana filter modulo were dlelysed with nw_ium (the volm_ of the newmedima used wee
four times that of the used medium) using a hollow-fiber type dialyser (KawaaumL

Laboratories, Inc. KF-201). The now and uaod growth mdium slm_le8, us wall aa the growth

DedLum obtaln_i after dialysis, wore used to grow chlorelle on 8n undulating plstfox_wLth
an average illmnlnatlon of 3000 Ix; the rates of chlorelle growth were compared. The
growth medltm 8_1a8 were alas placed in an ultrasound-emltting tank (40 kHz 2 2 kHz) for
• cartels amount of time. The granularity distribution and the chlorella growth rate8
before end after being placed in the tank wore dotsrmlned, end the effect of the sound

waves was InvostLgat_i.

Noasurement end control devices. Concentration of chloroll8 wee dotormlnod from the dry

weight of a 8sn_ple. For concentrations of i g/L or lees, the light absorption at 660 nm

was used to calculate the dry weight.

To detamina the light intensity, an OHA

(Princeton &pplLod Research model 1450) was

used, and the intensity of visible light

(380 rm_-T80 run) was obtalned by integration

and converted into watts.

To doters/no the composition of the gas,

oxygen gas was measured by the 8o1£d

zirconium electric charge method, end

carbon dLoxldo was measured with a gas

analyser {numnufactured by Able Corp.) by
the undispersod infrared absorption method.

IIXIMXMI_AV- BEaULTg

Photosynthetic Bioraactor Testa
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The goal of this experiment was to
determine growth characteristics resulting
from different initial concentration8 of

chlorolle and various gee compositions,

given a constant light intensity. Figures
7, 8, and 9 show the growth characteristics _e's

tanks having illumination areas of _for.00.00..00
tank was given a constant lO_ supply of 10i
CO 2, end the concentration of oxygen was .
varied.

For each tank, there was an optimum inLtL*l_ °.z_ "_----I-_......._

concentration of chloralle, which was found _ e.z I _ ....
to be near the equilibrium point. With o_ _/0_ -_--@

increased light intensity, the meet _| lie - _ _suitable initial concentration yes found to NO
shift to • higher value. With hloreectors o I "- -, I , , i

having • larger illumination ares per unit o le le 3O

volume, • higher rata of growth was

possible, and with an illum/natLon area of

9200 cm2/b end a concentration of 20-60

g/L, the rate was found to be between 0.4
g/L-h and 0.6 g/L.h. The results show that
P. gohrons' mo_ol of productivity baaed on
hie experiments with 8enedagmus hold8 even

at higher concentrations (12].

Th....ct. of oh.rig.. In th. o.unt, of
carbon dioxide, oxygen, and nitrogen on the _-

growth rate with an illuatlnetlon area of

9200 cm2/L ere shown in Table i. It is
apparent that If the percentage Of carbon
dioxide AS _utde higher or lower than l0 1

volt, the rate of growth decreases, and the
same holds true for oxygen. The gee

co.position which yields the highest growth an°K

.ate is _:o2:.=" 10,._0.:00. ,by _a
volume). This £8 independent of the light

intensity end t8 especially evident at high
concentrations.

centrifuged • hlgh-concontretLon slmplo

grown for a short time under optimum
conditions for 20 _lnuto8 et 3000 _pm,

Initial Cancentrati(m of Chlornlla (g*/Ll (¢Oi:10_lt,OlJ2Ovolt)

*g_chlotelle dry vei_ht

rLg.i _latio_ahlp betm_e_ rata Of _.'han_l_ O| _hlorelle

l%o_mt=_m_ and ,nLtt.l .n.ntratt. 0, chlorell.(illmtnatton ares of 60OO_/L).

0._ l I I i l i _J l l !

Input Ilght enarqW

0 3.)OIN/LJ

O. IS 0 2. iO [W/L|

-_- 0.e6 lu/LI
A O.l| IW/LI

._ ...... _._

0 t I i I I I i m

0 _ 4 0 8 10

Initial (_a_entratl_ of Chlo_lla [9*/L| (O_ss|Ovol_.Oll]O_ol_)

egichlorella dry _I1_t

rtg.J _02Stio_nbip bdHn_dm rote e| a_an@e of ohlorelle
mntrat/_s amd initial St_iti_ Of ehlorelln

ILllu_lnntlcm ernn of IO00_ml/LI.
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obtaining a greenish fluid.

When examined with a

spectrometer, peaks at 663 and

432 nm wore ovldont, indicating

the presence of chlorophyll a

and chlorophyll b. The growth

curve obtained by cultivating

chlorella in this used culture

medium on an undulating

platform is shown in Figure I0.

There was a large difference in

the growth rates of chlorslla

in the new culture medium and

in the used culture medium,

influenced by the concentration

of minerals and other recycled

substances. It is apparent

that inorganic salts are the

limiting fsctor for short-term

hlgh-denslty growth.

Gas Exchanoe Tests

Table 1 Effect of Input gas P_purtLenl on the Rata st C.=sllLpaoiaae
Concentration Change (illumination area of 9200ca').

Rata of Initial Flow ratot0.0S~0.1SL/mln

C. elllpaoidea concentration of (lvvm)
'concentration C. ellipse/dee
change Temperature CO 2 02 H2

(ge/L'h) (ge/L) (eC) (volt) (vOlt) (volt)

0.132 27.27 ZS 0 100 0

O.ll 21.1) 25 0 50 |0

0.306 20.67 25 0 10 90

0.204 27.93 IS 10 SO 40

0.424 30.4T )S S iO 05

0.260 .34.13 |S 20 10 ?0

O.i 28.7 25 10 10 lO

Simulation of concentration thanes in the

ghlorella culture.

Figure 11 shows a curve representing CO 3 and 0 2

concentrations in a chlorella culture eupplled-

wlth gas containing I0 molt CO 2 . If

photosynthetic processes are stopped, (e.g. by

the absence of light), the concentration of

dissolved CO2 increases with time as a result of |
the CO 2 supplied to the system until it levels

out at the saturation point (CA}. If light is

restored to the system, the concentration of the

CO 2 decreases until the rate of CO 2 use Is

approximately equal to the rate of CO 2 supply

(CAL). In the absence of light, the

concentration Of 02 in the liquid levels out at

the saturation point. If light is restored to

resume photosynthesis, the liquid becomes

supersaturated with 0 2 . In this case, the

equilibrium concentration of oxygen can be

determined by the sum of the amount of oxygen

which escapes from the tank and the amount of

oxygen that con be collected with s membrane.

5unolv of carbon dioxide. The concentration of

carbon dioxide in the solution while in I state

of darkness can be expressed as follows:

dCaL/dt : KL.a. (Ca-C_L) (1)

Hers. C A is the CO 2 concentration in the

8slutish at the saturation point, CAL iS the CO 2

concentration in the solution, K L i8 the mass

transfer coefficient, and I Is the area of the

llquld-gas interface {which is equal to A.e/v,

where A is the area of the membrane, e is the

porosity of the membrane, and V Is the volmno of

the liquid in the tank).

