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A B S T R A C T   

The inerter completes the force-current analogy between mechanical and electrical components, 
providing the mechanical equivalent to the capacitor. As such, it is a two-terminal passive 
element that, when implemented ideally, is normally said to generate a force proportional to the 
relative acceleration between its two terminals. However, this is applicable only if the inerter 
does not rotate, so the only relative motion between the device’s terminals is axial. In many 
applications, this restriction is acceptable, such as in car suspension systems. However, in this 
paper, it is shown that the relationship between the terminal accelerations and the generated 
force is more complex if the inerter is used in a 2-dimensional (2D) or 3-dimensional (3D) 
environment, such as within a multi-bar mechanism (e.g., robotic arms or railway pantographs). 
Specifically, the inerter force is not given by simply the relative acceleration between the two 
terminals. The centripetal acceleration, resulting from the rotation of the inerter, needs to be 
accounted for to find the second derivative of the inerter length, which defines the generated 
force. Two case studies are presented to demonstrate the effects of this normally neglected cen
tripetal acceleration term. It is shown that when an inerter is operating in a 2D or 3D environ
ment, significant errors may occur in evaluating the inerter force and also the system response if 
the centripetal acceleration term is neglected. Equations are provided for both modelling the 
inerter in different coordinate systems and for incorporating the inerter in 2D and 3D multibody 
systems.   

1. Introduction 

In 2002, Smith [1] introduced a new two-terminal ideal passive mechanical element, termed the inerter, with the property that the 
force FI at its two terminals is proportional to the relative acceleration between them (when the inerter does not rotate). The intro
duction of the inerter achieves a full analogy between mechanical and electrical networks in which force (or velocity) corresponds to 
current (or voltage) and a fixed point in an inertial reference frame corresponds to electrical ground. In this analogy, a spring (or 
damper or inerter) corresponds to an inductor (or resistor or capacitor, respectively). Since the concept of the inerter was proposed, 
many beneficial mechanical configurations with inerters have been explored for a wide range of engineering applications. In 
particular, an inerter-based device, called the ‘J-damper’ as a decoy name to keep the technology secret from competitors, was 
developed by Cambridge University and helped McLaren Racing achieve victory at the 2005 Spanish Grand Prix [2]. A seismic control 
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device, the tuned viscous mass damper (TVMD), has been investigated in structural systems [3,4] and the soil–structure interaction of a 
structure with an inerter system has been studied [5]. Furthermore, beneficial inerter-based absorbers have been identified for a wide 
range of mechanical structures, such as buildings [6,7], cables [8,9], automotive vehicles [10–12], railway vehicles [13,14], aircraft 
landing gear [15], offshore wind turbines [16] and railway pantographs [17]. There has been some recent work come out on the use of 
a pair of oblique inerters in nonlinear vibration isolators and suppression systems [18, 19]. In addition, inerter-combined active or 
semiactive vibration control has also drawn interest from researchers, e.g., [20–23]. 

However, the original model of the inerter has the constraint that only translational movement along the element axis between two 
terminals of the inerter is permitted, thus it is only suitable to model an inerter in a one-dimensional (1D) environment. For other 
mechanisms and devices, such as robotic arms, excavator arms or railway pantographs, they may operate in a 2-dimensional (2D) or 3- 
dimensional (3D) environment, where the motions include both translation and rotation in general. Another example is inerter-based 
vibration absorbers in earthquake engineering applications. Many researchers have proposed inerter-based devices, such as tuned 
inerter damper [24], and tuned mass damper inerter [25, 26], which have shown significant effects on the protection of building 
structures under earthquake conditions. In some of these studies, the inerter-based absorbers are implemented as a ‘cross-bracing’ 
element [27] where rotational movement will be involved. Meanwhile, the excitations of the earthquake contain components in 
multiple directions, which can also lead to rotational movement of the inter-based vibration absorber installed in building structures – 
this is a field where the present work will have a significant impact. 

According to the original definition of the inerter in reference [1], the uniaxial inerter force in a 1D environment can be modelled as 
a force that is proportional to the relative acceleration between its two terminals. However, this simple model is not generally applicable in a 
2D or 3D environment. The general inerter force in a 2D or 3D environment should be modelled as a force proportional to the second time 
derivative of the distance between its two terminals. The difference between the simple inerter model and the general inerter model is that 
the latter takes into account not only the projection of the relative acceleration onto the element axis but also the centripetal accel
eration term (which could be neglected intuitively). 

In this paper, a model of a uniaxial inerter in a 2D or 3D environment and the methodology of applying a uniaxial inerter in a 
multibody system is developed. Furthermore, the effect of the centripetal acceleration correction term and the method of imple
menting a uniaxial inerter in a 2D multibody system are demonstrated via two examples. The sections are arranged as follows. In 
Section 2, the concept of a uniaxial inerter within a 2D or 3D environment is introduced, initially in a 2D polar coordinate system. 
Subsequently, a model of a uniaxial inerter in a 2D or 3D environment is derived in general vector form, and its expressions in Cartesian 
and Spherical coordinates are presented. A 2D inerter-included model is then shown as an example to demonstrate the effect of the 
centripetal acceleration correction on the inerter force and the system response. In Section 3, the method of adopting a uniaxial inerter 
in a multibody system is introduced. The proposed modelling methodology is then demonstrated using an inerter-included two-bar 
mechanism as an example, where the evident effect of the centripetal acceleration correction term on the system responses can be 
observed. The conclusions are presented in Section 4. 

