429 research outputs found

    Proteins from morphologically differentiated neuroblastoma cells promote tubulin polymerization

    Get PDF
    Clonal cells (N18) of the mouse neuroblastoma C-1300 can be induced to undergo a morphological differentiation characterized by the outgrowth of very long neurites (> 150 microns) that contain many microtubules. Because the marked increase in the number and length of microtubules is apparently not due to an increase in the concentration of tubulin subunits, the possible role of additional macromolecules in the regulation of tubulin polymerization during neurite formation by N18 cells was examined. Using an in vitro system where the polymerization of low concentrations (< 4 mg/ml) of purified brain tubulin requires microtubule-associated proteins (MAPs), high-speed supernates (250,000 g) from neuroblastoma and glioma cells were assayed for their ability to replace MAPs in the polymerization of brain tubulin. Only the supernates from "differentiated" N18 cells were polymerization competent. Electron microscope observations of these supernates failed to demonstrate the presence of nucleation structures (rings or disks). The active factor(s) sedimented at approximately 7S on sucrose gradient centrifugation and eluted from 4B Sepharose in the region of 170,000 mol wt proteins. Furthermore, the inactive supernates from other cells did not inhibit polymerization when tested in the presence of limiting MAPs. Thus, microtubule formation accompanying neurite outgrowth in neuroblastoma cells appears to be regulated by the presence of additional macromolecular factor(s) that may be functionally equivalent to the MAPs found with brain microtubules

    Interferometric length metrology for the dimensional control of ultra-stable Ring Laser Gyroscopes

    Full text link
    We present the experimental test of a method for controlling the absolute length of the diagonals of square ring laser gyroscopes. The purpose is to actively stabilize the ring cavity geometry and to enhance the rotation sensor stability in order to reach the requirements for the detection of the relativistic Lense-Thirring effect with a ground-based array of optical gyroscopes. The test apparatus consists of two optical cavities 1.32 m in length, reproducing the features of the ring cavity diagonal resonators of large frame He-Ne ring laser gyroscopes. The proposed measurement technique is based on the use of a single diode laser, injection locked to a frequency stabilized He-Ne/Iodine frequency standard, and a single electro-optic modulator. The laser is modulated with a combination of three frequencies allowing to lock the two cavities to the same resonance frequency and, at the same time, to determine the cavity Free Spectral Range (FSR). We obtain a stable lock of the two cavities to the same optical frequency reference, providing a length stabilization at the level of 1 part in 101110^{11}, and the determination of the two FSRs with a relative precision of 0.2 ppm. This is equivalent to an error of 500 nm on the absolute length difference between the two cavities

    Rotational sensitivity of the "G-Pisa" gyrolaser

    Full text link
    G-Pisa is an experiment investigating the possibility to operate a high sensitivity laser gyroscope with area less than 1m21 \rm m^2 for improving the performances of the mirrors suspensions of the gravitational wave antenna Virgo. The experimental set-up consists in a He-Ne ring laser with a 4 mirrors square cavity. The laser is pumped by an RF discharge where the RF oscillator includes the laser plasma in order to reach a better stability. The contrast of the Sagnac fringes is typically above 50% and a stable regime has been reached with the laser operating both single mode or multimode. The effect of hydrogen contamination on the laser was also checked. A low-frequency sensitivity, below 1Hz1 \rm Hz, in the range of 10−8(rad/s)/Hz10^{-8} \rm {(rad / s)/ \sqrt{Hz}} has been measured.Comment: 6 pages, 6 figures, presented at the EFTF-IFCS joint conference 200

    Developing fiber lasers with Bragg reflectors as deep sea hydrophones

    Get PDF
    The present paper will discuss the work in progress at the Department of Physics of the University of Pisa in collaboration with the IFAC laboratory of CNR in Florence to develop pressure sensors with outstanding sensitivity in the acoustic and ultrasonic ranges. These devices are based on optically-pumped fiber lasers, where the mirrors are Bragg gratings written into the fiber core

    A high sensitivity tool for geophysical applications: A geometrically locked Ring Laser Gyroscope