We conducted experiments in whichwo changed the

following factors which we thought might

influence the value of KL: the concentration of

CO 2 in the gaS, the pressure Of the gas, the

flow rate of the gas, the density of chlorella,

and the flow rate of the surrounding liquid. It

was found that the first four factors did not

affect the value of K L, but K L was affected by

the flow rate of the surrounding liquid. In

Figure 12, the relationship between the Sherwood

value Sh (o KLdh/D). oxygen collection h contains

the liquid flow, Is shown. Here, d h (the radius

of the hollow fibers in the membrane) = 200 pm,

D (the dissolution constant of water) = I.gYIO "9

m2/s, n (the viscosity of water) = 9.0¥10"Tmi/s,

and v Is the flow rate inside the hollow fibers.
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The straight line in the graph shows the Leveque modal which can be applied to flow through

tubes, and it is evident that the flow of pl•in growth fluid •nd •leo of growth fluid

containing chlorella corresponds fairly closely with the predicted flow.

Collection of oxygen through membranes. The concentration of dissolved 02 can be calculated

by the following formula:

do,L/de = [K C.LS/a] o2(g)/v (2)
Rate of Rate of mell_rlms Rate Of omlsslon of

photosynthesis oxygen ©ollection oxygen from the tank

Here, CBL is the 02 concentration in the liquid, K L' ia the mass transfer coefficient for

02 , C O is the concentration of oxygen at saturation, and O2(g) raprecents the oxygen which

t8 _tted from the tank. 10e

Under normal conditions0 the •mount of ox_en produced by

photca_mthost8 can be expressed a8 the a_ of the _unt of |_

oxygen collected with the ms.rang and the wRount of oxygen
escaping from the top of the tank, From the results of the

,xper*mant. it was ,ho_ that the ,mount of o_gan collected _i
with the wmmbreno incre•sod with the flow of the surrounding so

liquid, given • constant photosynthetic rate. The
relationship of the Nmbrsno oxygen collection ratio (rite 8_

of oxygen collection through the membrane / rate of

photosynthetic oxygen production) to the Re value is shown

in Figure 13, Zn the graph, _ represents the total rata of o

oxygen collection through the membrane and _ represents the

rate of collection of dissolved oxygen which p•asec through

the mm_J_rano and riso8 88 gas, whore KL'-K b. It iS thought

that the difference is due to bubbles of oxygen in the

surrounding liquid which escape as bubbles from the membrane

duo to the pressure difference between the liquid end the

gaS.

!

5

I
O SO Leo

I-I

0 Total rate of oxy_m eolteeUoa
tt_ou_ the nembcene

'O Irate Of uolXocticat of dissolved
O_'ygen _:Loh pllllOll th_to_lgh th41
mmlbr41m _ tLllalll all 114111

Fig.13 aslattcmaaip botwtea tim oxFgom
aolleGtion zate SAd leo vslwo.

In Figure 13, it is shown that on earth, about 80t of the oxygen can be collected with •

membrane, but it is thought that in the absence of gravity, ell of the oxygen bubbles will

circulate around the surrounding liquid, so that nearly lOOt can be collected.

Hombrane are• necessary to sunoort one human. A human requires 620 L of oxygen per day.

It is thought that if 620 L of carbon dioxide is given to the system, ell of the necessary

oxygen can be produced. The rate at which CO 2 passes through the system is related to other

f•ctor8 by the following equation:

J = Ku.e.A(CA-C_,) (3)

The rate of supply of CO 2 is 620 L par day (i.e. J •

2.94¥10 .4 mO1/s). The necessary membrane area, as 8ho_m i• =0 , .
Kquation 3, depends on the difference between the CO 2

concentration of the medium end the CO 2 concentration It _

saturation point el well as the mass transfer coefficient. +

In Figure 14, the relationship between the membrane area

necessary to administer the amount of carbon dioxide

necessary to support a human for • day and the CO 2 l0

concentration difference is shown using the Reynolds value

(which influences the mass transfer coefficient) •s 8

parameter. Using thin graph, it is possible to obtain the

necessary IN mbrans area under various operation conditions. _ 0 ," i

Trite on Chlorolls Seoarstion Characteristics O 1 3

The result8 of these tests are shown in Figure 1S. _-c_ {ml/=')

Initially, the rate of flow through the microfilter (NF) Fig.14 dlfor_CO_tc_mtatl_mlffe_tof N eadtJm_so-l_4
w•a unusually high, but it dropped quickly. The ultrafilter ,fthe'M_eas_yammbrsMrste_--

(UF) had • low but constant flow rate. The chlorell• adhered to the microfilter, reoulttng

in a low chlorella collection rate. It ia thought that with the microfilter, chloral1• not

only collected on the surface, but also became clogged inside. The ultr•ftltor showed •

buildup of chlorolla only on the surface. Clearly, it ia necessary to take into account the

concentration, cellular size, and granularity of a culture when choosing porous hollow fiber

filters, oeraumlc filters, etc.

/on Dialvaia Teats

The growth curves obtained by cultivating chlorolla on an undulating platform with (1)

culture medium which ha8 boon palmed through a 0.45 jam membrane filter (used culture

medium), (2) now culture medium, and (3) dialysed _edlum, •re shown in _Iguro 16. The

growth curves obtained with the now medium and the dialysed a_diu/_ Ire about the lime,

unlike the difference between the now medium end the old nmdium. This is thought to be 8

result of constant ion supply through the dialysis mm_rano.
OR_G!_AL PAGE IS
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T•bl• 2 shows the chlorophyll distribution

in the used culture medium, the dialysed

cultur• n_dium, and the new culture medium,

The growth curve for the used cultur•

medium showed low rates of growth. •nit the

8p_ctEum Of plg_nta (•xtractod using

acetone) shawl low livels of chlorophyll a

|U3 run) and chlorophyll b (432 nm). The

now c_Iturolodlum and the dlaLFsodculturo
modlum both 8how high levels of pigment

_Aensity.

. _Igur6 l_ shows the growth curve of
c_lorella which has been exposed to
ultrasonio waves. There were practically

no effects noticed after exposure to

ultrasound tot 10 or 20 n_inutoi. There was

no change in granularity, and •her# was no

damage from the ultrasonic exposure. The
cell wall of Chlorella Is hard, end it Is

difficult tO damage it by ultrasound waves,

80 in OZ_Or. tO Nk• it possible for humans

to digest, it is necessary to dry the ceils

and then physically destroy the cell wills

wlth • homogeniser. However, ultrasound

_ay be useful for removing ch_oro_l• ".dd_,_f_"c_.
sticks to the btorosctor system.

I ] 'isVPrwe (i__ l$1L/ •

I _ aO_.@ time laltlal
• _

! ,/ /-I/./"
p S_ OOY II. Oki/C_lG)

/

O lO IO IO 40 ie SO ?0
il l/al

ll_lllal l_lut i.ilZ, I

Illutiit ira alurlact II el&ill I.loInll

_l_lI li ImllitritII t I • 0 It'/LI

Illliilololli dry weliht

eli.IS OmVa;Im el if i II ilia/lilly

0.4

CONCLUSIONS _ O.4

The following implications for the I

characteristics and the feasibility of • |
photosFnthotio bioreactor which can grow

frcm•lgaethtiqui°klYexporimont:at high concentrations follow _.e,I

(I) ny Incroailng tho illumination •roe

per Imlt volume, a growth rite of up

to •round 0.6 g/L'h could be e

! u e I I i u i i

I_ a_ mill=-

' Xl0--''d''

• . ._,_,,l__ -_..i_.l--

.._

obtained. 4o i0 lie lie 10o

(2) For high density and high 8peed |ha

growth, the optimum amounts 0 f .. tiililllil 4_y l_lil_lt
carbon dloxldi and oxygen wore 10

VOlt CO 3 and 10 volt 0 2 . its. It ¢oqmriNQ bitvial idlioraila growth in lae
diliymll ill i used medium.

