1,298 research outputs found

    Structural contributions to the pressure-tuned charge-density-wave to superconductor transition in ZrTe3: Raman scattering studies

    Get PDF
    Superconductivity evolves as functions of pressure or doping from charge-ordered phases in a variety of strongly correlated systems, suggesting that there may be universal characteristics associated with the competition between superconductivity and charge order in these materials. We present an inelastic light (Raman) scattering study of the structural changes that precede the pressure-tuned charge-density-wave (CDW) to superconductor transition in one such system, ZrTe3. In certain phonon bands, we observe dramatic linewidth reductions that accompany CDW formation, indicating that these phonons couple strongly to the electronic degrees of freedom associated with the CDW. The same phonon bands, which represent internal vibrations of ZrTe3 prismatic chains, are suppressed at pressures above ~10 kbar, indicating a loss of long-range order within the chains, specifically amongst intrachain Zr-Te bonds. These results suggest a distinct structural mechanism for the observed pressure-induced suppression of CDW formation and provide insights into the origin of pressure-induced superconductivity in ZrTe3.Comment: 6 pages, 5 figure

    Study of the ground state properties of LiHoxY1−xF4LiHo_xY_{1-x}F_4 using μ\muSR

    Full text link
    LiHoxY1−xF4LiHo_xY_{1-x}F_4 is an insulating system where the magnetic Ho3+^{3+} ions have an Ising character, and interact mainly through magnetic dipolar fields. We used the muon spin relaxation technique to study the nature of the ground state for samples with x=0.25, 0.12, 0.08, 0.045 and 0.018. In contrast with some previous works, we have not found any signature of canonical spin glass behavior down to ≈\approx15mK. Instead, below ≈\approx300mK we observed dynamic magnetism characterized by a single correlation time with a temperature independent fluctuation rate. We observed that this low temperature fluctuation rate increases with x up to 0.08, above which it levels off. The 300mK energy scale corresponds to the Ho3+ hyperfine interaction strength, suggesting that the hyperfine interaction may be intimately involved with the spin dynamics in this system

    MuSR studies of RE(O,F)FeAs (RE = La, Nd, Ce) and LaOFeP systems: possible incommensurate/stripe magnetism and superfluid density

    Full text link
    Muon spin relaxation (MuSR) measurements in iron oxy-pnictide systems have revealed: (1) commensurate long-range order in undoped LaOFeAs; (2) Bessel function line shape in La(O0.97F0.03)FeAs which indicates possible incommensurate or stripe magnetism; (3) anomalous weak magnetism existing in superconducting LaOFeP, Ce(O0.84F0.16)FeAs, and Nd(O0.88F0.12)FeAs but absent in superconducting La(O0.92F0.08)FeAs; and (4) scaling of superfluid density and Tc in the Ce, La, and Nd-FeAs superconductors following a nearly linear relationship found in cuprates.Comment: 4 pages, 5 figures (color

    Revisiting the ground state of CoAl2_2O4_4: comparison to the conventional antiferromagnet MnAl2_2O4_4

    Full text link
    The A-site spinel material, CoAl2O4, is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which is predicted to contain unique incommensurate or `spin-spiral liquid' ground states. Our previous single-crystal neutron scattering study instead classified it as a `kinetically-inhibited' antiferromagnet, where the long ranged correlations of a collinear Neel ground state are blocked by the freezing of domain wall motion below a first-order phase transition at T* = 6.5 K. The current paper expands on our original results in several important ways. New elastic and inelastic neutron measurements are presented that show our initial conclusions are affected by neither the sample measured nor the instrument resolution, while measurements to temperatures as low as T = 250 mK limit the possible role being played by low-lying thermal excitations. Polarized diffuse neutron measurements confirm reports of short-range antiferromagnetic correlations and diffuse streaks of scattering, but major diffuse features are explained as signatures of overlapping critical correlations between neighboring Brillouin zones. Finally, and critically, this paper presents detailed elastic and inelastic measurements of magnetic correlations in a single-crystal of MnAl2O4, which acts as an unfrustrated analogue to CoAl2O4. The unfrustrated material is shown to have a classical continuous phase transition to Neel order at T_N = 39 K, with collective spinwave excitations and Lorentzian-like critical correlations which diverge at the transition. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. The higher level of cation inversion in the MnAl2O4 sample indicates that this novel behavior is primarily an effect of greater next-nearest-neighbor exchange.Comment: 13 pages, 8 figures, acccepted for publication in Physical Review

    Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    Full text link
    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here we present a comprehensive single-crystal neutron scattering study of CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.Comment: 40 pages, 9 figures, Introduction and discussion altered and expanded. Additional section and figure added to Supplementary Informatio
    • …
    corecore