2. Uniaxial inerter in a 2D or 3D environment 

In this section, the concept of using a uniaxial inerter in a 2D or 3D environment is first introduced, using a 2D polar coordinate 
system. It is shown that the centripetal acceleration needs to be accounted for in modelling the inerter force when it rotates. Then the 
general models of all three uniaxial mechanical elements – springs, dampers and inerters - are derived in a 3D environment in general 
vector form, showing how inerters need to be treated differently. The general model of the inerter in 2D or 3D is then expressed in 
Cartesian and spherical coordinates for ease of use. Lastly, a simple 2D 1DOF inerter-included lumped mass system is used as an 
example to demonstrate the effect of the centripetal acceleration correction on the inerter force and the system response. 

2.1. The concept of a uniaxial inerter in a 2D polar coordinate system 

Uniaxial elements in this paper are defined as elements whose generated forces, i.e., the forces that the elements apply at the 
terminals, are only aligned along their axis, i.e., the axis across their two terminals. For example, a hydraulic damper can be modelled 
as a uniaxial element. A two-terminal uniaxial element, symbolised as a square block, is established in 2D polar coordinates in Fig. 1, 
where one terminal of the uniaxial element is fixed to the pole, point O, of the coordinate system. Without loss of generality, this 
symbol can represent a spring, a damper or an inerter. In this polar coordinate system, the position of the free terminal of the uniaxial 

Fig. 1. Two-terminal uniaxial element in 2D polar coordinates.  
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element, point P, is determined by the radius ρ, i.e., a distance from the pole, and polar angle θ, i.e., the angle from the polar axis X. The 
motion of the free terminal, point P, is given by translation along the axis OP and rotation of the axis OP about point O. 

For spring with stiffness k, the force is proportional to the change in distance between its two terminals compared with its un
deformed length ρ0. In this 2D polar coordinate system, if tension forces are defined as positive, the spring force is given by 

FS = k(ρ − ρ0) (1) 

In this 2D polar coordinate system, the relative velocity between the element’s two terminals, vP, is a superposition of the radial 
velocity ρ̇ along the element axis and the circumferential velocity ρθ̇ orthogonal to the element axis, as shown in Fig. 2. Note that the 
overhead ‘⋅’ denotes the time derivative. As the circumferential velocity ρθ̇ is orthogonal to the element axis, it has no effect on the 
damper force. Hence, for a damper with damping coefficient c, the force is proportional to the component of relative velocity between 
the element’s two terminals along its axis. That is the damper force is given by 

FD = cρ̇. (2) 

The original inerter force, defined in [1] for a 1D environment, is proportional to the relative acceleration between the inerter’s two 
terminals. In the 2D polar coordinate system, let the relative acceleration between the element’s two terminals, points O and P, be aP. 
Based on the definition of the inerter in [1], if there is no rotation of the inerter, i.e., the movement is restricted to be along the element 
axis, so θ̇ = 0, the formula for the inerter force is 

FI no rotation = baa (3)  

where b is the inertance and aa is the component of aP along the element axis (the only component in this case). 
However, this definition is not applicable to the case where θ̇ ∕= 0, i.e., when the element is allowed to move in a 2D environment. 

This is because the relative acceleration between the element’s two terminals, aP, consists of four components: the radial acceleration ̈ρ 
along the element axis and the circumferential acceleration ρθ̈ orthogonal to the element axis, but also the centripetal acceleration ace 

= ρθ̇2 along the element axis towards the pole, and the Coriolis acceleration aco = 2ρ̇θ̇ orthogonal to the element axis (see Fig. 3). 
Obviously, the circumferential acceleration ρθ̈ and the Coriolis acceleration aco have no effect on the inerter force, being orthogonal to 
the element axis. In the component of acceleration along the element axis, aa = ρ̈ − ace, the centripetal acceleration ace also has no 
effect on the inerter force. This is because only the second time derivative of the distance between the inerter’s two terminals, ρ̈, can 
generate an inerter force. For example, imagine that an inerter experiences pure rotation with a constant length between its two 
terminals – the inerter force is zero in this scenario as there is no change in the distance between the two terminals. Hence, when the 
ineter force is modelled in a 2D (or 3D) environment, the centripetal acceleration must be removed from the relative acceleration 
between the terminals to find the inerter force. In this way, the correct inerter force within this 2D polar coordinate system is 

Fig. 2. The velocity of the free terminal, point P, in 2D polar coordinates.  

Fig. 3. Acceleration of the free terminal, point P, in 2D polar coordinates.  
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FI = b(aa − (− ace)) = bρ̈. (4)  

2.2. Model of a uniaxial inerter in general vector form 

In the previous subsection, the concept of the inerter force was introduced within a polar coordinate system. The discussion shows 
that the centripetal acceleration has to be removed from the relative acceleration between the two terminals to find the inerter force in 
a 2D (or 3D) environment. In this subsection, models of uniaxial elements, including inerters, in a 3D (or 2D) environment are derived 
in general vector form. 

