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Abstract:

Offshore wind turbines are subjected to multiple dynamic loads arising from the wind, waves, rotational
frequency (1P) and the blade passing frequency (3P) loads. In the literature, these loads are often
represented using a frequency plot where the Power Spectral Densities (PSDs) of wave height and wind
turbulence are plotted against the corresponding frequency range. The PSD magnitudes are usually
normalised to unity, probably because they have different units and thus the magnitudes are not directly
comparable. In this paper a generalised attempt has been made to evaluate the relative magnitudes of these
four loadings by transforming them to bending moment spectra using site and turbine specific data. A
formulation is proposed to construct bending moment spectra at the mudline, i.e. at the location where the
highest fatigue damage is expected. Equally, this formulation can also be tailored to find the bending
moment at any other critical cross section, e.g. the Transition Piece (TP) level. Finally, an example case study
is considered to demonstrate the application of the proposed methodology. The constructed spectra serve
as a basis for frequency based fatigue estimation methods available in the literature.

Keywords: offshore wind turbine, wind loading, wave loading, natural frequency, rotor imbalance, blade
passage, power spectral density, fatigue damage
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1. Introduction

Offshore wind turbines (OWTs), due to their shape and form (slender column with a heavy mass as well as a
rotating mass at the top) are dynamically sensitive [1] [2] [3], because the natural frequency of these slender
structures are very close to the excitation frequencies imposed by the environmental and mechanical loads.
The main dynamic loads acting on the wind turbine are as follows: (a) The load produced by the turbulence
in the wind, the magnitude of which depends on the turbulent wind speed; (b) The load caused by waves
crashing against the substructure, the magnitude of which depends on the wave height and wave period;
(c) Load caused by the vibration at the hub level due to the mass and aerodynamic imbalances of the rotor.
This load has a frequency equal to the rotational frequency of the rotor (referred to as 1P loading in the
literature). Since most of the industrial wind turbines are variable speed machines, 1P is not a single
frequency but a frequency band between the frequencies associated with the lowest and the highest rpm
(revolutions per minute); (d) Loads in the tower due to the vibrations caused by blade shadowing effects
(referred to as 2P/3P in the literature). The blades of the wind turbine passing in front of the tower cause a
shadowing effect and produce a loss of wind load on the tower. This is a dynamic load having frequency
equal to three times the rotational frequency of the turbine (3P) for three bladed wind turbines and two
times (2P) the rotational frequency of the turbine for a two bladed turbine. The 2P/3P loading is also a
frequency band like 1P and is simply obtained by multiplying the limits of the 1P band by the number of the
turbine blades.

Figure 1 shows the main frequencies described above from a three-bladed Siemens 3.6MW wind turbine
having a rotational operating interval of 5-13 RPM (lowest is 5RPM i.e. 0.083Hz and highest is 13RPM
i.e. 0.216Hz). A mean wind speed of 9 m/s, fetch of 60km and a peak wave frequency of 0.197Hz are used to
construct the dynamic spectra.
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Figure 1 — Traditional Frequency Diagram for the Siemens SWT-107-3.6 offshore wind turbine with operating rotational
wind speed range between 5-13rpm (using the mean wind speed U=9m/s and fetch F=60km. The frequency diagram
includes Wind Spectrum, Wave Spectrum, 1P and 3P frequency bands. The amplitudes are normalised to unity to focus
on the frequency content of the loading.



The turbulent wind velocity and the wave height on sea are both variables and are best treated statistically
using Power Spectral Density (PSD) functions. In other words, instead of time domain analysis the produced
loads are more effectively analysed in the frequency domain whereby the contribution of each frequency to
the total power in wind turbulence and in ocean waves is described. Representative wave and wind
(turbulence) spectra can be constructed by a Discrete Fourier Transform [4], [5] from site specific data.
However, in absence of such data, theoretical spectra can also be used. The DNV standard [6] specifies the
Kaimal spectrum for wind and the JONSWAP (Joint North Sea Wave Project) spectrum for waves in offshore
wind turbine applications. Figure 1 plots the PSD function for the wind and wave using a mean wind speed of
9m/s and fetch of 60km. The figure also shows the 1P and 3P frequency bands. It is clear from the frequency
content of the applied loads (see Figure 1) that the designer has to select a system frequency (the global
frequency of the overall wind turbine including the foundation) which lies outside these frequencies to avoid
resonance and ultimately increased fatigue damage. From the point of view of first natural frequency f;, of
the structure, three types of designs are possible (see Figure 1):

(1) Soft-Soft design where f, is placed below the 1P frequency range (fo < flplmm) which is a very
flexible structure and almost impossible to design for a grounded system.

(2) Soft-Stiff design where f; is between 1P and 3P frequency ranges (flp‘max <fo< f3p,ml-n) and this
is the most common in the current offshore development.

(3) Sstiff-Stiff designs where f; have a higher natural frequency than the upper limit of the 3P band
(fo > f3plmax) and will need a very stiff support structure.

It is of interest to review the codes of practice in this regard. DNV code [7] suggests that first natural
frequency should not be within 10% of the 1P and 3P ranges as indicated in Figure 1. It is apparent from
Figure 1 that the first natural frequency of the wind turbine needs to be fitted in a very narrow band (in
some cases the 1P and 3P ranges may even coincide leaving no gap). It is important to note, as pointed out
in [8] that from the point of view of dynamics, OWT designs are only conservative if the prediction of the
first natural frequency is accurate. Unlike in the case of some other offshore structures (such as the ones
used in the oil and gas industry), under-prediction of f; is unconservative. The safest solution would seem to
be placing the natural frequency of the wind turbine well above the 3P range. However, stiffer designs with
higher natural frequency require massive support structures and foundations involving higher costs of
materials, transportation and installation. Thus from an economic point of view, softer structures are
desirable and it is not surprising that almost all of the installed wind turbines are "soft-stiff" designs and this
type is expected to be used in the future as well. It is clear from the above discussion that designing soft-stiff
wind turbine systems demands the consideration of dynamic amplification and also any potential change in
system frequency due to the effects of cyclic/dynamic loading on the system i.e. Dynamic-Structure-
Foundation-Soil-Interaction. Typically the first modal frequency of the wind turbine system lies in the range
of 75% to 120% of the excitation frequencies and as a result, dynamic amplifications of responses are
expected. (For example, referring to Figure 1, the natural frequency of a Siemens SWT-3.6-107 turbine at the
Walney 1 site is estimated at f;, = 0.335Hz. The upper limit of the 1P frequency band is fip max = 0,217Hz
and the lower limit of the 3P band is f3p iy = 0.25Hz, the upper limit of 3P is f3p 14, = 0.65Hz. Similar
numbers are typical for other existing wind turbines as well. The calculated frequency ratios are 65% for the
upper limit of 1P, 75% for the lower limit of 3P running through to the upper limit of 194%. Wave loading
typically has significant power in the 0.05-0.5Hz range, and the wind load has a 1P and 3P component as
well.)

Recent research [1][2][3],[9][10][11]{12] on the long term performance of wind turbine systems due to
dynamic soil structure interaction arrived at the following conclusions:

(a) The change in natural frequencies of the wind turbine system may be affected by the choice of
foundation system i.e. deep foundation or multiple pods on shallow foundations. Deep foundations such as
monopiles will exhibit sway-bending mode i.e. the first two modes are widely spaced. However multiple pod
foundations supported on shallow foundations (such as tetrapod or tripod on suction caisson) will exhibit
rocking modes in two principle planes.



(b) The natural frequencies of wind turbine systems change with repeated cyclic/dynamic loading. In the
case of strain-hardening site (such as loose to medium dense sandy site) the natural frequency is expected to
increase and for strain-softening site (such as normally consolidated clay) the natural frequency will
decrease.

(c) Due to rocking modes of vibration, there will be a 'two-peak' response i.e. two closely spaced
frequencies for multipod foundations (tripod/tetrapod).

Clearly, for soft-stiff design, any change in natural frequency will enhance the dynamic amplifications which
will increase the vibration amplitudes and thus the stresses and fatigue damage on the structure. It must be
mentioned in this context that it was reported in [13] that the fatigue load from waves increased by 300% by
assuming a softer support structure. Therefore fatigue is one of the design drivers for these structures.
Predicting fatigue damage is undoubtedly a formidable task due to complexity associated with the
uncertainty in the dynamic amplification (owing to changes in system characteristics over time and number
of cycles), randomness of the environmental loading and last but not the least, the impact of climate change.

