2,147 research outputs found

    Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment

    Get PDF
    AbstractModelling pedestrian loading on lively structures such as bridges remains a challenge. This is because pedestrians have the capacity to interact with vibrating structures which can lead to amplification of the structural response. Current design guidelines are often inaccurate and limiting as they do not sufficiently acknowledge this effect. This originates in scarcity of data on pedestrian behaviour on vibrating ground and uncertainty as to the accuracy of results from previous experimental campaigns aiming to quantify pedestrian behaviour in this case. To this end, this paper presents a novel experimental setup developed to evaluate pedestrian actions on laterally oscillating ground in the laboratory environment while avoiding the implications of artificiality and allowing for unconstrained gait. A biologically-inspired approach was adopted in its development, relying on appreciation of operational complexities of biological systems, in particular their adaptability and control requirements. In determination of pedestrian forces to the structure consideration was given to signal processing issues which have been neglected in past studies. The results from tests conducted on the setup are related to results from previous experimental investigations and outputs of the inverted pendulum pedestrian model for walking on laterally oscillating ground, which is capable of generating self-excited forces

    Equivalent static wind loads on snow-accreted overhead wires

    Get PDF
    The effects of structural and aerodynamic non-linearity on dynamic wind loads on overhead wires have been investigated. According to the Japanese design standards for transmission structures, wind loads on overhead wires are determined using equivalent static wind loads that can be used to estimate the maximum responses under dynamic loads. Some assumptions of linear theory are necessary to derive the equivalent static wind loads, and they have been validated only in the case of strong winds. To derive equivalent static wind loads in the case of weaker winds for snow-accreted conditions, time history response analyses of overhead wires have been performed. Because the turbulence intensity becomes higher in weaker winds, aerodynamic non-linearity causes the wind loads on the wires to become larger. Furthermore, structural non-linearity causes the tension in the wires to become greater. The contribution of wire resonance to dynamic load increases when the wind speed is low, and the gust response factor becomes greater than the value derived considering only the quasi-static response caused by wind turbulence. Taking into consideration the two major effects of aerodynamic and structural non-linearity, a modified method is proposed to enable the use of a design method based on equivalent static wind loads
    • …
    corecore