Let points Pi and Pj be the two terminals of a uniaxial element as shown in Fig. 4. Note that the superscript of Pi (or Pj) indicates the 
body to which the point is connected (as in Section 3). These two terminals are assumed to be connected by pinned-pinned joints but 
constraining the rotational degree of freedom (DOF) about the PiPj axis. For point Pi (or Pj), its absolute position, velocity and ac
celeration with respect to the global coordinates X-Y-Z are denoted as 3-element vectors ri

P, ṙi
P and r̈i

P (or rj
P, ṙ

j
P and r̈j

P), respectively. 
For a spring, the force along its axis can be expressed in this 3D environment as 

FS = k
((

rij
P ⋅ rij

P
)1

2 − L0

)
(5)  

where rij
P = rj

P − ri
P is the relative position vector from point Pi to point Pj within the global coordinates X-Y-Z, and L0 is the undeformed 

length between the uniaxial element’s terminals. Note that, in Eq. (5), the physical meaning of (rij
P ⋅ rij

P)
1
2 is the instantaneous distance 

between uniaxial element’s terminals. 

For a damper, by differentiating the distance between the uniaxial element’s terminals, (rij
P ⋅ rij

P)
1
2, the damper force along its axis can 

be expressed in this 3D environment as 

FD = c
((

rij
P ⋅ rij

P
)− 1

2
(
ṙij

P ⋅ rij
P
))

(6)  

where ṙij
P =

d(rij
P)

dt . Note that Eq. (6) can be rewritten as 

FD = c
(
ṙij

P ⋅ r̂ij
P

)
, (7)  

where r̂ij
P =

rij
P

(rij
P⋅rij

P)
1
2 

is the unit vector along PiPj and the physical meaning of ṙij
P ⋅ r̂ij

P can be understood as the projection of ṙij
P onto the 

element axis across the two terminals (see Fig. 5). 
For an inerter, based on the definition of inerter in a 1D environment, i.e., only movement along its axis is allowed, FI no rotation is 

defined as 

Fig. 4. Two-terminal uniaxial element in a 3D environment.  

Fig. 5. Diagram of the relative displacement, velocity and acceleration vectors between the two terminals, points Pi and Pj.  
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FI no rotation = b
(

r̈ij
P ⋅ r̂ij

P

)
(8)  

where r̈ij
P =

d(ṙij
P)

dt , and r̈ij
P ⋅ r̂ij

P is the projection of the relative acceleration between the two terminals onto the element axis. Based on the 
discussion in SubSection 2.1, in a 3D environment, the centripetal acceleration has to be taken into account in modelling the inerter 
force. FI in a 3D environment is defined as a force proportional to the second time derivative of the relative distance between the inerter’s two 
terminals as 

FI = b
d2

dt2

((
rij

P ⋅ rij
P
)1

2
)

= b

⎧
⎨

⎩
r̈ij

P ⋅ r̂ij
P +

1
(
rij

P ⋅ rij
P
)1

2

[
ṙij

P ⋅ ṙij
P −

(
ṙij

P ⋅ r̂ij
P

)2]
⎫
⎬

⎭
.

(9) 

In the curly braces of Eq. (9), the first term, r̈ij
P ⋅ r̂ ij

P, is the projection of the relative acceleration onto the element axis across the two 

terminals (as in Eq. (8)), and the second term, 1

(rij
P⋅rij

P)
1
2
[ṙij

P ⋅ ṙij
P − (ṙij

P ⋅ r̂ij
P)

2
], is the centripetal acceleration resulting from the rotation of the 

element. Specifically, the physical meaning of ṙij
P ⋅ ṙij

P − (ṙij
P ⋅ r̂ij

P)
2 

is the square of the circumferential velocity, which is denoted as |ṙij
P⊥|

2 

(see Fig. 5). 
The uniaxial inerter force model in Eq. (9), expressed in terms of vectors, is a general model which is valid in both 2D and 3D 

environments. This general inerter force model can be applied to different types of models, for example, multibody models or finite 
element models, and can be expressed in different coordinate systems, as in the following subsection. 

2.3. Inerter force in cartesian and spherical coordinate systems 

The general formula for the uniaxial inerter force, Eq. (9), can be applied in different 2D or 3D coordinate systems. The expressions 
for Cartesian and spherical coordinates are presented in this subsection. 

In 3D Cartesian coordinates, defining the relative displacement vector between the inerter’s two terminals, points Pj and Pi, as rij
P 

= [ x y z ]T (where superscript ‘T’ indicates transpose), using Eq. (9) the inerter force can be expressed as 

FI =
b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2 + z2

√

{

(ẋx+ ẏy+ żz)+
(
ẋ2 + ẏ2 + ż2) −

(ẋx + ẏy + żz)2

x2 + y2 + z2

}

. (10) 

In 2D Cartesian coordinates, the same equation can be used, simply dropping the terms in z and its derivatives. 
The spherical coordinate system (ρ, θ,φ) is another common coordinate system for a 3D environment, as shown in Fig. 6. 
In these spherical coordinates, using Eq. (9), with the inerter terminals at points O and P, the inerter force can be expressed simply 

as 

FI = bρ̈. (11)  

i.e. the same as for 2D polar coordinates, as in Eq. (4). 

2.4. Example: a 2D 1DOF inerter-included lumped mass system 

The model of a uniaxial inerter in a 2D or 3D environment was introduced in the previous subsections. In this subsection, a simple 

Fig. 6. Diagram of the spherical coordinate system.  
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2D 1DOF inerter-included lumped mass system is developed as an example to demonstrate the effect of the centripetal acceleration 
correction term on the inerter force and response of the system. 