Offshore wind turbines are currently being installed in high numbers around Europe and their role in
electricity production is expected to increase in the following decades. To make offshore wind farm
investments worthwhile, it is necessary to ensure that they are operational throughout their intended design
lifetime. Since any a posteriori change to these structures involves very high costs due to the complexity of
the maintenance processes and due to low availability of suitable vessels, it is essential to design wind farms
carefully such that the fatigue damage is kept low to achieve the longest possible service lifetime.

The aim of the paper is therefore to develop a framework to compute bending moment spectra at critical
locations from the point of view of fatigue damage. This can be later used for quick fatigue damage
estimation. The paper is structured in the following way. Section 2 begins by discussing the complexity of the
dynamic loading from the wind, wave, 1P and 3P loadings. The frequency diagrams often used
([11, [2], [10], [14]) in codes of practice for wind and wave loading are critically reviewed as they do not
contain all the necessary information about the nature of the loading. This section also highlights the
shortcomings of the simple frequency diagram representation shown in Figure 1. The expression for bending
moment spectra at the mudline for each of the four types of loading are then presented. Section 3 shows
the application of the derived methodology using the Siemens turbines at the Walney offshore wind farm
site and the critical bending moment spectra are plotted.

2. Complexity of loading and bending moment spectra

It may be noted that in Figure 1 the magnitudes of the spectral densities are normalised to 1. However, it is
considered useful for the decision making process if the magnitudes of these PSDs are comparable. In this
paper an attempt has been made to construct useful spectra whereby these loads could be compared. The
effects from the major loads are transformed to bending moments at the mudline (seabed) in the fore-aft
direction of the structure, where the highest mudline bending moments are expected. In this paper, the
turbulent wind load is taken into consideration through the use of the Kaimal spectrum [6], [15] and the
wave loading through the JONSWAP spectrum [16]. The simplifications and limitations introduced by these
spectra are detailed for wind and wave spectrum in Section 2.1 and Section 2.3, respectively. It is to be
noted here that these spectra are used as examples and they are chosen based on suggestions by standards
used in the industry ([6], [17]-[19]). The methodology presented, however, is not limited to these spectra
and any other theoretical or custom site specific spectra can also be used. Addressing the 1P loading effect is
a challenging task, in this paper typical values of mass imbalance is assumed based on the literature [20],
[21] to estimate the effects at the mudline. The dynamic loading effects due to blade passage (3P loading) is
estimated by a simple geometric expression of the drag load loss on the tower.

The next section derives the necessary formulation for the bending moment spectra.



2.1 Wind loading

It is usual to treat the turbulence in the wind as a fluctuating wind speed component (u ) superimposed on
the mean wind speed U, thus the total wind speed is written as U = U + u. The strength of turbulence is
usually characterised by the turbulence intensity I [19], given by Equation 1.

I=0y/U (1)

where oy, is the standard deviation of wind speed around the mean U (which is usually taken over 10
minutes). The turbulence intensity varies with mean wind speed, with site location and with surface
roughness, and it is also modified by the turbine itself.

Figure 2 — Taylor’s frozen turbulence hypothesis: an eddy travels with the mean wind speed while its size and
characteristic parameters remain constant.

Taylor’s frozen turbulence hypothesis [22] is assumed in this paper, that is, that the characteristics of
eddies can be considered constant (frozen) in time, and vortices travel with the mean horizontal wind speed
as shown in Figure 2. This assumption was found to be acceptable for wind turbine applications [23]. Wind
turbulence is usually analysed in the frequency domain by a power spectral density (PSD) function, which
describes the contribution of different frequencies to the total variance of the wind speed. The frequency of
turbulence is connected to the size of eddies, a larger eddy means low frequency variation in wind speed,
while smaller vortices induce short, high frequency wind speed variations. If an eddy’s characteristic size is
d[m] and it travels with U[m/s]speed, then it travels through the rotor in T = d/U time. The frequency
connected to this time period is f = 1/t[Hz].

This way the length scale and time scale of turbulence are connected. The typical length scales of high
energy-containing large turbulent eddies are in the range of several kilometres. The large eddies tend to
decay to smaller and smaller eddies with higher frequencies as turbulent energy dissipates to heat.
Kolmogorov's law describing this process and states that the asymptotic limit of the spectrum is f‘5/3 at
high frequency [15]. There are two families of spectra commonly used in wind energy applications, the von
Karman and the Kaimal spectra, the main difference being that the Kaimal spectrum is somewhat less
peaked and the energy is contained in a bit wider frequency range. According to [24], the Kaimal spectrum is
more suitable for modelling the atmospheric boundary layer, and the von Karman spectrum is better for
wind tunnel modelling. IEC [19]suggests the Mann spectrum (modified von Karman type spectrum) and the
Kaimal spectrum, while DNV [6] suggests the Kaimal spectrum, which was chosen in this paper.

Several characteristics and simplification introduced by the Kaimal spectrum are given here. The power
spectrum of turbulence can be modified by the landscape: if the inhomogeneity of the surface is high, the
turbulence intensity increases. Inhomogeneous terrain typically generates eddies of the same length scale as
that of the inhomogeneity itself, increasing power in the corresponding frequency range. For offshore wind
turbine applications this effect is less relevant for winds blowing onshore from open sea, but can have
important effects for offshore winds blowing from the land [25]. Another important aspect is whether the
stratification is stable, unstable or neutral. Neutral conditions rarely occur, but near-neutral conditions are
typical for medium and high wind speeds, which is most important for fatigue damage calculation, and it is
assumed for the Kaimal spectrum used here. Further details can be found in [24]

It is to be noted that the several limitations pointed out here are referring to the use of the Kaimal
spectrum for modelling. However, the methodology described here can be used with any power spectrum,
the use of site specific spectra is encouraged whenever available [6]. The PSD function can be determined



from site measurements by Discrete Fourier Transform (DFT) [4], [5]. Such data are typically available for
offshore wind farm developments as they are required for the assessment of expected energy production as
well.

The theoretical Kaimal spectrum for a fixed reference point in space in neutral stratification of the
atmosphere S,,,,(f) as suggested by DNV [6][18] can be written as:

7 ()

6fL % 2)
k
(1+°5%)
where Ly, is the integral length scale (formula available in the DNV code), f is frequency, U is the mean wind
speed (from site measurements), and gy, is the standard deviation of wind speed (from measurements or
calculated using Equation1 and turbulence intensity values from standards I|EC 61400-1[19] and
IEC 61400-3 [26]). The turbulence intensity is generally lower offshore than onshore considering reports [25].
The turbulence intensity increases in the wake of the wind turbines, but this effect is beyond the scope of
this paper.

Figure 3 shows a comprehensive wind spectrum following van der Hoven [27] where both long term
variations of wind speed and turbulence effects are plotted. Van der Hoven observed a significant 4 day
synoptic peak and in some cases a small diurnal peak in the spectrum of the horizontal wind speed. The
Kaimal spectrum describes wind turbulence on a short time scale (shown by a dotted line in Figure 3) i.e.
represents only the high frequency end of the spectrum omitting the diurnal and synoptic peaks. Therefore,
even though the Kaimal spectrum can be calculated for arbitrarily low frequency, its validity is limited to the
high frequency variations. The lowest frequency considered in this work corresponds to the time interval of
10 minutes, because the mean is taken over 10 minutes (T = 600 [s] 2 f = 1/600[Hz] = 0.0017[Hz]).
The representation of the Kaimal spectrum shown in Figure 4(a) is more convenient for the present
discussion, in aerodynamics and wind engineering applications often the normalised spectrum on
logarithmic scales is used (see Figure 4(b)).

Several important aspects of wind spectra should be considered. One important property of the Kaimal
spectrum is that it describes turbulence at one point in space. To properly represent the turbulent flow field
on the large rotor area (typically in the order of magnitude of 10,000 [m?]), covariance spectra need to be
employed.
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Figure 3 — Van der Hoven wind spectrum [27] and the validity of the Kaimal spectrum
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Figure 4 — Two representations of the Kaimal spectrum. (a) Representation used in present paper. (b) Normalised,
representation common in aerodynamics and wind engineering applications (on logarithmic scale).