    Full text link
    This work demonstrates that a middle size ring laser gyroscope (RLG) can be a very sensitive and robust instrument for rotational seismology, even if it operates in a quite noisy environment. The RLG has a square cavity, 1.60×1.601.60\times 1.60 m2^2, and it lies in a plane orthogonal to the Earth rotational axis. The Fabry-Perot optical cavities along the diagonals of the square were accessed and their lengths were locked to a reference laser. Through a quite simple locking circuit, we were able to keep the sensor fully operative for 14 days. The obtained long term stability is of the order of 3~nanorad/s and the short term sensitivity close is to 2~nanorad/s⋅\cdotHz−1/2^{-1/2}. These results are limited only by the noisy environment, our laboratory is located in a building downtown.Comment: 9 pages, 4 figures, 25 reference

    Geometrical scale-factor stabilization of square cavity ring laser gyroscopes

    Get PDF
    Large frame ring laser gyros performances are ultimately limited by the instabilities of their geometrical parameters. We present the experimental activity on the GP2 ring laser gyro. GP2 is a ring laser gyro devoted to develop advanced stabilization techniques of the ring cavity geometrical scale-factor. A method based on optical interferometry has been developed for canceling the deformations of the resonator. The method is based on the measurement and stabilization of the absolute length of the cavity perimeter and of the resonators formed by the opposite cavity mirrors. The optical frequency reference in the experiment is an iodine-stabilized He-Ne laser, with a relative frequency stability of 10-11. The measurement of the absolute length of the two resonators has been demonstrated up to now on a test bench. We discuss the experimental results on GP2: the present performances as a ring laser gyro and the stabilization scheme to be implemented in the near future

    Length measurement and stabilization of the diagonals of a square area laser gyroscope

    Get PDF
    Large frame ring laser gyroscopes are top sensitivity inertial sensors able to measure absolute angular rotation rate below prad s-1 in few seconds. The GINGER project is aiming at directly measuring the Lense-Thirring effect with an 1% precision on an Earth based experiment. GINGER is based on an array of large frame ring laser gyroscopes. The mechanical design of this apparatus requires a micrometric precision in the construction and the geometry must be stabilized in order to keep constant the scale factor of the instrument. The proposed control is based on square cavities, and relies on the length stabilization of the two diagonals, which must be equal at micrometric level. GP2 is the prototype devoted to the scale factor control test. As a first step, the lengths of the diagonals of the ring cavity have been measured through an interferometric technique with a statistical accuracy of some tens of nanometers, and they have been locked to the wavelength of a reference optical standard. Continuous operation has been obtained over more than 12 h, without loss of sensitivity. GP2 is located in a laboratory with standard temperature stabilization, with residual fluctuations of the order of 1 C. Besides the demonstration of the control effectiveness, the analysis of the Sagnac frequency demonstrates that relative small and low-cost ring lasers (around one meter of side) can also achieve a sensitivity of the order of nrad s-1 in the range 0.01-10 Hz in a standard environment, which is the target sensitivity in many different applications, such as rotational seismology and next generation gravitational waves detectors

    The GINGER Project and status of the ring-laser of LNGS

    Get PDF
    A ring-laser attached to the Earth measures the absolute angular velocity of the Earth summed to the relativistic precessions, de Sitter and Lense-Thirring. GINGER (Gyroscopes IN GEneral Relativity) is a project aiming at measuring the LenseThirring effect with a ground based detector; it is based on an array of ring-lasers. Comparing the Earth angular velocity measured by IERS and the measurement done with the GINGER array, the Lense-Thirring effect can be evaluated. Compared to the existing space experiments, GINGER provides a local measurement, not the averaged value and it is unnecessary to model the gravitational field. It is a proposal, but it is not far from being a reality. In fact the GrossRing G of the Geodesy Observatory of Wettzell has a sensitivity very close to the necessary one. G ofWettzell is part of the IERS system which provides the measure of the Length Of the DAY (LOD); G provides information on the fast component of LOD. In the last few years, a roadmap toward GINGER has been outlined. The experiment G-GranSasso, financed by the INFN Commission II, is developing instrumentations and tests along the roadmap of GINGER. In this short paper the main activities of G-GranSasso and some results will be presented. The first results of GINGERino will be reported, GINGERino is the large ring-laser installed inside LNGS and now in the commissioning phase. Ring-lasers provide as well important informations for geophysics, in particular the rotational seismology, which is an emerging field of science. GINGERino is one of the three experiments of common interest between INFN and INGV
    • …
    corecore