A 1DOF inerter-included lumped mass system in a 2D environment in the horizontal plane is defined as shown in Fig. 7. The lumped 
mass, m, is constrained to travel only in the Y direction. A uniaxial spring and a uniaxial inerter, in parallel, link the mass and the origin 
of the system, point O, with a revolute joint. Friction and damping are neglected. The offset of the line of motion of the mass from the 
origin, point O, in the X direction, is La. The static equilibrium position of the mass in the Y direction is Lb, that is, the undeformed 

length of the spring is L0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + Lb
2

√
. The position of the mass in the XY coordinate system can be expressed as a vector r =

[
La
y

]

. If 

the initial position of the mass in the Y direction is set to be y0(y0 ∕= Lb), when released the mass will oscillate about the equilibrium 
position in the Y direction. Using Eq. (10), the inerter force can be expressed as 

FI =
by
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√ ÿ +

bLa
2

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√ )3ẏ2. (12) 

Note that the second term on the right-hand side of Eq. (12), bLa
2

(
̅̅̅̅̅̅̅̅̅̅̅
La

2+y2
√

)3
ẏ2, is the centripetal acceleration correction term. Meanwhile, 

using Eq. (1) or Eq. (5), the spring force in this example is FS = k(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√

− L0). Thus, the equation of motion of this 1DOF inerter- 
included lumped mass system is 

mÿ = −

⎛

⎜
⎝

by
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√ ÿ+

bLa
2

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√ )3ẏ2 + k

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

La
2 + y2

√

− L0

)
⎞

⎟
⎠

y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√ (13) 

Fig. 7. An example 1DOF inerter-included lumped mass system.  

Fig. 8. Numerical time histories of (a) displacement responses relative to the equilibrium position (with the correction included, there is a mean 
displacement offset as indicated by the blue double-headed arrow) and (b) inerter forces, with and without the centripetal acceleration correction 
term. The dashed lines show the corresponding mean values. 
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which can be rewritten as 

(

m+
by2

(
La

2 + y2
)

)

ÿ +
bLa

2yẏ2

(
La

2 + y2
)2 +

k
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

La
2 + y2

√
− L0

)
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√ = 0. (14) 

The second term, involving ẏ2, is the centripetal acceleration correction term. 
As an example, for a given set of parameter values, m = 5 kg, b = 100kg, k = 10,000 Nm− 1, La = 1m and Lb = 1 m and initial po

sition y0 = 1.5m, the numerical time-history responses, with and without the inclusion of the centripetal acceleration correction term, 
are shown in Fig. 8(a). It can be observed that the correction term affects both the magnitude and frequency of the response. With the 
correction term, the magnitude of the oscillations is larger and the fundamental frequency is lower than the case where the term is 
neglected. Also, defining the mean position offset relative to the equilibrium position as Δy = y − Lb where y is the mean value of y, it 
can be observed that there is a negative mean position offset when the correction is included, in contrast with a small positive mean 
offset if it is neglected. This can be explained as follows: considering only the mean value and fundamental harmonic of the response, it 
can be approximated as y ≈ y+ Acos(ωt), where A is the amplitude and ω the angular frequency of the fluctuating component. The 
centripetal correction term in the inerter force (Eq. (13)), involving ẏ2

= A2ω2

2 {1 − cos(2ωt)}, leads to a constant term proportional to 
A2 in the equation of motion, which causes a negative mean offset of the displacement relative to the static equilibrium position. The 
inerter forces with and without the centripetal acceleration correction term are also compared in Fig. 8(b). The amplitude of the 
fluctuating component of the inerter force including the centripetal acceleration correction term is larger and its frequency is lower 
than without the correction term. Meanwhile, the mean inerter force including the centripetal acceleration correction term is smaller 
than without the correction term. 

To explore the behaviour of the example system more broadly, numerical time-history responses of Eq. (14) were obtained using a 
series of different initial positions, with and without the inclusion of the centripetal acceleration correction term. For each initial 
position, the periodic response can be decomposed into a Fourier series. The amplitude and frequency of the fundamental harmonic, 
and the mean position offset in relation to the initial position, are shown in Fig. 9. For the response with the centripetal acceleration 
correction term, the fundamental frequency decreases from the natural frequency (1.518 Hz) as the initial position increases, while the 
mean position offset also decreases. (The natural frequency is found by linearising the equation of motion, Eq. (14), as shown in 
Appendix A). However, if the centripetal acceleration correction term is neglected, the fundamental frequency and mean position 
offset both show opposite trends (i.e. both increase) with increasing initial position (Fig. 9 (b&c)). It is noted that a pair of oblique 
inerters in nonlinear vibration isolators [18] and suppression systems [19] has been studied recently. It can be seen that Eq. (12) is 
identical to the model of the oblique inerter derived in [18, 19], which is a special case of Eq. (10), the derived general inerter model 
expressed in Cartesian coordinate. The case study analysed here shown in Fig. 7 is a simplified version of the nonlinear inerter 
mechanism (NIM) quasi-zero-stiffness (QZS) isolator studied in [18]. The results obtained in this case study can be validated and 
further explained with comparisons to [18, 19]. For example, the observed influence on the system’s fundamental frequency resulting 
from the centripetal acceleration term is in line with the analysis in [18]. 

This example has demonstrated the importance of correctly modelling the inerter force in a 2D (or 3D) environment. If the cen
tripetal acceleration correction term is neglected, as the response departs from the very low amplitude linearised behaviour, the 
calculated amplitude, frequency and mean position offset of the system depart significantly from the correct response, and indeed the 
trends of the frequency and mean position are in the opposite direction. Therefore, the correction term must be included when using a 
uniaxial inerter in a 2D or 3D environment when the rotation of the inerter is significant. 