(3) At the optimum density for high o .....I i • , , , , i
speed, high-density growth, • growth l

c. .reae'lingthatpredictedbYL
Ill it via possible to admlnliter ! ;°l_

carbon dioxide gas and collect "/'_"

o--. 0.. o. o, i'; 1
modulos.

chlorella from its growth medium m_d

rt_Folo the old growth medium.

we o•n thlnh of various bioroactor system

lltUpl fOE alice uil, such li a lita- _ r--.-_ , , t i i I i _ t I

support oil•am for CKLS5 and a lyltOI for el n 110 Ill leo
experiments with cells of higher plants.

tie are pl•nning to conduct continuous T'_ Ib]

operations system experiments for long eiJckiorolia dry weight

periods of time in order to verify our Fig. IT Grwth aurvol of ohio/alia exposed to
results, litzasmlll vavez.

Tibia 2 Comparlion between chlorophyll c_)ntintratlon of used
medl_, Ion dialysed medias, and original medium.

Total

concentration Chlorophyll s Chlolophyll b
Medium Of chlorophyll

S.O 1.8 l.lused madlum

ion dialyzed 14.O
medium

Original medium 31.0

17.0 ?.O

23.0 i.O

.mg:chlo_ell- dry vlit_it
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ABSTRACT

In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an

effective means for obtaining food and oxygen at the same time. We have chosen SpiruHna, a blue-

green alga, and have studied possibilities of algae utilization. We have developed an advanced algae
cultivation system, which is able to produce algae continuously in a closed condition.

Major features ofthe new system are as follows.
(1) In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a

swirl on medium circulation.

(2) Oxygen gas separation and carbon dioxide supply are conducted by a newly designed
membrane module.

(3) Algae mass and medium are separated by a specially designed harvester.
(4) Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and

quantity of generated oxygen gas are controlled by a computer system and the data are
automatically recorded.

This equipment is a primary model for ground experiments in order to obtain some design data for

space use.
A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use

of this new system.

INTRODUCTION

To realize the long duration living of human beings in space, we have to transport the various

necessary materials such as food, gases, water and so on. However, this way is expensive and has

problems about consumption of restricted resources in the earth. So to solve those problems, CELSS

has been earnestly studied in recent years.

Oxygen and food are indispensable materials for maintaining a living environment for human beings
and animals. Then, microalgae having higher photosynthetic ability are one of the most important

components of CELSS in point of air regeneration and food production. Especially, Spirulina is
considered to be a good candidate because of the following distinctive feature_

(D High food value and easy digestion.

_) Rapid growth and easy harvest.
(_ High utilization efficiency of CO2.

From the reasons of mentioned above, we have been experimenting with closed gas systems sines
1986/1/. As we had obtained a confirmation for photosynthetic algae utilization through this effort,

we have been studying a closed and continuous algae cultivation system.
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\
DESIGN OF SYSTEM

Algae cultivation in a weightless environment has lots of problems compared with ground

cultivation. In industrial algae cultivation which cultivates algae mass only as food, to supply

enough carbon dioxide and light energy for algae, the euluture solution is well agitated by means of

bubbling air in an opened type cultivation pool. However, those methods can not be used in a

weightless environment. Considering utilization efficiency in space, a tank type closed cultivator
seems to be molt suitable.

Construction of system

The closed and continuous algae cultivation sy_em is composed of three parts, a main body, an

instrumental panel and a computer system. This system could be worked either automatically or

manually.

Figure 1 shows the schematic flow diagram. Culture solution is circulated by p-2 pump (using a

roller or centrifugal pump) through the bypass line which is made of silicone rubber tube. The

solution is pumped out at the top of the cultivation tank and flows in from three inlets at the bottom
of the cultivation tank. The flow rate is from 0.6 to 3 liter/min.

A thermo-sensor and pressure-sensor are set on the top of the cultivation tank. An optical denaity(O.

D.)-sensor, a pH-sensor and a heater are set on the bypass line. Two hollow fiber membrane modules

used as an oxygen separator and a carbon dioxide supplier are also seton the bypass line. Oxygen gas

is separated from the culture solution through the membrane module and pumped to a tank by a

vacuum pump, P-1. The concentration and quantity of separated oxygen gas are measured by an Os

analyzer and a gas flow meter. In order to check the concentration of C02 contained in separated gas,

a COg analyzer is also used. Carbon dioxide gas is supplied from the C02 tank to the culture through

the membrane module.

All of those indicators are set on an instrumental panel.

PHSensor

, ( _ ( t

P_ _ _ ..AL_ --j " Y_ermo Pressure

! l i I I d

Bo.l*-I I I Waste I I_ _ I

I Medium Tank _r----_ )V:z ! IRma,!

---_ZZ_7 Controller

Fig. I The schematic flow diagram of the system
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The specifications of this system is shown in Table 1.

TABLE I Specifications of Cultivation System

Cultivation tank

Lighting source
Light supply methods
Sensors

Gas separator
Controllers

I.D. 180 DIA × 370 H ( mm )

Halogen lamp ( 50w X 3 )
Bundled plastic optical fiber and Acrylic optical rod

Pressure, Temperature, pH, Optical density,

Oxygen, Carbon dioxide and Gas mass flow
Hydrophobic porous type membrane module
Pressure, Temperature and pH

Instrument panel 530 W X 600 D X 1500 H ( nun )

Computer

Total power

Personal computer
Program language

Program size

400 w ( max : 700 w )

: Basic

: 140KB

Apparatu_

Cultivation tank, The cultivation tank is made from acrylic resin and has a round shaped top and
bottom in order to facilitate the collection of generated oxygen gas. The tank is 180 nun inner
diameter X 370 mm height and an inner volume is about 6 liter. Two kinds of cultivation tank have

been made. Although the outer shape is similar, one has three bundles of optical fibers and the other

has three acrylic optical rode to provide light energy.

The bundle ofoptical fibers is made up of about 30 plastic optical fibers each with a diameter of 2 mm

and a pointed head cut at an angle of 45 degrees so that the light leaks uniformly. Likewise, the

optical rod has grooves cut around its surface at varying depths and intervals. The light is supplied
through the bundle of optical fibers or the acrylic optical rod from three halogen lamp units. The

maximum light intensity is about 10,000 lux.

The bottom inlets have an angle against the vertical axis so that the culture flow swirls in the

cultivation tank and keeps the Spirulina culture homogeneous.

Gas separator. As a gas separator, a hydrophobic porous type hollow fiber membrane module has

been used in this experiment. A previous type module and a new designed one are shown in Fig. 2.
Until now, the previous type which is commercially available for medical use u in Fig. 2 (a) has been
used. But because both the inlet and outlet are at right angles, those especially the outlet were

gradually clogged by growing algae mass. In order to prevent the clogging, a new module with a U-

typed hollow fibers as shown in Fig. 2 (b) is designed. The major feature of new module is to use re-
usable hollow fibers which are constructed so as to be removed easily.
The characteristics of the hollow fibers is shown in table 2.