A small local gust (say of 20m diameter) passing through the rotor has small or no effect on distant parts of
the rotor area, while a large gust (say of 300m diameter) has similar effects on the whole rotor. Referring to
Figure 5, the wind speeds of the points A and B are closely related and they show a high coherence, while a
distant point, such as C in the figure, has a low coherence with either A or B. In other words, low frequency
variations effect a larger area of the rotor than high frequency variations.
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Figure 5 — Coherence: Cohérence bet_vn}een points A and_B is high,. while between C and eitheﬁ or B the coherence is
small. Rotational sampling: the PSD of the wind speed “seen” by Blade 1 while rotating differs from the Kaimal spectrum
for a point in space. The graph is a schematic representation of the PSD of rotational sampling.

It should also be noted that through their rotary motion the blades experience a different spectrum from
the Kaimal spectrum for a point in space. The blade will pass through any given eddy once in every
revolution. In Figure 6, Blade | for example passes through Eddy 1 and Eddy 2 once in each revolution.
Therefore, when rotational sampling is considered, that is, the wind speed “seen” by the rotating blade is
sampled, the PSD will show peaks at the rotational frequency fip and at higher harmonics
(fop = 2f1p, f3p = 3fip). This effect is a more important for blade load analysis, usually only higher
harmonics are transferred to the hub as typically all blades pass through the same eddies. More information
about spatial coherence and rotational sampling is available in [28]and [29].

2.2. Wind load spectrum.

The spectral density of the wind speed is represented by the Kaimal spectrum shown in Equation 2. Since the
thrust force on the rotor is proportional to the square of the wind speed, a moment spectrum can be
determined from the PSD of the wind speed. The thrust force on the rotor at a given wind speed is given in
Equation 3.

Th = paArCrU? U=U+u (3)



where Th is the thrust force, p, is the density of air, U is the wind speed, Ay is the rotor swept area and Cr
is the thrust coefficient which depends on the mean wind speed. Using quasi-steady assumptions, the wind
speed can be considered as a mean wind speed U and a small fluctuating component u. With these, the
thrust force can be written as the sum of a static wind load Thg;,; and a fluctuating, dynamic wind load
Thgyn. In Equation 4 the second order terms of the small wind speed variation U are neglected.

1 o _ 1 o I
Th = EpaARCT(U)(U2 +20u +u?) = EpaARCT(U)U2 + p ArCr(U)Uu =

(4)
= Thgpat + Thdyn

The spectral density of the turbulent thrust force on the rotor Sgr yinq (f) can be written as:
D*m? o — = D*m? o= & & Suu(f)

SFF,wind(f) = pé ?CTZ"UZULZISuu(f) = pg TC%U4IZSuu(f) Suu(f) = % (5)
where D is the diameter of the rotor, S,,,,(f) is the Kaimal spectrum, S,,,(f) is the Normalised Kaimal
Spectrum, p, is the density of air, Cy is the thrust coefficient, I is the turbulence intensity (value taken from
standards), gy, is the standard deviation of wind speed. The thrust coefficient of a wind turbine rotor can be
calculated by the Blade Element Momentum theory [15] and other more complex methods. However, as it is
demonstrated in [30], a very simple approximation provides conservative and relatively accurate results for
most offshore wind turbines in the important wind speed range:

35-(2U—-35) 7
r=—— 5 % (6)
U U
This approximation is also implemented in the IEC 61400-1 standard in Amendment 1, 3™ Edition [31]. With
the above given formulae the fore-aft bending moment at the mudline is simply given by:

Mying = Th(H + MSL) (7)

where H is the hub height above mean sea level and MSL is the mean sea depth (see Figure 6). Similarly, the
load can be reduced to any other cross section, such as the transition piece (TP). The mudline moment
spectrum associated with wind speed fluctuations can be expressed as:

D*r?
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Sumwina(f) = pa [Cr(DI2U*I(H + MSL)?Sy, (f) (8)



otor overhang

z
-
Centrifugal
Thrust force force - 1P —
on the rotor
Hub height 2D (static + dynamic)
- o —0
I \"01 = .
L
(tower segment _—
covered by the blade)
3P
H ! LIS
s——
Mean Sea Level
(MSL) = @Dp ¢Db =
y X
S(=MSL) ave load
Mudline

Side-to-side ==
direction

X

Fore-aft direclion][

Figure 6 — Definition of the geometry, axes, loads and directions of the Offshore Wind Turbine Structure

A few points may be noted:
1. The bending moment spectrum caused by wind turbulence is explicitly or implicitly dependent on the
parameters shown in Equation 9 (see nomenclature at the beginning of the paper).

SMM,wind = SMM,wind (f: D,H,MSL, U' I,pq, Ly, CT) (9)

2. Using practical assumptions about the turbine and the site, several parameters can be considered
constant. Such parameters are the rotor diameter, the hub height above sea level and the mean sea
depth (neglecting tides and surges), the turbulence intensity (aiming for an upper bound estimate, its
dependence on the wind speed, wind direction, sea state and atmospheric conditions can be neglected),
the density of air, and the integral length scale. Also using the assumption in Equation 6 the following
remains:

SMM,Wind = SMM,wind f, U) (10)

3. It is important to note that the mudline moment spectrum is dependent on the 10 minutes mean wind
speed, because turbulence intensity varies with wind speed. The dynamic forcing is proportional to U.

4. The coherence between points in the rotor area can be modelled by an aerodynamic admittance function
(AAF); denoted by x(f). The AAF assigns a value to each frequency depending on how much the
variations in wind speed with given frequency are admitted in the fluctuating wind force. Using y(f) the
moment spectrum is written as:

D*m? .
SMM,wind(f) = Pa 16 CTZ"U412(H + MSL)ZSuu(f)XZ(f) (11)

The maximum value of AAF y(f)is 1 and has lower values at higher frequencies because small eddies
contribute less to the total force. Taking the constant AAF value of 1 provides an upper estimate for the




mudline moment spectrum, although it significantly overestimates the load caused by high frequency
fluctuations.

2.3 Wave loading.

The wind blowing over the sea generates wind waves because of the increased pressure on the free surface
of water. Firstly small waves are produced with high frequency and low wave height, and the energy is
gradually transferred towards the higher amplitude waves with lower frequency and longer wavelength. The
developing sea state depends on many factors, including but not limited to the water depth, the shape of
the sea bottom, the mean wind speed and the fetch. The latter is the typical leeward distance to shore
considering the prevailing wind direction. The dependence on the water depth is apparent from the
dispersion relation [6], [32]:

w? = gk tanh(kS) (12)

where w[rad/s] is the angular frequency, k = 2n/A[1/m] is the wave number with A[m] being the
wavelength, and S[m] is the mean sea depth.

A certain sea state consists of a large number of waves with various frequencies and wavelengths. The
importance of each frequency is characterised by the power associated with it, which is represented by the
PSD function. The PSD can be produced from site measurements of the wave height using DFT, or
alternatively the JONSWAP (Joint North Sea Wave Project) spectrum S,,,,,,(f) suggested by DNV [16] can be
used:
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where f is frequency, a is the intensity of the spectrum, F is the fetch, f, is the peak frequency, y is the
peak enhancement factor, g is the gravitational constant, U, is the mean wind speed at 10 metres height
above sea level.

It should be noted that the JONSWAP spectrum (as well as the Pierson-Moskowitz spectrum) represents
the frequency content of a sea state developed in a constant wind speed condition after a sufficiently long
time. The Pierson-Moskowitz spectrum [33] assumes a fully developed sea, and that the process transferring
energy from high to low frequency waves and the wave-wave interaction have reached a steady state, the
waves are in equilibrium with the wind. This assumption requires a sufficiently long fetch (about five
thousand wave lengths), and that the constant wind velocity has maintained for sufficiently long time (about
ten thousand wave periods) [32]. The JONSWAP spectrum takes the fetch into account and thus considers a
developing sea. It can be seen from Equation 13 that the peak frequency of the spectrum depends on the
mean wind speed and the fetch. The longer the fetch, the more developed the sea is and the more energy is
in the low frequency waves.

The fetch can greatly differ for offshore wind farms on different coasts. Figure 7 shows a relatively
sheltered sea location where the sea is typically not fully developed. A schematic wind rose is placed at the
location of the turbine. A method to estimate the fetch is to take the average of the distances to leeward
shores (e.g. Fs, Fssy, Fsyy etc), adding weights to the distances based on the significance of the direction. For
example, in Figure 7 the prevailing wind is blowing from south-southwest (SSW) and southwest (SW),
therefore the weights of the distances Fsgy, Fsyy Will be the highest in the weighted average of the
distances F;. Figure 8 shows the significant wave height (Figure 8(a)) and the peak wave period (Figure 8(b)),
as functions of the mean wind speed. Curves (1) to (5) represent the JONSWAP spectrum for increasing
fetch, curve (6) shows the Pierson-Moskowitz spectrum. (See Remark 4 at the end of Section 2.2 for addition
information about JONSWAP parameters.) Curves (1) to (5) in Figure 9(a) show the JONSWAP spectrum for
increasing mean wind speeds keeping the fetch constant at 60[km], while curves (1) to (5) in Figure 9(b)
presents the JONSWAP spectrum for increasing fetch, keeping the mean wind speed constant at 10 [m/s].



