94 research outputs found
A two-stage, two-organism process for biohydrogen from glucose
H2 can potentially be produced in a two-stage biological process: the fermentation of glucose by Escherichia coli HD701 and the photofermentation of the residual medium by Rhodobacter sphaeroides O.U. 001. In a typical batch fermentation, E. coli consumed glucose and produced H2, organic end-products and biomass. Organic end-products and residual glucose were removed during subsequent photofermentation by R. sphaeroides, with associated growth and neutralization of pH. However, photoproduction of H2 did not occur during photofermentation of the residual liquor per se due to the presence of fixed nitrogen compounds. Nevertheless, this two-stage approach could be applied to dispose of sugar-containing industrial wastes, H2 being used for on-site power generation
Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100
Hydrogen production by Escherichia coli is mediated by the formate hydrogenlyase (FHL) complex. E. coli strain HD701 cannot synthesize the FHL complex repressor, Hyc A. Consequently, it has an up-regulated FHL system and can, therefore, evolve hydrogen at a greater rate than its parental wild type, E. coli MC4100. Resting cells of E. coli strain HD701 and MC4100 were set up in batch mode in\ud
phosphate buffered saline (PBS) to decouple growth from hydrogen production at the expense of sugar solutions of varying composition. Strain HD701 evolved several times more hydrogen than MC4100 at glucose concentrations ranging from 3 to 200 mM. The difference in the amount of H2 evolved by both strains decreased as the concentration of glucose increased. The highest rate of H2 evolution by strain HD701was 31ml h−1 ODunit −1 l−1 at a glucose concentration of 100 mM.With strain MC4100, the highest ratewas 16ml h−1 ODunit −1 l−1 under these conditions. Experiments using industrial wastes with a high sugar content yielded similar results. In each case, strain HD701\ud
evolved hydrogen at a faster rate than the wild type, showing a possible potential for commercial hydrogen production
Integrating dark and light biohydrogen production strategies: towards the hydrogen economy
Biological methods of hydrogen production are preferable to chemical methods because of the possibility to use sunlight, CO2 and organic wastes as substrates for environmentally benign conversions, under moderate conditions. By combining different microorganisms with different capabilities, the individual strengths of each may be exploited and their weaknesses overcome. Mechanisms of bio-hydrogen production are described and strategies for their integration are discussed. Dual systems can be\ud
divided broadly into wholly light-driven systems (with microalgae/cyanobacteria as the 1st stage) and partially light-driven systems (with a dark, fermentative initial reaction). Review and evaluation of published data suggests that the latter type of system holds greater promise for industrial application. This is because the calculated land area required for a wholly light-driven dual system would be too large for either centralised (macro-) or decentralised(micro-) energy generation. The potential contribution to the hydrogen economy of partially light-driven dual systems is overviewed alongside that of other biofuels such as bio-methane and bio-ethanol
Biomass-supported catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides
A Rhodobacter sphaeroides-supported dried, ground palladium catalyst (‘‘Rs-Pd(0)’’) was compared with a Desulfovibrio desulfuricans-supported catalyst (‘‘Dd-Pd(0)’’)and with unsupported palladium metal particles made by reduction under H2 (‘‘Chem-Pd(0)’’). Cell surface-located clusters of Pd(0) nanoparticles were detected on both D. desulfuricans and R. sphaeroides but the size and location of deposits differed among comparably loaded preparations.\ud
\ud
These differences may underlie the observation of different activities of Dd-Pd(0) and Rs-Pd(0) when compared with respect to their ability to promote hydrogen release from hypophosphite and to catalyze chloride release from chlorinated aromatic compounds. Dd-Pd(0) was more effective in the reductive dehalogenation of polychlorinated biphenyls (PCBs), whereas Rs-Pd(0) was more effective in the initial dehalogenation of pentachlorophenol (PCP) although the rate of chloride release from PCP was comparable with both preparations after 2 h
Hydrothermal hydrolysis of starch with CO2 and detoxification of the hydrolysates with activated carbon for bio-hydrogen fermentation.