Fig. 9. Comparison of responses between the models with and without the centripetal acceleration correction term in the inerter force, for different 
initial positions: (a) amplitude of fundamental harmonic, (b) fundamental frequency and (c) mean position offset. 

M. Zhu et al.                                                                                                                                                                                                            



Journal of Sound and Vibration 540 (2022) 117290

8

3. Uniaxial inerter in a multibody system 

The general equations for a uniaxial inerter in a 2D or 3D environment have been derived in Section 2. However, when using an 
inerter in a multibody system, the point where a terminal is connected to a body does not necessarily correspond to the body’s 
reference point. In order to incorporate the inerter in a multibody system, the inerter force needs to be expressed in terms of the 
generalised coordinates of the bodies to which it is connected, where, for a rigid body, the generalised coordinates are the coordinates 
of the body reference point and the orientation of the body. In this section, the force of the uniaxial inerter is expressed in the mul
tibody system framework, and the methodology for implementing it in a multibody model is discussed in detail. 

3.1. Inerter force in the framework of a 2D multibody system 

In a 2D multibody system, motions of each rigid body are described using three coordinates, i.e., two coordinates describing the 
translational motions of the reference point Oiof body i, Ri =

[
xi yi

]T, and one coordinate defining its orientation, θi. Hence, the 

generalised coordinates of body i can be denoted as a 3-element vector qi =
[

RiT θi
]T

. Assume that the two terminals of a uniaxial 

inerter are point Pi and point Pj, which are respectively located on body i and body j, as shown in Fig. 10. Note that the terminal point Pi 

(or Pj) does not generally coincide with the body’s reference point Oi (or Oj). The local positions of points Pi and Pj with respect to the 

bodies’ local coordinate frames Xi-Yi and Xj-Yjare ui
P =

[
xi

P yi
P
]Tand uj

P =
[

xj
P yj

P

]T
. Note that the overbar in Xi

,Yi (or Xj
,Yj) 

indicates local coordinates. In this work, as all bodies are considered rigid, ui
P and uj

P are constant vectors. In this 2D multibody system, 
the relative position, velocity and acceleration vectors between the two terminals of the inerter can be written as [29, pp. 107–110] 

rij
P =

(
Rj +Ajuj

P
)
−
(
Ri +Aiui

P

)
, (15)  

ṙij
P =

(
Ṙj

+ θ̇
jAj

θuj
P
)
−
(
Ṙi

+ θ̇
iAi

θui
P

)
, (16)  

r̈ij
P =

(
R̈j

+ θ̈
jAj

θuj
P −
(
θ̇

j)2Ajuj
P

)
−
(

R̈i
+ θ̈

iAi
θui

P −
(
θ̇

i)2Aiui
P

)
, (17)  

where the 2D transformation matrix Ai =

[
cosθi − sinθi

sinθi cosθi

]

and Ai
θ = dAi

dθi =

[
− sinθi − cosθi

cosθi − sinθi

]

, and similarly for Aj and Aj
θ. Eqs. 

(16&17) can be rewritten in compact matrix form as 

ṙij
P = Hijq̇ij

, (18)  

r̈ij
P = Hijq̈ij

+ aij
n , (19)  

where Hij =
[

− I2×2 − Ai
θui

P I2×2 Aj
θuj

P

]
, aij

n = (θ̇i
)
2Aiui

P − (θ̇j
)
2Ajuj

P, q̇ij =
[

ṘiT θ̇i ṘjT θ̇j ]T, q̈ij =
[

R̈iT θ̈i R̈jT θ̈j
]T

, 

and I2×2 is the 2 × 2 identity matrix (similarly I3×3 is the 3 × 3 identity matrix in SubSection 3.2). Substituting Eqs. (18&19) into Eq. 
(9) yields the equation for the uniaxial inerter force expressed in terms of the generalised coordinates of the 2D multibody system, as 

FI = b

⎧
⎨

⎩

[(
Hij q̈ij + aij

n

)
⋅ r̂ij

P

]
+

1
(
rij

P ⋅ rij
P
)1

2

[(
Hijq̇ij) ⋅

(
Hijq̇ij)

−
( (

Hijq̇ij) ⋅ r̂ij
P

)2]
⎫
⎬

⎭
. (20) 

Similarly to Eq. (9), the first term in the curly braces of Eq. (20), (Hijq̈ij
+ aij

n) ⋅ r̂ij
P, corresponds to the projection of the relative 

acceleration between the terminals onto the element axis, and the second term in the curly braces, 1

(rij
P⋅rij

P)
1
2
[(Hijq̇ij

) ⋅ (Hijq̇ij
) −

((Hijq̇ij
) ⋅ r̂ij

P)
2
], corresponds to the term due to the centripetal acceleration. 

Fig. 10. A uniaxial inerter with its two terminals Pi and Pj respectively on body i and body j in a 2D multibody system.  
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3.2. Inerter force in the framework of a 3D multibody system 

The equation of the uniaxial inerter force expressed in terms of the generalised coordinates of a 2D multibody system has been 
derived in Eq. (20). This equation is also valid for a 3D multibody system. Compared with the 2D environment, the only difference is 
that the vectors and matrices used in Eq. (20), i.e., qij, Hij, aij

n and rij
P, have different expressions for a 3D multibody system. 