Figure 7 — Estimation of the fetch F; where i represents the directions of the 16-point compass rose (e.g. S for south, SW

for southwest, SSW for south-southwest, etc).
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Figure 8 — Wave height and wave period as a function of mean wind speed for the Pierson-Moskowitz spectrum and for
several values of fetch using the JONSWAP spectrum. Walney site with water depth of 21.5m
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2.4 Wave load spectrum.

The DNV code suggests the JONSWAP spectrum for offshore wind turbine applications (given in
Equation 16), and it is dependent on the mean wind speed and the fetch. The JONSWAP spectrum is a
spectral density of wave heights and has units of [m?/Hz]. The wave height spectrum needs to be
transformed to a mudline moment spectrum. To determine the wave loading, simple linear waves are
assumed, which is a rough estimation. Higher order theories like Stokes waves [34] or Dean’s Stream
Function Theory [35] would provide more accurate results, especially in shallow waters [6], [18]. However,
the linear theory allows for simpler load calculation and its usage can be justified. The study in [36] estimates
a fatigue damage increase of 7.5% on the foundation with second order wave models using a Wéhler
exponent of 5. In another paper Veldkamp and van der Tempel [37] found that the fatigue damage increase
using more sophisticated models of wave kinematics is about 5-10% and they concluded it is “on the
threshold of significance.” The force exerted by the waves on the support structure is estimated by
Morison’s equation [38]:

1
dFT(Z' t) = dFD(Z' t) + dFI(ZI t) = EwaPCDu(Z; t)lu(zl t)l + CmpWAPu(Z: t) (14)

where dFy, dFp and dF; are the total wave force, the drag force and the inertia force per length,
respectively; Cp is the drag coefficient of the support structure with suggested values between 0.7-1.2 [6];
Cn =1+ C,is the inertia coefficient with suggested values between 1.5-2[6]; C, is the added mass
coefficient, p,, is the density of water, Dy is the diameter of the monopile/substructure, Ap = D3m/4 is the
cross sectional area of the pile (more precisely, the area of the outer circle). The total force Fy and total
mudline moment My can be expressed in integral form:

n n
FT(t) = f dFDdZ +f dFle
-S -S (15)

Mr(t) = [" dFp(S + 2)dz + [ dF,(S + z)dz=

where Fr(t) and M (t) are functions of time t. z is the vertical coordinate along the support structure with
its zero at Mean Sea Level (MSL), 17 is the surface elevation and S is the mean sea depth. For definitions see
Figure 10.

It is to be noted that Morison’s equation is limited to slender piles. As argued in [39] Morison’s equation
ignores sea surface effects of water falling and rising around the column, and also three dimensional effects
and diffraction. Because of these, Morison’s method is not suitable for large diameter sections or complex
geometries, such as gravity base structures, and its validity has to be assessed for very large diameter
substructures.

Mean Sea Level
/ (MSL)

{

H (wave height)

n(xt)
(surface
elevation)

S
(Mean Sea
Depth)

Figure 10 — Definition of wave parameters.

The velocity and acceleration profiles are required to compute the wave loads. These are determined using
first order Airy waves and are taken at the pile of the substructure (x = 0), The velocity profile u(z, t) and
the acceleration profile 1(z, t) as functions of depth and time are given by Equation 16



mH4 /3 cosh(k(S+2)) (ﬂ)

2m2H, 3 cosh(k(S+2)) ( Znt)
T sinh(kS)

ulz,t) = T2 sinh(kS)

u(z,t) = (16)

where k = 2w /A is the wave number, A is the wave length of the ocean waves, z is the vertical coordinate,
t is time, Hy /3 is the significant wave height (average height of the highest one third of the waves), T is the
wave period. The wave number can be determined from the dispersion relation (see Equation 12), he wave
period T and the significant wave height H, /5 are calculated from the JONSWAP spectrum. The significant
wave height is calculated as shown in Equation 17 [6], [32]).

oo _5 U?
Hi/s = 4/((%) (€ =Jy Sww(F)df = 1.67-1077 —2F (17)
The peak frequency is determined from Equation 13; from that the peak wave period is written in
Equation 18.
T 1
p= E (18)

Using the calculated time period and significant wave height, an equivalent first order Airy wave can be
considered and the wave force on the substructure calculated as a function of time. To determine the
amplitude of the periodic moment on the structure, the maximum of the total load and the time instant of
this maximum has to be determined. Since the velocity is a cosine and the acceleration is a sine function of
time, the drag force and the inertia force have 90° phase difference. Figure 11(a) shows the general shape of
the wave forces on the substructure. In present case the expression for the force can be simplified by
examining the dominant component of the force. The Kreulegan-Carpenter number is a good measure of the
ratio of the drag and inertia forces:

u T, mH.
K = -28XP U oth(kS) (19)
Dy Dy

where U4, is the maximum of the horizontal component of the periodic water particle velocity, T, is the
wave period, Dp is the diameter of the pile, k is the wave number and S is the mean sea depth. If K, < 5 the
load is said to be inertia dominated, and the drag force may be neglected. For a wind turbine at the
Walney 1 site in typical environmental conditions K. = 0.59 and the load is heavily inertia dominated as
shown in Figure 11(b).

General shape of drag and inertia forces
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Figure 11 — Forces from waves on the structure. General shape of forces as a function of time and magnitudes compared
for an actual wind turbine (Siemens SWT-3.6-107 Walney, 21.5m water depth, average wind and waves).

Therefore the maximum of the total force approximately coincides with the maximum of the inertia force,
which is found when the acceleration is maximum. The amplitude of the mudline moment becomes:
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The wave number k is connected to the wave frequency f by the dispersion relation (see Equation 12) and
the wave period T is connected to the wave frequency f by Equation 18. The upper limit of the integral on
the right hand side is the surface elevation; its value is zero at the instants J,, of the maxima of the inertia
force, that is, n(9,) = 0. The integration is carried out in Equation 21.

0 (S _ Y\ ks _ (S 1Y, -ks_ L
Qk,S) = [, cosh(k(S +2)) (S + z)dx = (2k 2k2) e (Zk + 2k2) e + = (21)
Using these the power spectral density of the mudline bending moment can be written (Equation 22).
_ (22087 f* S _ L) pks _ (S 4 1Y -ks 4 1]
Sumwaves () = CnPiv =~ i) (Zk 2k2) € (Zk + 2k2) e +3a] Sww(f) (22)
Remarks:

1. The mudline moment spectrum of the wave loads is explicitly or implicitly dependent on the parameters
shown in Equation 23 (see Nomenclature at the beginning of the paper).

SMM,waves(f) = SMM,wcwes(f: Cm: Pw. Dp, k,S, U: F) (23)

2. Establishing the mudline moment spectrum for a given site with a given wind turbine and support
structure and using practical approximations, the inertia coefficient, the water density, the diameter of
the pile, the water depth (if the tidal and surge variations are neglected) and the fetch can be considered
constant and Equation 23 reduces to:

SMM,waves = SMM,waves(f' k,U) (24)

3. In sufficiently deep (S > A\2) or sufficiently shallow (§ < 1/10) waters approximations may be used for
the dispersion relation:
Deep water: w? =gk >k =4n?f%/gS > 1/2

Shallow water: w? = gk?S >k =2nf/(gS) S<a/10

Expressing the wave number with the frequency, Equation 24 can be further reduced to:

SMM,waves(f) = SMM,waves(fv U) (25)

4. The two main parameters in the representation of the JONSWAP spectrum as expressed in Equation 13
are the mean wind speed U, and the fetch F. It should be noted that such direct relationship between
wind speed and wave height cannot always be established, for example because of the presence of swell
waves (i.e. waves generated by storms far away from the wind turbine). Therefore, it is often more
practical to use the significant wave height H,,3 and the time period of waves T}, as main parameters.
They are also more practical in some cases because they are observable and can be measured. Such
representation is shown in the DNV-RP-205 code for Environmental Conditions and Environmental Loads
[18].
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where S](f) is the JONSWAP spectrum, f is the frequency of waves, A, is a normalizing factor, H, 3 is
the significant wave height, T, is the peak wave period and y is the peak enhancement factor.