Optical densitv-senser. A diode laser and photo detector are used as the O.D.-sensor. A glass cell
connected to the bypass line is fastened just between the diode laser and the photo detector. The
wavelength of diode laser is 780nm and the dimensions of the diode laser and the photo detector are

25mm (W) × 25mm (H) × 55ram (L) respectively.

Algae harvester. The algae harvester Is made of six cylindrical filters (the bore of 3ram, the

length of 30cm, the pore size of 10pro(× 3) and 30pro(× 3)). The filters are mounted on a board, size o["
25.5cm (W) × 18cm (D).
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Fig. 2 The Illustrations of Membrane Module

TABLE 2 Characteristics of Porous Hollow Fiber Module

Material

Inner diameter

Wall thickness

Porosity

Pore Size

Gas flux

Bubble point

Effective area

Polypropylene

2OO/_n

22/an

45 %

0.036 pm

7 X 104 I/m2 hr 0.Satin

12.5 kg/cmz

0.3 m2

Operation for culturing, Algae cultivation is controlled by means of four operational modes using

a computer system. Manual operation is also possible.
Electric valves, valve-1 and valve-2, are sot on the sub-line connected to the bypass line. When

valve-1 is opened and pump-3 is run, the Spirulina culture flows into the algae harvester. When
valve-2 is opened and p-3 is run, the medium is added to the bypass line from the medium tank.

The four modes of operation of valve-1 and valve-2 are as follows:

valve-1 valve-2 P-3 P-4 P-6

! ) Ordinary Closed Closed Off Off Off
II) Harvest Open Open On On On

lid High pressure Open Closed On On On

IV) Low pressure Closed Open On Off Off
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0rdin_Jr_ modv, Usually the system runs in ordinary mode. Both valve-1 and valve-2 are closed
and culture is neither harvested nor medium added.

Harv_t mo_e, When algae growth and O.D. value reaches the maximum, valve-1 and valve-2

are opened and the culture flows into the harvester. Then the medium is filtrated through the filter

to the waste tank by pump.4. After filtration, electric valve-3 is opened and the algae mass is blown

out by pump-5 while the fresh medium is added to the culture to keep the internal pressure constant.

High pressure mode, When the value of the internal pressure of the cultivation tank is over the
maximum, only valve-1 is opened and the culture flows into the algae harvester until the pressure

decreases to the ordinary level.

Low pressure mode. When the value of the internal pressure of the cultivation tank is under the
minimum, only valve-2 is opened and the medium flows into the bypass line until the pressure

increases to the ordinary level.

A computer system is set to control these four modes, and also the pH value by switching the electric
valve-5.

All data obtained by sensors are recorded in the computer and transcribed into a graph.

RESULTS AND DISCUSSION

The species of Spirulina used in these experiments are Spirulina maxima, Spirulina oscillatorla and

Spirglina subsalsa. The culture is maintained in a liquid culture medium/2/.
The cultivation system runs in the following conditions. Light intensity at 3,000 to 10,000 lux,

temperature at 30 "C, pH at 8.6 to 10.5, internal pressure at 0.01 to 0.10 kgf/cm2, O.D. at 10 to 30 %.

P-2 speed at 820 to 2,000 ml/min.

There were no problems observed regarding computer control ofpH, pressure, O.D. and data logging.

Figure 3 shows the data obtained by culturing S, _ubsalsa in the closed and continuous cultivation
system. The concentration of separated oxygen gas increased gradually and reached a value of 32
after 108 hours culture. All through this experiment, the separated oxygen gas was pumped from the

culture constantly at a mean flow rate of 200 ml/m/n by vacuum pump. In order to keep internal
pressure stable, the valve for CO2 supply was opened and CO2 gas was pumped into the culture

continuously.
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Though S. subsalsa culture was not bacteria free, no serious bacteria contamination problems
occurred in long continuous culture as compared with other algae cultures. For maintaining good

algae growth and constant oxygen production, 8. subsaisa would be a good candidate for algae
culturing in space.

Avvaratus

Light suvvly method. The light intensity in the early culturing stage showed a value of about
10,000 lux near the part of the optical fibers and rods and about 5,000 lux at the surface of the tank
wall.

Since the optical rods are directly submerged in the culture solution so as not to create dead space,

algae mass tended to adhere to the cut part of the surface of the rod. As a result of this phenomenon,
the light supplying efficiency dropped and took more time than the culture using the optical fibers.

O.D.-_enpor. Generally, algal growth is monltered by measuring optical density of culture
solution at a wavelength around 680nm in a spectrophotometer. On the other hand, the O.D. value at

560nm seems to have better response for 8pirulina growth check/3/. However, a compact

photoelectric sensor with a wavelength of around 560nm, which is applicable in this cultivation
system, could not be found.
Then a photoelectric sensor with a wavelength of 660nm as a compact O.D.-sensor was obtained. But

the photoelectric sensor did not work well due to the unstable response.

Therefore, a diode laser with a wavelength of 780nm was tried as O. D.-sensor and it showed a good

response to algal growth. Figure 4 shows the relationship between the value obtained with diode
laser and algal dry weight. The O.D. value is not directly proportional to the algal dry weight.
However, the amount of algal hiomass in the sample could be roughly estimated by its O.D. value.

100

g
N 5O
d

C | '
5 10

Dry weight (mg/10ml)

Fig. 4 The relation between the O.D. value

obtained with Diode laser and algal dry weight

Algae harvester, Cylindrical filters are used as the Spirulina harvester. Since 8pirulina is

filamentous algae, it is easily harvested compared with Chlorella. The diameter of the cylindrical
filter used in this experiment is 3mm. If the diameter of the filter is larger than this, the algae mass
does not flow out when blown by air. 8pirulina culture was concentrated more than 16 times by this

harvester. About Ig dry weight of algae mass was harvested on a run. In good culture condition, no
clogging was observed after repeated harvests.
It would be possible to clean the algae mass with water using this harvester if additional pumps and
filters were attached.

Influence of circulation pump. When S. maxima culture was circulated by a centrifugal pump,
the culture did not show good growth because of its high shearing_ffect on the algae. However, no

bad effect was observed for the growth rate ofS. sulamlsa culture circulated by the centrifugal pump.

It's partly because 8. subsalSa ts smaller than _. maxima and its spiral-shape is tight.
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Thebellowspump,whichisneitheracentrifugalnorrollertype,generatesnofrictionandiscapable
ofmoving liquid containing some air. So it seemed to be better than the centrifugal type for algae
culture. But the S. subeslsa culture did not show good growth when the culture was circulated by the

bellows pump. Otherwise, no problem was observed for 8. maxima culture when it was circulated by
the bellows pump at the flow rate of 1,120 ml/min.
But as the circulating speed of the bellows or the roller pump was comparatively slow in comparison

to the centrifugal one, some problems still remained about gas separation.