In a 3D multibody system, motions of a rigid body are described using six coordinates, i.e., three coordinates describing the 
translational motions of the body and three coordinates defining the body’s orientation. The translational motions of body i can be 
defined using the position of a reference point fixed on the body, which can be denoted using three-dimensional Cartesian coordinates 
Ri =

[
xi yi zi

]T. In this work, Euler angles θi =
[

ϕi θi ψ i
]T are used to describe the body’s orientation. Initially, the body’s local 

coordinate system, Xi-Yi-Zi, coincides with the global coordinate system X-Y-Z. ϕi, θi and ψ i represent three successive rotations which 
are performed about the current Zi axis, Xi axis and Zi axis in turn. Hence, the generalised coordinates of body i in this 3D multibody 

system can be represented by a 6-element vector qi =

[
Ri

θi

]

As in SubSection 3.1, let a uniaxial inerter be installed between point Pi on body i and point Pj on body j. The local positions of 
points Pi and Pj with respect to the bodies’ local coordinate frames Xi-Yi-Zi and Xj-Yj-Zj are ui

P and uj
P. In a 3D multibody system, Eq. 

(15) is still valid but the transformation matrix for body i, Ai, (and similarly for body j throughout this subsection) is a function of the 
Euler angles and its formulation in detail is shown in Appendix B. Note that Aiui

P can be denoted as ui
P, representing the local position 

vector of point Pi relative to reference point Oi, expressed in global coordinates. For the velocity and acceleration vectors, i.e., Eqs. 
(18&19), they are still valid but with modified qij, Hij and aij

n for the 3D multibody system. The generalised coordinates of the body i and 
j where the inerter is connected in this 3D multibody system are modified as 

qij =

⎡

⎢
⎢
⎣

Ri

θi

Rj

θj

⎤

⎥
⎥
⎦. (21) 

The modified matrix Hij in the 3D multibody system is [29, pp. 397–398] 

Hij[ − I3×3 ui
PGi I3×3 uj

PGj] (22)  

where 

Gi =

⎡

⎣
0 cosϕi sinθisinϕi

0 sinϕi − sinθicosϕi

1 0 cosθi

⎤

⎦, (23)  

and the underbar denotes the skew-symmetric matrix of the corresponding vector. For example, the skew-symmetric matrix of the 
vector ui

P =
[
xi

P yi
P zi

P
]T is 

ui
P =

⎡

⎢
⎢
⎣

0 − zi
P − yi

P

zi
P 0 − xi

P

− yi
P xi

P 0

⎤

⎥
⎥
⎦. (24) 

For the 3D multibody system, aij
n also needs to be modified as [29, pp398] 

aij
n =

((
Gjθ̇

j)(Gjθ̇
j)uj

P − uj
PĠj

θ̇
j
)
−
((

Gi θ̇
i)(Giθ̇

i)ui
P − ui

PĠi
θ̇

i
)
. (25) 

With the modified rij
P, qij, Hij and aij

n for the 3D multibody system, as in Eqs. (15, 21, 22&25), the force of the uniaxial inerter, 
expressed in terms of the generalised coordinates of the 3D multibody system, can be obtained using Eq. (20). 

3.3. Implementation of a uniaxial inerter in a multibody model 

The equation for the uniaxial inerter force expressed in terms of generalised coordinates of 2D or 3D multibody systems has been 
derived in SubSections 3.1 and 3.2. In this subsection, the methodology of implementing the uniaxial inerter in a multibody system is 
introduced. 

In a centroidal coordinate system where the origin of each body’s local coordinate frame is rigidly attached to its centre of mass, the 
equations of motion for a multibody system can be written as [29, pp. 430] 
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[
M CT

q

Cq 0

][
ÿs
λs

]

=

[
Qe
Qd

]

(26)  

where M is the system mass matrix, Cq is the constraint Jacobian matrix, qs is the system generalised coordinate vector, Qe is the 
generalised external force vector, λs is the vector of Lagrange multipliers which are used to calculate the reaction forces resulting from 
the constraints and Qd is a vector that absorbs terms that are quadratic in the velocities of the second-time differentiation of the 
constraint equation C(qs, t) = 0 [29, pp. 428]. Assume that this model includes nb bodies with e DOFs for each (e = 6 for a 3D model 
and e = 3 for a 2D model) and total nc constrained DOFs due to the mechanical joints. The definitions and formulations of the above 
matrixes and vectors are standard and can be found in textbooks on multibody system modelling, e.g., [28, 29]. 

An inerter can be added to the multibody system by applying two equal and opposite external forces to the relevant bodies. These 
forces need to be implemented into the original equations of motion (Eq. (26)) in the form of the resulting generalised external force 
vector associated with the generalised coordinates of body i and body j on which the inerter force acts, Qij

I , as 
[

M CT
q

Cq 0

][
q̈s
λs

]

=

[
Qe + LijQij

I

Qd

]

(27)  

where Lij is the incidence matrix of the inerter indicating the connection topology between the original multibody system and the 
inerter. The incidence matrix Lij is comprised of two columns, each column consisting of nb e × e blocks. Apart from two e ×e identity 
matrices located at the ith row 1st column and jth row 2nd column corresponding to body i and body j connected to the two terminals of 
the inerter, the remaining blocks in Lij are filled with e × e null matrices, giving 