The imminent use of hydrogen as an energy vector establishes the need for sustainable production technologies based on renewable resources. Starch is an abundant renewable resource suitable for bio-hydrogen generation. It was hypothesised that starch hydrolysates from a large (250 mL) hydrothermal reactor could support bioH2 fermentation without inhibition by toxic byproducts.\ud
\ud
Starch was hydrolysed at high concentrations (40 200 g.L-1) in hot compressed water (HCW) with CO2 at 30 bar in a 250 mL reactor, the largest so far for polysaccharide hydrolysis, at 180 235 °C, 15 min. Hydrolysates were detoxified with activated carbon (AC) and tested in biohydrogen fermentations. The maximum yield of glucose was 548 g.kg starch 1 carbon at 200 °C. 5 hydroxymethyl furfural, the main fermentation inhibitor, was removed by AC to support 70% more hydrogen production than the untreated hydrolysates. The potential utilization of starch hydrolysates from HCW treatment for upscaled fermentations is promising
A Novel Aerobic Mechanism for Reductive Palladium Biomineralization and Recovery by Escherichia coli
Aerobically grown E. coli cells reduced Pd(II) via a novel mechanism using formate as the electron donor. This reduction was monitored in real-time using extended X-ray absorption fine structure. Transmission electron microscopy analysis showed that Pd(0) nanoparticles, confirmed by X-ray diffraction, were precipitated outside the cells. The rate of Pd(II) reduction by E. coli mutants deficient in a range of oxidoreductases was measured, suggesting a molybdoprotein-mediated mechanism, distinct from the hydrogenase-mediated Pd(II) reduction previously described for anaerobically grown E. coli cultures. The potential implications for Pd(II) recovery and bioPd catalyst fabrication are discussed
Use of Desulfovibrio and Escherichia coli Pd-nanocatalysts in reduction of Cr(VI) and hydrogenolytic dehalogenation of polychlorinated biphenyls and used transformer oil
BACKGROUND Desulfovibrio spp. biofabricate metallic nanoparticles (e.g. ‘Bio-Pd’) which catalyse the reduction of Cr(VI) to Cr(III) and dehalogenate polychlorinated biphenyls (PCBs). Desulfovibrio spp. are anaerobic and produce H2S, a potent catalyst poison, whereas Escherichia coli can be pre-grown aerobically to high density, has well defined molecular tools, and also makes catalytically-active ‘Bio-Pd’. The first aim was to compare ‘Bio-Pd’ catalysts made by Desulfovibrio spp. and E. coli using suspended and immobilised catalysts. The second aim was to evaluate the potential for Bio-Pd-mediated dehalogenation of PCBs in used transformer oils, which preclude recovery and re-use.\ud
RESULTS Catalysis via Bio-PdD. desulfuricans and Bio-PdE. coli was compared at a mass loading of Pd:biomass of 1:3 via reduction of Cr(VI) in aqueous solution (immobilised catalyst) and hydrogenolytic release of Cl- from PCBs and used transformer oil (catalyst suspensions). In both cases Bio-PdD. desulfuricans outperformed Bio-Pd E. coli by ~3.5-fold, attributable to a ~3.5-fold difference in their Pd-nanoparticle surface areas determined by magnetic measurements (Bio-PdD. desulfuricans) and by chemisorption analysis (Bio-PdE. coli). Small Pd particles were confirmed on D. desulfuricans and fewer, larger ones on E. coli via electron microscopy. Bio-PdD. desulfuricans-mediated chloride release from used transformer oil (5.6 0.8 g mL-1 ) was comparable to that observed using several PCB reference materials. \ud
CONCLUSIONS At a loading of 1:3 Pd: biomass Bio-PdD. desulfuricans is 3.5-fold more active than Bio-PdE. coli, attributable to the relative catalyst surface areas reflected in the smaller nanoparticle sizes of the former. This study also shows the potential of Bio-PdD. desulfuricans to remediate used transformer oil
The organic waste gold rush: optimising resource recovery in the UK bioeconomy
The use of organic waste in the bioeconomy has the potential to contribute towards the UK’s strategic goals of clean growth, resource security and reducing use of fossil fuels. While the reduction of avoidable organic waste remains a priority, a number of waste streams are likely to persist and could provide a significant feedstock for the UK bioeconomy. The greatest environmental, social and economic benefits of resource recovery from organic wastes are associated with the displacement of fossil fuel derived chemicals and materials, and the combined products of nutrients and energy from anaerobic digestion. Organic wastes offer multiple resources that can be exploited most efficiently by technologies working in synergy with each other. Investments into different options for using organic wastes are driven by government policy and resource demand, in addition to technology readiness. Policy and regulations should encourage industrial synergies and an increase in the diversity of resources recovered from organic waste in order to be able to respond to future resource demands
Polyhydroxybutyrate accumulation by a Serratia sp
A strain of Serratia sp. showed intracellular electron-transparent inclusion bodies when incubated in the presence of citrate and glycerol 2-phosphate without nitrogen source following pregrowth under carbon-limitation in continuous culture. About 1.3 mmol citrate were consumed per 450 mg\ud
biomass, giving a calculated yield of maximally 55% of stored material per g of biomass dry wt. The inclusion bodies were stained with Sudan Black and Nile Red (NR), suggesting a lipid material, which was confirmed as polyhydroxybutyrate (PHB) by analysis of molecular fragments by GC and by FTIR spectroscopy of isolated bio-PHB in comparison with reference material. Multi-parameter flow cytometry in conjunction with NR fluorescence, and electron microscopy, showed that not all cells contained heavy PHB bodies, suggesting the potential for increasing\ud
the overall yield. The economic attractiveness is\ud
enhanced by the co-production of nanoscale hydroxyapatite\ud
(HA), a possible high-value precursor for bone replacement materials
Supercritical water gasification of microalgae: The impact of the algal growth water
This is the final version. Available on open access from Elsevier via the DOI in this recordData availability:
Data will be made available on request.Investigation into the supercritical water gasification (SCWG) of microalgae has largely used deionized water as the reaction medium. However, real systems would use the algal growth water directly, containing ions that have been known to catalyse SCWG (K+, Na+, OH-, Fe3+, Cl-). Investigation into the effect of the growth water on SCWG was carried out for a range of temperatures (450–550), biomass concentrations (1–3wt%) and catalysts (KOH, Ru/C), using glucose or Chlorella vulgaris as the feedstock was performed. A significant increase in CO2 and reduction in CO content in the gas was observed without a catalyst and with a Ru/C catalyst. An increase in char/tar was also observed without a catalyst. As a result, the impact of the growth water should be considered for the SCWG of microalgae, in laboratory experiments and the selection of algal growth media in industrial applications.Engineering and Physical Sciences Research Council (EPSRC
- …