Figure 5 shows the effect of circulation on the growth of S. maxima using a stirrer as a reference
culture and three kinds of pumps ( bellows, centrifugal and roller pump ).
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Fig. 5 Effect of Circulation on the Growth of S. maxima

_]as separator, As for this experiment, the newly designed membrane module has no algae

clogging problem at the inlet and outlet of the module.
According to the straight culture solution flow, the circulation speed has increased about one

literhnin over the previous type.
But other problems have occurred.

Algae growth was shown by monitoring O.D. at 78Ohm with a diode laser. Gradual increase of"the
pH value was observed together with the O.D. value increase as shown in Fig. 3. However, the O.D.

value of this experiment was a little lower than in the batch culture because of" 8pirulina cell
adhesion to the hollow fibers of the membrane modules. In the batch culture, 8, subwd_m grew

rapidly as shown in Fig.6, but in cultures circulated through the hollow fibers, algae tended to clog.
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Asaresult,theOJ).valuewasnotashighas the batch culture. One reamn why algae dogged is that

S. subaslsa produce8 poly4accharide, and another i8 the design of the membrane module and the
solution _reulaUng speed. Because of its adhesion problem, we did not succeed in keeping a long

(months) oontinuous culture of _ in this cultivation system. Improvements in membrane
module dui/n will decrease that problem and then more oxygen could be obtained from S. 8ub_alsa
culture.

20

0

Fig. 6

5 0

Time (Days)

Growth curve of S. subsalsa, in the batch culture

After those experiments, a gas recovering test which used the same equipment already reported 11/
was tried. The test experiments were started after the concentration ofdiseolved oxygen decreased to

some degree. Pure oxygen gas was supplied at the rate of 30 ml/min for 10mimutes.

The results are shown in Fig. 7. Fig. 7 (a) shows the concentration of recovered oxygen gas using the

previous type membrane module and Fig. 7 (b) shows the result using the new type. The effective
area of membrane i8 0.3m2 for both of them.

As is evident from Fig. 7, the peak value of recovered oxygen is almost the same. But, the rate of

decrease is quite different. Two reasons are considered. The first reason is the new type has smaller
contact surfaces, because the hollow fibers are inserted In a bundle. On the other hand, the hollow
fiber= of the previous type are set uniformly in the case. Therefore, the previous type has wider

contact surfaces than the new one. The flow rate ofthe recovered gas was about 80 to 100 ml/min in
the previous type and it was about 30 to 60 ml/min in the new one.

The second reason is the drop of the gas recovering efficiency because when fiber length becomes
longer, the drag on the gas stream in the fibers is stronger than on the shorter fibers in same
membrane area. A few solutions to those'problems have already been found out.

Problems and improvement:s

_ell adhesion. S, maxima culture adhered neither to the cultivation tank nor to the bypass line
under environmental conditions favorable to growth. But when the culture became high density,
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some adhesion occurred, especially to the hollow fibers. S. subsalsa is more adhesive because of the

production ofpoly-saccharide.

Bacteria contamination. Spirulina culture has less bacteria contamination than Chlorella

culture because of high alkalinity of the medium. S. subsals_ culture has no problem with

contamination by bacteria. But S. maxima culture was sometimes affected by the contamination of
bacteria. Culture growth is not good under serious bacteria contamination, especially when algae are

sheared by the pump. Some improvements are needed to keep the culture system aseptic.

Algae harvester. In order to automatically keep long continuous culture, treatment of algae after

harvest and recycling of culture filtrate is required. The algae harvester also needs more

improvements to be used for long term because it did not work so smoothly when applied to S_
maxima culture.

CONCLUSION

Oxygen recovery and the algae harvesting method are the main technical problems if algae are
cultivated in a micro gravity environment because gas and liquid do not separate naturally. This

cultivation system is a primary model (for ground experiments), constructed considering conditions
in a state of weightlessness. We could recover oxygen gas from Spirulina cultu_ and add carbon
dioxide into the culture medium through membrane modules while keeping the internal pressure of

the cultivation tank constant. And algae mass was harvested in a closed system. While it may be no
problem to conduct short period experiments with this system in a micro gravity environment it"the

size of the system is allowed, it is still difficult to keep Spirulina culture in good condition for a long
time. Bacteria contamination and cell adhesion are the last problems. These problems must be

overcome to keep the culture stable for a long time in space.

REFERENCES

1. M. Oguchl, K. Otubo, K. Nitta and S. Hatayama, Food production and gas exchange system
using blue-green alga (Spirulina) for CELSS Adv, _pace Res. 7, # 4, 7 - 10 (1987)

2. G. Clement, Ann. Nutr. Alim. 29, # 5, 477 - 488 (1975)

3. L.V. Venkataraman, Blue,teen alEa Svirulina, CentralFood

Technological Research Institute, Mysore 570013 (India) 1983.

173





t..,/C.-

GAS BUBBLE COALESCENCE IN REDUCED GRAVITY CONDiTiONS

B.G. Thompson* and W.S.C. Brooks**

* Biotechnology Department, Alberta Research Council, P.O. Box 8330,
Postal Station F, Edmonton, Alberta, Canada T6H 5X2

**SED Systems Inc., P.O. Box 1464, Saskatoon, Saskatchewan, Canada
SIK 3P7

ABSTRACT

The effects of low gravity, as produced by a reduced gravity aircraft, the KC135, on the
formation and coalescence of gas bubbles were examined over a range of gas-liquid ratios
and with various medium constituents. These effects will influence design considerations of

fermentors operating in reduced gravity conditions.

INTRODUCTION

Fermentors operating in reduced gravity conditions will be used for a number of functions.

They will be used in controlled ecological life support systems (CELSS) or biological life
support systems (BLSS) for photosynthetic and nonphotosynthetic organism growth, for basic
research purposes, and may be used as feedstock producing units for biopharmaceutical

production systems.

A single fermentor design is unlike|y to be of generic use in space, Different designs wtl|
be required to take into account operational condition requirements, 0nly certain fermentor
designs will be usable dependent on application. These applications include:

1. Examinations of the effects of low gravity on organisms. Many fermentors impart mass
transfer through active mixing systems. The combination of positive accelerative forces
and shear imparted by the mixing system and the negative accelerative forces imparted
by the resident liquid in the bioreactor make these types of fermentors unsuitable for
the investigation of the effects of reduced gravity on organisms.

2. Examinations of organisms requiring high rates of mass transfer for growth. Conversely,
fermentors without active mixing systems such as those that rely soIey on diffusion or
slow perfusion for mass transfer, while possibly being suitab]e for uses as above, wilt
not have mass transfer rates to support organism growth under most microgravity

operating conditions.

3, Examinations of organisms living at gas-liquid interfaces. Fermentors that separate the
gas and |iquid phases with gas permeable membranes wtll not allow the growth of
organisms that need to grow at an interface.

The bubble coalescence experiments described will be the basis for an actively mixed

gas-liquid fermentor design that will allow high mass transfer rates and enable the
cultivation of organisms that must grow at a gas-liquid interface.

Fermentors operating under reduced gravity will vary from those operating under unit
gravity /1/. Phases of differing density at unit gravity tend to separate spontaneously in
finite periods of time in the absence of other accelerating forces. In reduced gravity the

absence of gravity induced accelerations will cause this spontaneous separation to cease,
Similarly thermally driven macroscopic convection in monophase conditions will also cease

in reduced gravity conditions.