2.5 1P loading

The wind turbine is subject to cyclic loading with the rotational frequency and the source of this load is
mainly the rotor mass imbalance and aerodynamic imbalance (due to differences in the pitch of individual
blades). The amplitude of this forcing depends on the extent of the imbalances, and a typical value is used
here based on the literature (see [20], [21]). A simple method is shown to estimate the fore-aft bending
moment at the mudline caused by the mass imbalance, however, the calculation of the effect of blade pitch
misalignment requires more input information and more sophisticated methods. The mass imbalance can be
modelled as an added lumped mass on the rotor at 8 azimuthal angle from Blade I. and at R distance from
the centre of the hub as shown in Figure 12. Here the imbalance is assumed to be on Blade | (6 = 0).

I, = mR (27)

where [,,, is the mass imbalance with units of [kg - m], m is a lumped mass and R is the radial distance from
the centre of the hub along Blade I. The centrifugal force at any time can be calculated from the centrifugal
acceleration a = RO? with Q being the angular frequency and f = Q/(2m) the frequency of rotation. The
lever arm of the centrifugal force Fy is called the rotor overhang b (see Figure 13), with which the bending
moment is expressed:

F;p =ma = mRO? = [,,0% = 4n?1,,f? Mip = 4m*bly f? (28)
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Figure 13 —Model of the mass imbalance and loads exerted during operation. The fore-aft mudline bending
moment caused by the wind load and waves (assumed collinear) is My, .

It is to be noted here that the centrifugal force also produces torsion in the tower (around the x axis), as
well as moments in side-to-side direction (around the z axis) as shown in Figure 13. The bending moment in
the side-side direction caused by the centrifugal force is much higher than the fore-aft moment because the
arm of the force is H + MSL instead of b. The effect of the gravity force acting on the mass imbalance is
considered negligible.

The spectral analysis of a load that is essentially a sinusoidal function of a certain frequency gives a Dirac-
Delta function. This is a function defined as §(f — fip) = 0 for all values of f except for f = f;p where



6(f — fip) # 0 (with f;p being the frequency of the wind turbine’s rotation.) The magnitude of this function
at f = f;p is strictly undefined. However, the conditions in Equation 29 apply.

f_ 5(f — fip)df =1

- (29)
f_ M%P(f)a(f_flP)df=M12P(flp)

This means that the condition that the integral of the spectral density function has to give the variance of
the signal, that is, the square of the amplitude of the load, is satisfied. Thus the spectrum of the 1P loading is
given in Equation 30.

SMM,lP = M12P(f)5(f - f1p) (30)

For constant speed wind turbines f,. is constant, however, for the more common variable speed wind
turbines which operate at different rotational speeds based on the wind speed, the frequency of the
rotation depends on the mean wind speed at hub height f;p = f1p(U). A higher frequency also means a
higher value of the integral under the Dirac-Delta curve, that is

U <U,>f<fa> [0 MRS — fdf < [° ME(S(f — f)df (31)

2.6 Blade passage (3P).

The wind produces drag force on the tower, which can be considered constant at a given mean wind
speed ignoring buffeting and vortex shedding on the tower and also without the effect of the rotating. When
a blade is passing in front of the tower it disturbs the flow downwind and decreases the load on the tower.
The frequency of this load loss is three times the rotational frequency of the turbine 3P (2P in case of 2-
bladed designs). In this paper its magnitude is estimated by a simple geometric consideration: the upper part
of the face area of the tower is partly covered by the blade when the blade is in a downward pointing
position (¢ = m). The drag force on the covered part of the tower is taken to be zero; the blade causes a
load loss on the tower. When the blade is in the downward direction it covers the tower fromz = H — L to
z = H.The total moment of drag force on this upper section without the effect of blade passage:

—r\P

Marag = i, 3PaCoDr (VD + dx  U(2) =T (Z) (32)
where H is the hub height from mean sea level, L is the length of the blades, p, is the density of air, Cj is
the drag coefficient, D(z) is the diameter of the tower at z (assuming the diameter linearly decreases
between the bottom and top diameters), z is the vertical coordinate (zero at mean sea level), S is the mean
sea depth and U(z) is the power law velocity profile using the exponential wind profile with § = 1/7 =
0.143. If the ratio of the face area of the blade and the area of the top part of the tower (see Figure 6) is R,
then the 3P moment amplitude can be written:

M;p = RAMdrag (33)

Similarly to the 1P loading, the frequency of this loading is constant at a given rotational speed of the
turbine, therefore its power spectrum is a Dirac-delta function. The integral under the curve equals to the
square of the 3P moment, with the amplitude of the Dirac-delta undefined. The integral is not directly
dependent on the frequency of rotation, however, it depends on the mean wind speed, and the mean wind
speed and the rotational speed of the turbine are connected through turbine characteristics.

| 6= rinrar =1

| M3(0r - fipdar = M) (34)

SMM,BP = Mlzp(f)5(f - fip)



2.7 Dynamic Amplification

As mentioned above, close to the natural frequency of the structure dynamic amplification increases the
fatigue damage suffered by the structure. The magnitude of the response of the structure increases by the
Dynamic Amplification Factor (DAF), which depends on the modal damping of the system. The main
contributors to the damping of tower vibrations of an OWT are material/structural, soil, hydrodynamic and
most importantly aerodynamic damping. The value of structural damping varies in the literature. One finds
as low values as 0.3% suggested in [15] and 0.5% in [25], intermediate value of “less than 1%” in [40] and
about 1% in [41], the range 0.5-1.5% in [42], and higher values of 2% in [43] and [44]. For the soil damping
ratio the value of about 0.4-0.7% was found in [45], 0.6-0.8% was estimated in [46], about 1.5% in [47]. The
hydrodynamic damping consists of two main effects, viscous damping (dissipation due to drag) and wave
radiation [46]. The study in [45] considers the viscous damping negligible and uses the wave radiation
damping value of about 0.1%. Similarly, [25] found the hydrodynamic damping negligible due to very low
velocities and accelerations of the structure close to seabed. The aerodynamic damping of depends on the
wind speed and differs for the along-wind (fore-aft vibrations) and cross-wind (side-to-side vibrations)
directions. In the along-wind direction (fore-aft vibration) one finds values in the range of 4-7% in the
literature [25], [41], [43], and in the cross-wind direction low values are reported, e.g. 0.1% was found in [48]
and about 0.1-0.25% in [46].

A significant difference between estimated and measured damping ratios was found in [43]. The HAWC
software predicted total damping values of 5.5% and 0.6% in the along-wind and cross-wind directions,
respectively, while the measured values were about 11-14% in the along-wind and 3.2-7.9% for the cross-
wind directions, with the cross-wind damping decreasing at higher wind speeds. This may suggest that actual
values of damping are higher than those estimated in literature. However, to stay on the conservative side,
in this study a total damping ratio of 5% is assumed in the fore-aft direction, most of which is the
contribution from aerodynamic damping, and in the side-to-side direction a low damping ratio of 0.5% is
used.

The DAF is estimated by the formula given in the DNV code [6]

_ 1 _ L __ excitation frequency _ . .
DAF = /(1_32)2.’.(2{3)2 'B - fo (_ natural frequency ) "; - dam'pmg ratio

The PSD magnitudes need to be multiplied by the square of the DAF to include dynamic amplification.

3. Application of the method for an industrial wind turbine

The method presented above is applied here for an actual Siemens industrial wind turbine of 3.6MW rated
power at the Walney 1 wind farm site. The necessary turbine and site information are available in the
Siemens brochure [49], website of DONG Energy (the developer of the wind farm) [50], website of the
Lindoe Offshore Renewables Center [51], lorc.dk. All necessary information is presented in Table 1.

In this section the mudline moment spectra are derived for each loading and some load values are
estimated for several typical operational conditions of the particular turbine. Dynamic amplification is taken
into account.