Lij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01
e×e 01

e×e

⋮ ⋮
Ij

e×e 0i
e×e

⋮ ⋮
0j

e×e Ij
e×e

⋮ ⋮
0nb

e×e 0nb
e×e

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(i, j ∈ {1,⋯, nb} and i ∕= j). (28) 

The generalised external force vector of FI associated with the generalised coordinates of body i and body j in the multibody system 
[29, pp. 243] is 

Qij
I = − FIHijT r̂ij

P. (29) 

Substituting the equation for the inerter force, i.e., Eq. (20), into Eq. (29), the full generalised external force vector of the uniaxial 
inerter can be written as 

Qij
I = − bHijT r̂ij

P

{[(
Hijq̈ij

+ aij
n

)
⋅ r̂ij

P

]
+
(
rij

P ⋅ rij
P
)− 1

2
[(

Hijq̇ij) ⋅
(
Hijq̇ij)

−
( (

Hijq̇ij) ⋅ r̂ij
P

)2]}
. (30) 

Eq. (30) can be rewritten in a compact format as 

Qij
I = − bHijT r̂ij

P r̂ijT
P Hijq̈ij

+ Qij
Iv (31)  

where Qij
Iv = − bHijT r̂ij

P r̂ijT
P aij

n − b(rij
P ⋅ rij

P)
− 1

2HijT r̂ij
P[(H

ijq̇ij) ⋅ (Hijq̇ij) − ((Hijq̇ij) ⋅ r̂ij
P)

2
] which absorbs the terms related to the relative ve

locities. Hence, substituting Eq. (31) into Eq. (27), the full multibody model, including the added uniaxial inerter is 
[

M CT
q

Cq 0

][
q̈s
λs

]

=

⎡

⎣Qe + Lij
(
− bHijT r̂ij

P r̂ij
P

THijq̈ij
+ Qij

Iv

)

Qd

⎤

⎦. (32) 

This matrix equation represents a set of differential-algebraic equations. For normal differential-algebraic equations of a multibody 
system without an inerter, numerical solutions can be obtained using direct time integration. However, including the inerter into the 
system, the Qij

I in the right-hand side of Eq. (27) or (32) is a function of the current accelerations of the generalised coordinates, q̈ij, 
which makes Eq. (32) implicit. For implicit equations, direct time integration cannot be used to obtain numerical solutions. Although 
some integration algorithms, for example, the predictor-corrector method [30], can be applied to solve implicit equations numerically, 
they can be much more complicated and time-consuming. Moreover, it is inevitable that numerical errors will be introduced by using 
an implicit integration algorithms. In order to use a direct time integration method to solve the multibody system of equations 
including an inerters, a modification of Eq. (32) is introduced in the following. 

The generalised inerter force vector Qij
I consists of two parts, as in Eq. (31), i.e., the term involving the acceleration of the 
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generalised coordinates, − bHijT r̂ij
P r̂ijT

P Hijq̈ij, and the term that absorbs the velocities of the generalised coordinates, Qij
Iv. Noting that q̈ij 

= LijTq̈s, the acceleration term can be moved to the left-hand side of Eq. (32) and be combined with the system mass matrix M, giving 
[

M + MI CT
q

Cq 0

][
q̈s
λs

]

=

[
Qe + QIv

Qd

]

(33)  

where MI = bLijHijT r̂ij
P r̂ijT

P HijLijTand QIv = LijQij
Iv. 

In this way, the right-hand side of Eq. (33) is a function of the positions and velocities of the generalised coordinates, i.e., qs and q̇s, 
but not of any accelerations, which makes it suitable for the use of direct time integration to obtain numerical solutions. 

3.4. Example: a 2D inerter-included two-bar mechanism system 

The method of implementing a uniaxial inerter in a multibody system has been introduced in previous subsections. In this sub
section, a 2D inerter-included two-bar mechanism is used as an example, and the effect of the centripetal acceleration correction term 
on the system response is demonstrated. 

The example 2D inerter-included two-bar mechanism, in the horizontal plane, is defined as shown in Fig. 11. Body 1 and body 2 
have masses of M1 and M2 and rotational inertias of J1 and J2, respectively. Both bodies are 1 m long. One end of body 1 is constrained 

Fig. 11. Example 2D inerter-included two-bar mechanism.  

Fig. 12. Comparison of the displacements, relative to the equilibrium position, of point C in the Y direction, between the models with and without 
the centripetal correction term for the example two-bar mechanism (dashed lines show the corresponding mean values). 

M. Zhu et al.                                                                                                                                                                                                            



Journal of Sound and Vibration 540 (2022) 117290

12

by a revolute joint with the ground at point A, via a rotational spring kr, with 45◦ undeformed reference angle relative to the X axis 
positive direction. The other end of body 1 is linked with one end of body 2 by a revolute joint at point B. A spring, a damper and an 
inerter, labelled by k, c and b, are connected in parallel between points D and E, located on body 1 and body 2 respectively. With the 
spring undeformed, the initial orientation of body 2 relative to the X axis positive direction is 135◦. Friction forces are neglected. An 
excitation force Fa is applied on the top of body 2, point C. In this example, the excitation force is set to be a sine wave with an 
amplitude of 8 N at 1 Hz, i.e., Fa = 8sin(2πt)N, with t in s. 