Gas transfer in a fermentor is important for both photosynthetic and nonphotosynthetic

organisms. Organisms require the removal of waste by-product gases and normally require a

specific gas or gases for metabolic purposes. In aerobic organisms the waste gas is usually
carbon dioxide and the gas required for metabolism is usually oxygen. However other gases

such as nitrogen, hydrogen, hydrogen sulphide, methane, and other gaseous hydrocarbons may
serve as metabolic substrates or be waste by-products.
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Gas transfer from a gas phase to an organism or visa versa is generally

governed by the following equation:

dg
-- = KA(C*-C)
dt

[i]

where dg
-- - gas transfer rate
dt

K = some gas transfer coefficient
A = interracial surface area between gas and liquid

C*= gas concentration at interface of gas and liquid
C = bulk liquid gas concentration

C is determined by the equilibrium of the gas uptake rate by the organism, ds/dt, and the

gas transfer rate, dg/dt. C* is a function of gas solubility and the partial pressure of
the gas in the gas phase. The equilibrium A in a continually mixed gas/liquid fermentor is
determined by the balance of bubble coalescence and bubble breakup. Both of these processes
are effected by the viscosity of the medium in the fermentor and the presence of surface
active agents and particulate matter. In fermentors where the gas and liquid phase are
separated by a gas permeable membrane, A is constant. K in any fermentor is dependent on
the net resistance to gas transfer between the gas phase and the surface of the

microorganism.

Thompson and Ward /I/ examined the effects of varying the functions that govern gas bubble
coalescence rates on the performance of a mixed phase microgravity fermentor and found that
this rate was a critical factor in accessing reactor performance, Similarly, factors

effecting K in microgravity need to be determined.

This paper describes a series of experiments undertaken on a reduced gravity aircraft, the
KC135, in order to study the effects of reduced gravity on gas bubble formation and on the
factors that effect gas bubble coalescence.

MATERIALS AND METHODS

The experiment was undertaken on a KCI35 aircraft which provides an environment with
accelerations of 10-2 to 10-3 g for periods of up to 30s. The bubble generation apparatus
used Is shown in a simplified form in Figure 1. In this system, gas llquid mixtures
contained in a 30 mL ampoule (B, Figure 1) were subjected to a controlled instantaneous
acceleration as the ampoule impacts on a stationary surface (A, Figure 1). The ampoule is
driven by a spring action (C, Figure I) activated by a hand pulled plunger (O, Figure I).

The ampoule was attached to the plunger mechanism. Agitation impulses ranged from 0.3
Kg.m/s to 0.03 Kg.m/s dependent on the mass contained in the sanq)le ampoule. The force was
roughly equivalent to dropping the ampoules 5 m. onto a solid surface. The resulting
gas-liquid mixture was then examined over time using a two camera video system operating at
go angles to each other. Can_ra speed was 30ms/frame. Initial bubble size distributions
prior to coalescence (about lO0 ms) and net bubble deceleration rates were observed, in
order to minimize the residual effects of gravity that are primarily in the vertica| axis,

bubble decelerations were only measured in the horizontal axis. Bubbles were selected that
had initial velocities within 10% of each other. The gas-]iquid mixtures consisted of air

as the gas phase and water as the liquid phase. The liquid phase _as modified with
additives including glycerol, yeast (Saccharom_ces cerevisiae, 2 X 10 cells/mL) and a
non-lonic surface active agent (Antifoam C, 0.1% v/v). A total of 180 trials over a 3 day
period were obtained for different gas-liquld mixtures.

RESULTS

The experimental conditions resulted in four different event periods (Figure 2). The first
period was a near instantaneous acceleration when the sample ampoule i_acts the surface
and the momentum in the fluid causes the violent agitation of the gas-liquid solution. This
phase lasted lOOms. By the end of this period, bubble formation was complete, although
turbulence was still present. Bubble breakup had completely ceased by the end of this
period. The second period was a bubble deceleration period. Due to the viscosity of the
fluid and the lack of acceleration forces the bubbles rapidly came to a stop within a
localized region of the sample. Concurrent with this period was a period where the bubbles
underwent coalescence events due to collision. Once relative bubble motion ceased, bubble

coalescence largely ceased. The final phase identified was that of relative domain motions
where regions of the sample would move relatlve to each other. In this case, bubbles within
a domain had no relative velocity. Occasionally bubbles at the edge of two domains would
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coalesce as a result of net relative domain velocities. This phase continued until the

liquid viscosity totally dampened the motion or until the end of the parabola when g loads
of approximately 2 were experienced causing virtually instantaneous (< 30 ms) gas-liquid

phase separation.

Bubble Size Distribution

The distribution of hubblo slze was measured immediately after agitation occurred and prior

to coalescence events. Figures 3a and 3b show the distributions tound with water-air

mixtures. Thirty-eight trials were performed with this system. Two general distributions
were observed. The sizes represent bubble diameters as observed uncorrected for

magnification effects of the sample tube. The effects of components added to the liquid
phase of the system on bubble size distribution are found in Figures 4, 5, and 6. The
addition of surfactant to the system resulted in a net distribution of bubbles with
diameters smaller than the distributions caused by the addition of yeast or glycerol. The
surfactant trial bubble size distributions fell between the two air-water distributions.

Deceleration

Deceleration versus bubble diameters at differing viscosities are found in Figure 7. As

bubble diameters increase at any one viscosity, decelerations increase. For constant bubble
diameters, increasing viscosity increases deceleration. As we11, increasing viscosity
increases the rate at which deceleration increases as bubble diameter increases.

DISCUSSION

The results presented

ways:

I.

2Q

3.

here impact on gas transfer in low gravity fermentors in several

Initial Interfacial Surface Area

The composition of the gas-liquid mixture in the ampoule determined the initial
interfacial surface area obtained from a near instantaneous accelerative event. As a

result, the design of microgravity fermentation units will necessarily have to take in
account initial medium composition and changes in medium composition during a
fermentation. The initial bubble size distributions determined after a point
accelerative event demonstrate that when compared to the water-air distribution found

in Figure 3a, additives, whether viscosifying agents, surfactants or particulate
matter, have a deleterious effect on interfacial surface area. When compared to the
water-air bubble distribution found in Figure 3b, the addition of surfactant actually

increases interfacial surface area. In this case, this has the effect of increasing gas
transfer in a fermentation.

The effects of different concentrations of these additives on bubble distribution were
not determined. It will be necessary to examine specific concentration dependent

effects on bubble size distribution prior to fermentor design.

The two distributions obtained for water-air mixtures are unexplained. It may be that

water has the correct physical properties under the force applied to display either

distribution, dependent on other external conditions such as quality of gravity,

pressure, and/or temperature.

Interfacial Surface Area Over Time

The degree of which coalescence will occur will determine the net instantaneous
interfacial surface area at any time. Most coalescence has been demonstrated to occur

during that period (Figure 2) in which bubbles have velocities relative to each other.
As shown in Figure 7, both bubble size and viscosity affect the deceleration
experienced by a bubble as it moves through the liquid. This was in general agreement
with Stokes law pertaining to bubbles or droplets of one fluid in another. Medium
conditions will therefore also effect the time period in which coalescence will occur.