3.1 Walney 1 Wind Farm Site

The Walney site is located 14km off the coast of Walney Island in the Irish Sea (UK). The first phase
(Walney 1) of the wind farm contains 51 Siemens SWT-3.6-107 type wind turbines of 3.6MW rated power.
The average wind speed at the site is 9m/s, the dominant wind direction is West/South-West. This location
in the Irish Sea is relatively sheltered as the shores are relatively close in most directions. The average fetch
is estimated at 60km and this value is used to calculate the JONSWAP spectrum. The significant wave heights
are limited at the site and the highest waves are in the range of a few metres. The water depth ranges
between 19-23m at the site and in the calculations an average value of 21.5m is used. A conservative upper
bound estimate of 16% is assumed for the site turbulence intensity (IEC high turbulence site [26]).



The OWT’s cut-in wind speed is 4m/s and its cut-out speed is 25m/s, the rated wind speed is 13-14m/s.
The turbines are pitch regulated variable speed turbines, the rotational speed ranges between 5-13rpm. The
OWTs have a rotor diameter of 107m, the hub height is 83.5m above mean sea level. A tapered tubular
tower is assumed with linearly varying diameter between the bottom and top diameters of 5m and 3m,
respectively. The OWTs are installed on 6m diameter monopile foundations (this value is used for calculating
the wave load on the substructure). The natural frequency is also necessary for the calculation of dynamic
amplification factors and it is estimated as 0.335Hz following [11]. (The data are summarised in Table 1.)

Turbine data

Turbine type: Siemens SWT-3.6-107
Turbine Power: 3.6 MW
Turbine rotational speed: 5-13 rpm
Operational wind speed range 4-25 m/s
Number of blades 3

Tower and Support Structure data
Hub height from Mean Sea Level: H=835m
Tower top diameter: D, =3m
Tower bottom diameter D,=5m
Monopile/substructure diameter: Dp=6m

Rotor and Blade data
Turbine rotor diameter: D=107m
Rotor overhang b=4m
Blade root diameter Broot =4m
Blade tip chord length Biip =1m
Blade length L=52m
Site Data

Mean Sea Depth: 21.5m
Average distance from closest shore: 19 km
Yearly mean wind speed 9mls
Dominant wind direction: West/South-West
Estimated fetch: 60 km

Table 1 — Relevant data of the Siemens SWT-3.6-107 wind turbine and the Walney 1 site

3.2 Wind Load Spectrum

The wind moment spectrum is given by Equation 11. To construct the moment, one needs the diameter of
the rotor (D = 107 [m]), density of air p, = 1.225 [kg/m3], hub height H = 83.5 [m], mean sea level
(MSL = 21.5 [m]). The mean wind speed is taken as the yearly mean wind speed at the site U = 9 [m/s],
and this way the thrust coefficient C; = 7/U = 7/9 [—]and the standard deviation of wind speed g, = IU
can be calculated. The Kaimal spectrum is constructed using the standard value of the integral length scale
as given in the DNV code [6]) L, = 340.2 [m]:

ALy 4-340.2
) 7 5 1360.8
Sun(f) = 5 = 5= 5 (35)
(1460l) (14 6:20020)5 g(, , 200121y

The turbulence intensity I can be calculated using the Normal Turbulence Model (NTM) as described in IEC
61400-1 [19] or the modified formulae for offshore environments given in IEC-61400-1 [26]. The three
classes A,B and C given in IEC 61400-1 have decreasing reference turbulence intensities of 16%, 14% and



12%, respectively. The reference turbulence intensity refers to the expected value of the turbulence
intensity at hub height at a 10 minutes mean wind speed of 15 [m/s]. The turbulence standard deviation is
calculated as

0y = lyer(0.750 +b) with b =56 [7] (36)

and with gy the turbulence intensity is calculated as I = g, /U. For offshore conditions in absence of site-
measured data, the turbulence standard deviation is calculated from the surface roughness z,, which is
determined from the following implicit expression:

2
_Ac|_xU_ 37
=t o (37)

where z; is the surface roughness, A, is the Charnock’s constant with A- = 0.011 for open sea and A, =
0.034 for near shore sites. k=0.4 is von Karman’s constant, g is the gravitational constant, H is the hub
height above sea level, and U is the mean wind speed. Using the value of z, the turbulence standard
deviation is determined by:
U
)

20

+1.28-144L,s with I =o0y/U (38)

The turbulence intensity curves for the three wind turbine classes A, B, C as well as the modified offshore
curves for near-shore (1) and open sea (2) locations are given in Figure 14. It is to be noted that offshore
turbulence intensities are lower than those onshore, however, at high wind speeds it remains steady and
even an increase in turbulence is seen at very high wind speeds (>25[m/s]). This was also observed in
measurements in e.g. [52], [53].

Turbulence Intensity as a function of
mean wind speed

Turbulence Intensity [-]
(=]
o

3 6 3 12 15 18 21 24 27 30
Mean Wind Speed [m/s]
[:5\— — Class B (IEC 61
() — offshore - Open Sea (IEC 61400-3)

@— C"":I'-o'é‘- Near Shore{lEC 61400-3
Figure 14. Turbulence for the three wind turbine classes A, B and C following and for offshore wind turbines in
near-shore (1) and open sea (2) locations as a function of the 10-minutes mean wind speed.

Here the offshore near-coastal formula (Equation 38 with A, = 0.034) is used, with which the mudline
moment spectrum can be written substituting into Equation 11 and using Equation 2 as:

_7.28-10%6-U-[1(D)]?
SMM,wind - 5 (39)
2041.2f)3

(125




The mudline moment spectrum is plotted in Figure 15 for U = 9 [m/s], curve (4) without and curve (3) with
dynamic amplification factor included. The fore-aft bending moment at mudline due to turbulence is
approximated by Equations 1, 3-4, and 7, using the standard deviation as the fluctuating component of wind
speed. The static component is calculated from Equation 4 using the mean wind speed. In the Kaimal
spectrum, most of the power is concentrated in the very low frequencies therefore the dynamic part of the
loading is approximated by placing the total standard deviation of the bending moment, which is the integral
under the spectrum curve, at the peak frequency f,, = 0.0017 [Hz]. Table 2 shows the calculated forces and
moments for several different mean wind speeds. The dynamic amplification factor is about 1 for such low
frequency excitations.

Thrust force on Thrust force on Fore-aft bending moment at  Fore-aft bending moment at

Wind speed the hub, static  the hub, dynamic mudline level,static wind mudline level, dynamic wind
Ulm/s] wind load wind load moment load moment
Thstat [MN] Thdyn [MN] Mwind,stat [MNm] Mwind,dyn [MNm]
5 0.193 0.050 20.24 5.25
9 0.347 0.078 36.43 8.19
15 0.578 0.124 60.72 13.02
20 0.771 0.213 80.96 22.365

Table 2 — Wind loading (static and fluctuating components) for several wind speed values

3.3 Wave Load Spectrum

The wave load spectrum is given by Equation 22. To construct the spectrum, one needs the inertia
coefficient of the substructure C,,, = 2 (based on [6]), the density of sea waterp,, = 1030 [kg/m?], the
diameter of the substructure Dp = 6 [m], the mean sea depth S = 21.5 [m], and the wave number k. The
latter can be determined from the dispersion relation (Equation 12), using the angular frequency of the
waves. The deep water assumption 4 < 25 does not hold for all important frequencies at the Walney site.
The JONSWAP spectrum can be determined as shown in Equation 13. The fetch is estimated at F = 60 [km],
the mean wind speed is U = 9 [m/s], the intensity of spectrum is @ = 0.011, the peak enhancement factor
is y = 3.3 and the peak frequency is f,, = 0.197 [Hz], the spectrum is given as:

6.8-107* _5(0197)"
Sww(f) — f5 e 4( f ) yr
(40)
B _(f—0-197;2 (007 f<fp
T = e 0077604 g = {009 f > fp

The mudline moment spectrum can be numerically calculated, and is presented in Figure 15, in curve (2)
without and in curve (1) with dynamic amplification factor included. The magnitude of the mudline bending
moment due to wave loading is estimated for several wind speeds using a single linear wave approximation
of the spectrum. The significant wave height H,,3 and peak wave period T}, are determined from the
JONSWAP spectrum using Equations 17-18. The moment load is calculated by Equations 20. The horizontal
wave force can be calculated as:

n

FT,max = Ml,max = f dFI,made (41)
S

with 7 = 0 one can write



Dgn’g H1/3
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Din®  Hy 0
Frmax = Cnpw 2 TZsinh(kS) _SCOSh(k(S +2) ) dx = Cpupy

(42)
The results for the significant wave height, peak wave period and force and bending moment loads for some
wind speed values are shown in Table 3. The dynamic amplification factors (DAF) along with the increased
dynamic loads are also given in the table.