For this 2D model, the origin of the global X-Y coordinate system is selected as point A. Local coordinate frames X1-Y1 and X2-Y2 

are established for body 1 and body 2 respectively, with the origins at their centres of mass, i.e., O1 and O2, and the X1 and X2 axes 
orientated along the bodies’ lengths, as shown in Fig. 11. Other data of the model are given in detail in Appendix C. In the equation of 

motion, Eq. (33), for this example, q̈s =

[
q̈1

q̈2

]

and λs = [ λ1 λ2 λ3 λ4 ]
T, corresponding to the 4 DOFs constrained by revolute 

joints A and B. Matrix MI and vector QIv, which are introduced by the uniaxial inerter, can be obtained following the method explained 
in SubSection 3.3. The remaining matrices and vectors in Eq. (33), M, Cq, Qe and Qd, can be found using the standard multibody 
modelling method [28, 29]. 

Using direct time integration, the steady-state displacement, relative to the equilibrium position, of point C in the Y direction is 
shown in Fig. 12, with and without the inclusion of the centripetal correction term. It can be observed that the peak-peak response of 
the model without the centripetal acceleration correction is 140 mm, compared with 162 mm for the model including the centripetal 
acceleration correction. Meanwhile, the mean displacement offset is increased from 23 mm to 72 mm for the model without the 
centripetal acceleration correction compared with that of the model including the centripetal acceleration correction. 

4. Conclusions 

In this paper, we consider the implications of using an idealised uniaxial inerter in a 2D or 3D environment. Specifically, the 
equations for modelling a uniaxial inerter in these environments and the methodology of its implementation in a multibody system are 
developed. Firstly, the concept of a uniaxial inerter in a 2D polar coordinate system is discussed, and then the model of an inerter is 
derived in general vector form in a 2D or 3D environment. It is shown that the centripetal acceleration due to rotation has to be 
accounted for in modelling the uniaxial inerter in a 2D or 3D environment. Expressions for the inerter force in Cartesian and spherical 
coordinates are also provided for ease of use. A simple 2D 1DOF inerter-included lumped mass system is analysed as an example to 
show that the centripetal acceleration correction term affects the system responses, in terms of the oscillation amplitude, the 
fundamental frequency of free vibrations and the mean position offset. If the centripetal acceleration correction term in the inerter 
force is omitted, significant errors can occur in evaluating the inerter forces and system responses when operating in a 2D or 3D 
environment. A methodology for applying the uniaxial inerter to a multibody system is also introduced. Then, using an example of a 
two-bar mechanism containing an inerter, it is shown that the effect of the centripetal acceleration correction term can again be 
significant. It is noted that, in line with much of the literature, we treat the inerter as an idealised modelling element. When the device 
is implemented physically, in addition to the centripetal acceleration effects highlighted here, further device-dependant considerations 
may need to be addressed, including the mass moment of inertia and possibly gyroscopic effects, as well as friction and compliance. 
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Appendix A. Linearisation of Eq. (14) 

If a small perturbation is applied to the equilibrium point of the system in the 2D inerter-included lumped mass system, the position 
of the lumped mass can be expressed as 

y = Lb + yd (A.1)  

where yd is the dynamic component of the response. Differentiating both sides of Eq. (A.1) yields 

ẏ = ẏd, (A.2)  

ÿ = ÿd. (A.3) 

Substituting Eq. (A.1) into the length between the two terminals, 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√

, yields 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

La
2 + y2

√

= L0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2Lbyd + yd

2

L0
2

√

≈ L0

(

1+
2Lbyd + yd

2

2L0
2

)

. (A.4) 

If only the first-order term of yd is retained, 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
La

2 + y2
√

can be approximated as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

La
2 + y2

√

≈ L0 +
Lb

L0
yd. (A.5) 

Using Eq. (A.5), Eq. (14) can be linearised as 
(

m+

(
Lb

L0

)2

b

)

ÿd + k
(

Lb

L0

)2

yd = 0. (A.6) 

In the linearised system, the equivalent system mass, me, is m +
(

Lb
L0

)2
b and the equivalent system stiffness, ke, is k

(
Lb
L0

)2
. So, the 

natural frequency of the linearised system is fe =
1
2π

̅̅̅̅
ke
me

√
which, for the given parameter values, is 1.518Hz. 

Appendix B. Transformation matrix for body i expressed with defined Euler angles 

Ai( θi) =

⎡

⎣
cosψicosϕi − cosθisinϕisinψi − sinψicosϕi − cosθisinϕicosψi sinθisinϕi

cosψisinϕi + cosθicosϕisinψi − sinψisinϕi + cosθicosϕicosψi − sinθicosϕi

sinθisinψi sinθicosψi cosθi

⎤

⎦ (B.1)  

Appendix C. Parameters of the example 2D inerter-included two-bar mechanism 

See Appendix Table C1 and Table C2 

Table C1 
Local coordinates of each point of the two-bar mechanism.  

Body Point Local coordinates (m) (Xi
,Yi) 

Body 1 A (− 0.5, 0) 
B (0.5, 0) 
D (0.25, 0) 

Body 2 B (− 0.5, 0) 
C (0.5, 0) 
E (0.25, 0)  

Table C2 
Parameters of the two-bar mechanism.  

Parameter Value Units 

kr 1000 Nmrad− 1 

k 100 Nm− 1 

c 100 Nsm− 1 

b 10 kg 
M1 1 kg 
M2 1 kg 
J1 0.083 kgm2 

J2 0.083 kgm2  
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