K, Gas Transfer Coefficient

The gas transfer coefficient is dependent on several factors. If there is a net
velocity difference between the gas and liquid phases, oxygen is carried away from the
bubble surface in a non-diffusion mediated manner. As well, this net velocity

difference sweeps the surface of the bubble, reducing the stability of the bubble
surface. This has the tendency to increase K. When relative gas-liquid motion cease, as
in the domain motion phase described above, bubble surfaces are not renewed and gas

transfer occurs primarily by diffusion. This will lower gas transfer.
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CONCLUSION

The results presented here indicate that initial medium conditions and changes in those

conditions during fermentation will affect gas transfer in a microgravity fermentor. They

also demonstrate that at the point in which most bubble coalescence ceases, ensuring that

the interracial surface area, A, remains constant, gas transfer may be inhibited by another

process effecting K, the gas transfer coefficient. The net gas transfer in the system will

be determined by a balance of factors effecting A and K.
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Fig. 2. The four event periods found after gas-liquid mixing in the sample
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ABSTRACT

The operation and evaluation of a bioreactor designed for high intensity

oxygen transfer in a microgravity environment is described. The reactor

itself consists of a zero headspace liquid phase separated from the air

supply by a long length of silicone rubber tubing through which the oxygen

diffuses in and the carbon dioxide diffuses out. Mass transfer studies show

that the oxygen is film diffusion controlled both externally and internally

to the tubing and not by diffusion across the tube walls. Methods of

upgrading the design to eliminate these resistances are proposed. Cell growth

was obtained in the fermenter using Saccharomyces cerevisiae showing that

this concept is capable of sustaining cell growth in the terrestial

simulation.

INTRODUCTION

The use of a bioreactor as a fermenter in Controlled Ecological Life Support

Systems (CELSS) will likely occur in the food production or waste processing

subsystems. It is anticipated that a design for a fermenter for an

operational CELSS will be developed from models flown and tested on STS

missions.

Probable areas of use

There are three possible places a CELSS-type bioreactor could be used:

i. As redundancy or backup for the conventional food production systems that

would be available in space. It is clear that several systems could be

developed, probably using plants and/or animals. However there is always the

problem of catastrophic crop failure and if there is not enough stored food

and it would be necessary to activate emergency rations of food. One possible

source of this is microbial food which can be made available in two or three

days. We have done preliminary studies that show that in reasonable sized

fermenters it is possible to produce adequate quantities of edible types of

biomass, for example yeast, that can be processed into the necessary food

components.

ii. As supplements to conventional food production. The limiting amino acids

for human nutrition are tryptophan and lysine. One of the deficiencies in

human foods such as wheat and similar materials is very easily satisfied by

microbial sources. Many bacteria, and some yeasts, could provide the

necessary amounts of lysine, methionine and tryptophan. This is just one

example of a supplement and others may be possible. Also an analysis of human

_ood balances reveals that even when using wheat and high quality foods

humans are still short of carbohydrate. It is possible that it will always be

necessary to have some calories from microbial carbohydrates.

iii. The area of that will probably have first application for the

bioreactor is the production of valuable commodities (in this case, food)

from inedible plant waste. It is a consistent observation for all plants

that about 50% of biomass is inedible. Of the inedible biomass, about 40% is

comprised of cellulosics and about 20-30% is found in hemicellulosics

(pentose sugars). These two components are readily separated with mild

hydrolysis and fractionation methods. The further hydrolysis of these
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components into monosacc_arides suitable for direct use or fermentation by

microorganisms provides additional food sources for CELSS food production

subsystems.

APPARATUS AND METHODS

The main problem with carrying out fermentations in microgravity is of course

that the bubbles will not rise in the fermenter thus preventing gas - liquid

disengagement /I/. One reasonable solution is to avoid the need to solve the

separation problem by not having a gas phase to disengage. The apparatus is

designed to explore this concept for high- rate oxygen-transfer intensive

microbial growth in a CELSS environment.

The gas and liquid phases are kept separate when the reactor contains about

10% by volume of silicone tubing in a zero-headspace fermentation

configuration and passing the gas (air or oxygen) through the inside of the

tubes. Oxygen and carbon dioxide are highly permeable to silicone rubber and

diffuse rapidly through it. It is also possible to have liquid silicones

saturated with oxygen passing through the tubes to act as oxygen carriers.

Carbon dioxide can be readily removed from the off-gasses by adsorption in a

sink such as monoethanolamine. A potentially attractive alternative to a

fixed CO2 sink is reversible adsorption by redox-switched absorbers such as

substituted metallocenes and quinones /2/.

Such a system is essentially gravity-independent and can be readily examined

under terrestial conditions.

The terrestial model tested was constructed from plexiglass in the form of a

cylinder containing a total of 8.7 liters volume. The working volume was

about 7.7 liters, the other liter being occupied by tubing and support

frames. Thus 88% was available for culture. The flowsheet is shown in figure

i.

150 feet of silicone tubing was wound round a support frame. The tubing had

an internal diameter of 0.104 inches and an external diameter of 0.192

inches.

Stirring was provided to the center of the liquid by a marine impeller

revolving at 200-400 revolutions per minute. Air flow to the inside of the

tube could be varied by a mass flow controller from 2.5 to 20 liter per

minute gas flow at an applied pressure of between 3 and i0 psig.

A 1.5% innoculum of Saccharomyces cerevisiae PEP4 was added to a synthetic

medium (Yeast carbon base- YCB) supplemented with YM( 1%) and 0.1% tryptone.

It is thus a relatively rich media.

&

As this test fermenter is not capable of being autoclaved due to the

plexiglass construction, a standard operating procedure was developed and

followed. It takes about two days to sterilize the whole reactor. First, the

reactor is cleaned with clean water and then assembled. It is filled and

left overnight with a 10% solution of alcohol, and rinsed thoroughly the

next day with sterile distilled water. It is then filled again with 3%

hydrogen peroxide solution, left overnight and rinsed with several washes of

sterilized deionized water. The media is introduced by adding two liters of

nutrient broth to the bioreactor, followed by four liters of sterile

distilled water, 500 mls of a stock solution of YCB without glucose. 125 mls

of 40% glucose is added to yield 10 milligram per ml solution of sugar i.e.

excess sugar.

100 ml of an overnight culture of the yeast are added. The head space is

removed by adding enough YM broth to fill up the reactor, and then all the

probes are inserted; the oxygen probe, the pH probe, the temperature probe,

after we have rinsed each one of them out with alcohol. The air lines are

connected and stirring is started to initiate the whole experiment. We

remove a sample of culture immediately to measure the starting glucose

concentration and then sample periodically with a hypodermic needle and

syringe through stoppers that are in the top of the bioreactor. Contamination

was only a problem on one run.

Oxygen transfer measurements were made by degassing the fermenter with

nitrogen and following the rise of dissolved oxygen on a chart recorder as

air was reintroduced through the tubes. Measurements were made with a New

Brunswick galvanic oxygen probe.

182



RESULTS & DISCUSSION

Yeast _rowth

In order to evaluate the reactor under actual growth conditions,cultures of

yeast were grown under a variety of of reactor conditions. Figure IA was an

initial run at low gas pressure but high flow rate. There was no attempt to

control pH or temperature. The data showed us that the apparatus and

sterilization techniques could be employed to culture yeast Cells. The effect

of lowering the flowrate by one half and increasing the pressure is shown in

figure lB. Again, the system worked well and the rate of cell growth

increased as is shown by the quicker depletion of oxygen (20 hours vs. 30

hours).