Wind Significant Peak wave Peak DAF Horizontal wave force, Mudline moment,
speed wave height period frequency [ dynamic component dynamic component
Ulm/s] Hy3[m] Ty [s] fplHzZ] Fr[MN] / (with DAF) M;[MNm] / (with DAF)
5 0.64 4.17 0.240 2.03 0.146 / (0.296) 3.15/(6.39)
9 1.15 5.08 0.197 1.52 0.328 / (0.499) 5.1/(7.76)
15 2.05 6.02 0.166 1.32 0.540/ (0.7128) 7.6 / (10.06)
20 2.56 6.62 0.151 1.25 0.706 / (0.8825) 9.45 / (11.84)

Table 3 — Wave parameters and wave loading for several wind speed values

3.4 1P loading

To determine the 1P moment spectrum one needs a typical value of the mass imbalance of the rotor. Some
values are available for a somewhat smaller wind turbine studied in [21] and [20]. For the 2MW Vestas V80
turbine mass imbalance values of about 350-500 [kgm] were applied in these studies. The imbalance value is
estimated for the 3.6MW Siemens wind turbine by assuming that the imbalance is proportional to the mass
of the rotor and also to the diameter of the turbine. The mass ratio and the diameter ratio of the rotors are
calculated and the imbalance is scaled up by both ratios. The mass of the rotor of the Vestas turbine is 37.5
tonnes [54], while that of the Siemens turbine is 95 tonnes [49]. The diameter of the Vestas turbine’s rotor is
80m and that of the Siemens turbine is 107m. Therefore, the estimated imbalance value for the Siemens
SWT-107-3.6 turbine is estimated as shown in Equation 41.

Mswr107 Dswri07 95 107
L swr107 = Im,vso * Mygs  Dygo 500 - 375 80 1694 [kg - m] (43)

The original imbalance value of the V80 is a value typical for an average operational wind turbine. As an
upper bound estimate one may consider I,,, = 2000 [kgm].The distance between the axis of the tower and
the centre of the hub (i.e. the rotor overhang) is estimated as b = 4 [m]. (For clarity, see Figure 13.) This
way the maximum of the fore-aft bending moment caused by the imbalance is written as:

Myp = 44122000 - f2 = 3.1583 - 10°% - f2 (44)

The maximum bending moment occurs at the highest rotational speed of Q = 13 [rpm], that is f =
0.2167 [Hz], its value is M{p = 0.015 [MNm]. The spectrum of the 1P loading is a Dirac-delta function as
described in Section 2.3. Figure 15 shows the 1P loading in the fore-aft direction as a function of the Hertz
frequency of the rotation f, in curve (5) with dynamic amplification and in curve (6) without DAF. Even
though the side-to-side direction is not considered in this paper, it is important to mention that the 1P side-
to-side mudline bending moments are significantly higher than the fore-aft components. This is because of
the large lever arm of the force i.e. the distance between the hub height and the mudline (H + MSL).
Figure 15 also plots the side-to-side 1P mudline bending moment as a function of the Hertz frequency of
rotation, in curve (9) with and in curve (10) without dynamic amplification. The low value of modal damping
of 0.5% was used, which is due is due to low aerodynamic damping in the side-to-side mode (cross-wind
direction), as discussed in Section 2.7. This results in higher dynamic amplification factors of the response in
the side-to-side vibration mode. Table 4 shows the values of 1P fore-aft and side-to-side moments from the
imbalance. It can be seen that after reaching the rated rotational speed of 13rpm (at about 14 m/s), the 1P
load does not increase.



1P side-to-side

Mean wind speed  Rotation Fore-aft 1P fore-aft Side-to-side mudline bending moment
at hub height al speed DAF mudline bending moment DAF M g[MNm]
— : . _ 1P,side—to—side
Ulm/s] Q [rpm] [-] M;p[MNm] / (with DAF) [-] 7 (with DAF)
5 5.8 1.09 0.002 / (0.002) 1.09 0.077 / (0.084)
9 9 1.25 0.007 / (0.009) 1.25 0.187/(0.234)
15 13 1.71 0.015/ (0.025) 1.72 0.389/(0.669)
20 13 1.71 0.015/(0.025) 1.72 0.389/(0.669)

Table 4 — 1P fore-aft and side-to-side moments for several values of wind speed

3.5 3P loading

The 3P moment can be determined by estimating the total drag moment on the top part of the tower which
is covered by the downward pointing blade and then reducing this moment by the ratio of the face area of
the blade and the face area of the top part of the tower. The drag moment is estimated by the method
presented in Section 2.4. The density of air is p, = 1.225 [kg/m3], the drag coefficient of the tubular tower
at high Reynolds number is Cp = 0.5 [—], the linearly decreasing diameter of the tower can be written as:
z z

D(Z)=Db—(Db—Dt)'ﬁ=5—2'ﬁ (45)
with the z coordinate running from mean sea level along the length of the tower, D;, and D, are the bottom
and top diameters of the tower, respectively. Using the exponential wind profile and the water depth S =
21.5 [m], the moment can be written as:

83.5

— Z —
Myowertop = O.306sz (5-2 -ﬁ) 227 (z + 21.5)dx = 4019 - U2 [Nm] (46)
31.5 :

which gives My,q4 =~ 0.326[MNm] for U = 9 [m/s]. Both the area of the blade and the area of the top part
of the tower are approximated as trapezoids, the areas are calculated as:

_ (droot + dtip) — 4+1

Ablade = L -52 =130 [mz]
2 2 (47)
D +D 42543
Atowertop = “’WWZ PP = ~— 52 =188.2[m’]
The magnitude of the load loss is then approximated as written in Equation 45.
A 130
Msp = Myowertop —ee = 0.326 - ——— [MNm] = 0.225[MNm] (48)
Atowertop 188.2
The drag load on the tower is calculated by integrating along the whole tower:
H1 H1
Mgrqg = fO EpaCDD(Z)U(Z)Z(Z +S)dz Farag = fO EpaCDD(Z)U(Z)ZdZ (49)

The 3P forces and moments are estimated in Table 5 for several values of the mean wind speed. Note that in
the vicinity of 6.125 m/s (~6.7rpm rotational speed) the DAF gets very high and the 3P moment is an order of
magnitude higher than without DAF. In Figure 15 the 3P mudline moment squared is shown with and
without DAF in curve (7) and curve (8), respectively. It can be seen that after reaching the maximum
rotational speed (13 rpm) at the mean wind speed of 14 m/s, the load keeps increasing as the tower drag
increases, but the frequency of excitation remains constant at the 3P value corresponding to 13 rpm
f3p@13rpm = 0.65 Hz (vertical section in Figure 15).



Total drag Total drag

Wind speed force on the moment on 3P freq. DAF 3P force 3P moment
Ulm/s] tower the tower [Hz] [] /f\fvli:t[l:v[I;VA]F) jw(ﬁ[tfgﬁ])
[MN] [MNm]
5 0.0019 0.176 0.29 3.77 0.001 / (0.003) 0.069 / (0.262)
9 0.0062 0.570 0.45 1.23 0.003 / (0.004 0.225/(0.275)
15 0.0173 1.584 0.65 0.36 0.008 / (0.003) 0.625 / (0.225)
20 0.0308 2.816 0.65 0.36 0.014 / (0.005) 1.111/(0.401)
(res6(;r11§1ice) 0.0289 0.189 0.335 10 0.001/ (0.013) 0.104 / (1.042)

Table 5 — 3P loading and drag load on the tower
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Figure 15: Fore-aft bending moment spectrum at mudline — Siemens SWT-3.6-107 at the Walney 1 wind
farm. The amplitudes of the 1P and 3P moment squares are to be compared to the integral under the wind
and wave spectrum curves, not directly to the spectra.

3.6 Summary of loads and comparison

The static and dynamic loads are summarised in Table 6 for two different wind speeds with dynamic loads
in bold font. For the sake of completeness static current load is included in the table. The current load can be
calculated as a drag force on the substructure using Morison’s equation (see Equation 14). Data about the
current and tidal stream conditions at the Walney site are not available, however, using the tidal atlas of the
Irish Sea available on the internet at www.visitmyharbour.com [55] one can see that the tidal stream velocity
rarely exceeds 1 knot (approximately 0.514 m/s). Using this value, Morison’s equation estimates a static



force of 0.0176MN and a static mudline bending moment of 0.189MNm due to currents acting on the
substructure. The effect of dynamic amplification on the spectra is shown in Figure 15 and the effect on the
1P and 3P loads is shown in Figure 16.