Since oxygen was apparently supplied at adequate levels, an attempt was made

to evaluate the lower working point of the apparatus. The time at which

oxygen depletion occurred as a function of reactor conditions was used as the

basis for evaluating the lower working limit of the apparatus. The initial

experiment in this series is shown in figure 2. With only 50 feet of tubing,

7.5 psig. and 1 liter/min flowrate,the reactor reached oxygen depletion after

about 14-15 hours. However, the possibility that glucose depletion was the

cause for lowered oxygen consumption could not be ruled out. In the

experiment shown in Figure 3, the flowrate was lowered even more and the

glucose measurements were taken more frequently. The results showed that

glucose depletion had not occurred simultaneously with oxygen depletion. This

indicates that the cells are growing at a rate that was a direct function of

oxygen supply. The other observation was that by lowering the flowrate to 0.5

liter/min, the point at which oxygen was depleted was shifted to 16-17 hours.

This is slightly higher than the value shown in Figure 2 and is consistent

with the fact that airflow was half that of the value used in the Figure 2

experiment.

The cells are still healthy and normal. The maximum cell count is 1.3 grams

per liter. This is not a high density, but it is encouraging for our first

design.

These simple experiments showed the following:

i. The reactor could be sterilized, operated and maintained using the simple

equipment employed(i.e, no temperature or pH control) to provide meaningful

results.

2. Oxygen limitation can be reached in in a relatively short time permitting

quick analysis of the system.

3. Measurements of oxygen transfer rates will need to be conducted in order

to estimate actual maximum operating limits.

Oxygen transfer studies

The oxygen transfer data from the step response studies were analyzed by the

method of Ruchti et al. /3/, and expressed as the product of the overall mass

transfer coefficient and the surface area per unit volume of reactor, Kla.

The measurements were taken for a range of air flowrates and stirrer speeds.

and are given in Table i.

The biological experiments demonstrated that modest cell dry weights could be

obtained with this design of fermenter before oxygen limitation was reached.

While these results are encouraging they clearly are not adequate for a

practical system. To overcome the inherent limitation of the preliminary

equipment design, the oxygen transfer sttld]es were initiated. The values of

Kla obtained were some 50-100 times ]owe_ than in conventional stirred

fermenters operating under terrestial conditions. They correspond to oxygen

transfer intensities of around 0.04 kgO2/m3/hr. Figure 4 is an attempt to

show the interaction between exponential cell growth in the absence of oxygen

limitation for a range of doubling time from 1 to 4 hours. This is indicated

by the solid lines. The broken lines show the cell mass that can be

supported, at 50% carbon conversion,for differing oxygen transfer intensities

of between 1 and 5 kgO2/hr/m3. It shows that for cell dry masses of likely

importance in this project that oxygen limitation will dominate under most

conditions and should thus be the focus of future studies.
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Three main effects can be expected to contribute to the low oxygen transfer
intensities observed in this study:-

a. film diffusion resistance in the tube containing the gas

b. external film diffusion into the bulk liquid

c. oxygen diffusio_l across the silicone tubing wall

For laminar flow of the gas and liqtlJ(], resistances a and b above will be

reduced as the flowrate past the tubes is increased while resistance c will
be unchanged. From fluJc] mechanics it is known that the mass transfer

coefficient will very inversely with the square root of the flowrate. A

common way of therefore assessing the relative importance of the
contributions is to plot the reciprocal of Kla vs. the reciprocal of the

square root of the flowrate, extrapolate to zero oil the axis i.e. infinite

velocity which removes the film resistance and compare the magnitu41c. _,f the
residual mass transfer coefficient /4/.

i/Kla = I/(velocity, internal)'0.5

+ I/(velocity, external)^0.5
+ membrane diffusion resistance

(I)

Figure 5 shows this procedure for the internal flowrate variation experiment.

The graph shows a marked slope implying that indeed the internal diffusion

resistance in the tube is substantial and that major improvements in oxygen
transfer can be expected simply by increasing the flowrate, perhaps with

recycle, through the tubes.

The residual mass transfer resistances can now be subtracted out and the

effect of external film resistances examined. Figure 6 shows the same kind of
graph, t|,Js time produced by changing the stirrer speed. Again a substantial

slope is observed with the regression line passing through the origin of the
graph, i.e. at infinite stirrer speed the mass transfer coefficient becomes

infinite. The interpretation of this is that the external fluid resistances

are extremely high compared to which any resistance from the oxygen Jiffusion
across the membrane is negligible.

These results are very reassuring as they imply that redesign of the
equipment can be done in ways that will result in very substantial increases

in oxygen transfer efficiency that will permit large increases in cell mass

to be obtained long before the diffusion resistances in the tubes themselves
start to become important.

The reactor will be reconfigured to reflect these findings.

CONCLUSIONS

i. Yeast can be successfully grown in a phase separated fermenter that should
be capable of operation independent of gravity.

2. The current design limitations can be overcome and will result in

substantial increases in oxygen transfer intensities which in turn will

support greater cell masses to provide a practical test facility for a CELSS
test bed.
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TABLE 1 Mass transfer coefficients (Kla) as a

function of system variables.

Airflow Stirrer Kla

Rate Spee(_

(lit/min) (rpm) (hr-l)

9.5 325 4.20

7.5 325 2.75

5.0 325 2.64

2.5 325 2.08

7.5 275 3.47

7.5 275 2.75

7.5 225 2.77

7.5 ]l(l ].97

7.5 155 1.29

OH Meter'

I Silicone tubing manifold

(FLOW SHEET FOR THE TEST BED
f

[ MODEL OF A PROTOTYPE FOR THE

OissolvedOxygen CELSS MICROGRAVITY BIOREACTOR

Meter L j

Fig. 1 Flowsheet for terrestial simulation of the fermenter configured to

measure oxygen transfe_ ;;IdeDsity and model yeast growth.
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Fig. 4. The interaction between exponential cell growth in the absence of

oxygen limitation for a range of doubling time from 1 to 4 hours can be seen.

This is indicated by the solid lines. The broken lines show the cell mass

that can be supported, at 50% carbon conversion,for differing oxygen transfer

intensities of between 1 and 5 kgO2/hr/J_3. T_ shows that for cell dry masses

of likely importance in this project that oxygen limitation will dominate

under most conditions and should thus be the focus of future studies.
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resistance in the tube is substantial and that major improvements i_ oxygen

transfer can be expected simply by increasing the flowrate.

188



2000

150o

Kla

Sec

1000

500

0 0

o 0.4 6.8

Istlr rer speedT "0"5

Figure 6

Fig. 6. The residual mass transfer resistances from figure 6 are subtracted
out and the effect of external fi]m resistances examined by changing the

stirrer speed. Again a substantial slope is observed with the regression line
passing near the origin of the graph, i.e. at infinite stirrer speed the mass
transfer coefficient becomes infinite implying that the external fluid
resistances are extremely high compared to which any resistance from the

oxygen diffusion across the membrane is negligible.
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