1P and 3P loading

@—3? w/ Dynamic Amplification
L;:»— — 3P w/o Dynamic Amplification
@— 1P w/ Dynamic Amplification

@— — 1P w/o Dynamic Amplification

@-— 1P (side-to-side) w/ Dynamic

Amplification

Mudline Moment [MNm]

(4] 0.1 ®CI.

1P (side-to-side) w/o Dynamic
Amplidication
03

Frequency [Hz]

0.4 05 0.6 0.7

Figure 16: 1P fore-aft bending moment, 1P side-to-side bending moment and 3P bending moment at mudline
with and without dynamic amplification.

U=9[m/s] U =20 [m/s]
Load Fore-aft bending Force Fore-aft bending Force
moment (parallel to axis x) moment (parallel axis x)

[MNm] / (w/ DAF) [MN] (w/ DAF) [MNm] (w/ DAF) [MN] (w/ DAF)
Wind load (static) 36.4 0.35 80.96 0.771
Wind load (dynamic) 12.6 (12.6) 0.12 (0.12) 27.98 0.27 (0.27)
Current/tidal stream 0.19 0.018 0.19 0.018
Wave loading 5.1(7.76) 0.33 (0.50) 9.45 (11.84) 0.71 (0.88)
1Ploading 0.01 (0.01) = 0.025 (0.043) c
(3P loading) 0.225 (0.275) 0.003 (0.004) 1.11 (0.40) 0.014 (0.005)
Tower drag (static) 0.57 0.006 2.82 0.031
Total static load 37.2 0.37 84.0 0.82
Total dynamic load 17.7 (20.4) 0.45 (0.62) 37.5(39.9) 0.97 (1.15)
Total maximum load 54.9 (57.6) 0.82(0.99) 121.5 (123.9) 1.79 (1.97)

Table 6 — Estimated static and dynamic loads (values with dynamic amplification in brackets). The wind load
was calculated using the peak frequency of 0.0017[Hz], therefore the dynamic amplification factor (DAF) is 1
for the wind loading. The total static load is calculated as the sum of the static wind load, the current load and
the tower drag load. The total dynamic load is calculated as the sum of the dynamic wind load, the wave
loading, and the 1P loading. The 3P cyclic loading is basically a load loss, therefore it is not to be added.

The theoretical wave moment spectrum matches well the spectrum obtained as a result of 500 time
simulations reported in [36]. It is to be noted that the peak frequency of the JONSWAP spectrum of waves is
significantly (two orders of magnitude) higher than that of the Kaimal spectrum of wind. This means
significantly higher cycle count of wave loading than that of wind loading during the lifetime of the turbine.
The estimated magnitudes of static and dynamic loads are comparable with the estimations of Byrne and



Houlsby [56]. However, the wave loads are significantly lower, since the wind farm location in the Irish Sea is
somewhat sheltered and the fetch is limited, therefore very high waves do not commonly develop.

3.7 Limitations

The methodology presented in this study provides mudline moment spectra as a basis for frequency based
fatigue damage estimation. As a tool for the early design phase, the methodology has limitations that are
important to note and are listed below:

(a) The analysis takes into account only the power production stage of the wind turbine. However, fatigue
damage also occurs during start-up, shutdown, parked state and other scenarios. The mudline bending
moment spectra were calculated using theoretical spectra, Kaimal spectrum and JONSWAP spectrum for the
wind and wave loading, respectively. It is important to note that these spectra are not calculated as
“lifetime representative” spectra but rather correspond to a certain set of environmental conditions (i.e.
certain sea state and wind conditions). The spectra can be calculated for different environmental conditions
using the given formulae; different conditions occur with different probability. From the point of view of
fatigue damage, the assumed aerodynamic admittance function of y(f) = 1 as given in Section 2.2
provides a conservative estimation for each set of conditions. The design standards encourage the use of site
specific spectra wherever available.

(b) Due to long term wind speed variations, the static component of the wind produces stress cycles with
high amplitude but low frequency. Even though the number of cycles for these loads is much lower than for
the loads addressed in this study, the high amplitudes may contribute significantly to the fatigue damage.

(c) The quasi-steady approximation of wind speed fluctuations gives a rough estimation of the fluctuating
wind load. The present formulation is a simplified tool to precede detailed time domain analysis. For detailed
fatigue analysis a non-linear time domain approach like the Blade Element Momentum (BEM)
theory ([28], [15]) is more suitable. However, the BEM method requires a significant amount of information
about the blade design as well as a detailed description of the aerofoil characteristics of each radial section.

(d) The proposed formulation assumes collinear wind and wave directions, i.e. that there is no
misalignment between the wind speed and the propagation direction of waves. This is often true for winds
blowing onshore, but not common for winds blowing offshore. This means that the estimation given by
summing the individual contributions is a conservative upper bound estimate of the fatigue. The IEC
standards [19], [26] require the wind turbines to operate with yaw error, the present approach using
Figure 6 and Equation 7 can be considered conservative for yawed flow.

(e) The simplistic formula for the thrust coefficient shown in Equation 9 is a rough upper bound estimate
which was tested for several wind turbines in the original work [30]. The thrust coefficient of the wind
turbine can be calculated more accurately applying the BEM Theory (or other more refined methods).

(f) The estimation of fetch is an uncertain process and the resulting wave heights and wave periods should
be compared to typical values at a given site. Alternatively, the formulation based on Hy,3 and T}, given in
Equation 26 may be used. The first order Airy wave approximation of the wave particle kinematics is only
valid for deeper waters, and it may be necessary to use higher order methods. Very high nonlinear waves
and severe wave impacts caused by breaking waves occur rarely and thus have low cycle numbers but high
load magnitude and may contribute significantly to the fatigue damage.

(g) The derivations were carried out for three bladed wind turbines because they are dominating the
offshore wind industry. However, the calculation methods are similar for two bladed turbines as well. For
the same rotational speed range, the 1P-2P gap is smaller than the 1P-3P gap, although 2 bladed turbines
tend to spin somewhat faster.

(h) It is to be noted that Morison’s equation as discussed in Section 2.4 is developed for slender piles, and
typically suitable for jacket structural components and monopiles. However, when the structure is large (as
compared to the typical wave lengths) and the foundation disturbs the wave kinematics, such as in case of
gravity base foundations Morison’s method is not sufficient, and wave diffraction analysis has to be carried
out [6]. Different methods are summarised in the OWTES Project report [25], where Morison’s method,
diffraction models, Froude-Krylov/Pressure Integration methods and CFD are compared in terms of
applicability, ease of use and calculation speed.

(i) The two spectra can be superposed by simply summing the moment spectra from wind and waves:



SMM,total = SMM,wind + SMM,wcwes (50)

If safety factors (load factors) y are to be included as suggested in DNV-0S-J101 [6] the load factors are to be
squared for the spectra, that is

— .2 2
SMM,total - ywindSMM,Wind + ywaveSMM,waves (51)

(j) The calculated mudline bending moment spectrum may be used to calculate fatigue damage using
frequency domain methods, such as Dirlik’s method [57], Tovo-Benasciutti methods [58], ay 75 method [59],
Gao-Moan method [60] and many more. Validation of the methodology on load time histories from different
offshore wind farm sites with known characteristics is necessary, however, there are very limited
measurement data available in the public domain.

4. Discussion and Conclusions

In this study an attempt has been made to provide a quick and simple methodology to estimate the fore-
aft mudline bending moment spectra of offshore wind turbines for the four main types of dynamic loads:
wind, wave, rotor mass imbalance (1P), and blade passage (3P). An example calculation is presented for an
operational industrial Siemens SWT-107-3.6 wind turbine at the Walney 1 site and the mudline moment
spectra are plotted (taking into account dynamic amplifications).

The motivation behind this simplified methodology is to provide a basis for a quick frequency domain
fatigue damage estimation in the preliminary design phase of these structures which is otherwise a very
lengthy process usually done in time domain. This would also encourage integrated design of OWTs
incorporating the dynamics and fatigue analysis in the early stages of structural design. Therefore, it was also
an objective to use as little site specific information of the wind turbine as possible. Information such as the
control parameters, the blade design, aerofoil characteristics, generator characteristics, etc. are not
necessary in this formulation. It must be mentioned here that the description and comparison of the most
important frequency domain fatigue damage estimation methods are available in a recent literature review
[61].
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