128 research outputs found

    Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Get PDF
    CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation

    Rapid turnover of effector-memory CD4(+) T cells in healthy humans

    Get PDF
    Memory T cells can be divided into central-memory (T(CM)) and effector-memory (T(EM)) cells, which differ in their functional properties. Although both subpopulations can persist long term, it is not known whether they are maintained by similar mechanisms. We used in vivo labeling with deuterated glucose to measure the turnover of CD4(+) T cells in healthy humans. The CD45R0(+)CCR7(-) T(EM) subpopulation was shown to have a rapid proliferation rate of 4.7% per day compared with 1.5% per day for CD45R0(+)CCR7(+) T(CM) cells; these values are equivalent to average intermitotic (doubling) times of 15 and 48 d, respectively. In contrast, the CD45RA(+)CCR7(+) naive CD4(+) T cell population was found to be much longer lived, being labeled at a rate of only 0.2% per day (corresponding to an intermitotic time of approximately 1 yr). These data indicate that human CD4(+) T(EM) cells constitute a short-lived cell population that requires continuous replenishment in vivo

    Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments.

    Get PDF
    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated (2)H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique

    Report of a Joint Cancer Research UK/Medical Research Council workshop on cancer cachexia research at the Royal College of Physicians, Tuesday, 2 December 2003

    Get PDF
    A joint workshop held by Cancer Research UK and the Medical Research Council aimed to stimulate interest in further research into the area of cancer cachexia. The workshop was divided into four sessions: an overview of cancer cachexia, potential mechanisms involved and methodologies that might be used to understand cachexia, and also the experience of cachexia from other disease areas. The workshop identified a need to develop a multimodal therapeutic approach to cancer cachexia and a need to undertake more multidisciplinary research

    Explicit kinetic heterogeneity: mechanistic models for interpretation of labeling data of heterogeneous cell populations

    Get PDF
    Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three models that are most commonly used are in fact mathematically identical and differ only in their interpretation of the estimated parameters. By extending these previous models, we here propose a more mechanistic approach for the analysis of data from deuterium labeling experiments. We construct a model of "kinetic heterogeneity" in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a mechanistic way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length

    Association between HIV replication and serum leptin levels: an observational study of a cohort of HIV-1-infected South African women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced HIV infection can result in lipoatrophy and wasting, even in the absence of ongoing opportunistic infections, suggesting that HIV may directly affect adipose tissue amount and distribution.</p> <p>Methods</p> <p>We assessed the relationship of fat (measured using anthropometry, DEXA, MRI scans) or markers related to glucose and lipid metabolism with viral load in a cross-sectional sample of 83 antiretroviral-naïve HIV-1-infected South African women. A multivariable linear model was fitted to log<sub>10</sub>VL to assess the combined effect of these variables.</p> <p>Results</p> <p>In addition to higher T cell activation, women with viral load greater than the population median had lower waist circumference, body mass index and subcutaneous abdominal fat, as well as lower serum leptin. We demonstrate that leptin serum levels are inversely associated with viral replication, independent of the amount of adipose tissue. This association is maintained after adjusting for multiple variables associated with disease progression (i.e., cellular activation and innate immunity effector levels).</p> <p>Conclusions</p> <p>Our results demonstrate that serum leptin levels are inversely associated with viral replication, independent of disease progression: we postulate that leptin may affect viral replication.</p

    KIR-HLA interactions extend human CD8+ T cell lifespan in vivo

    Get PDF
    BACKGROUND. There is increasing evidence, in transgenic mice and in vitro, that inhibitory killer cell immunoglobulin-like receptors (iKIRs) can modulate T cell responses. Furthermore, we have previously shown that iKIRs are an important determinant of T cell–mediated control of chronic viral infection and that these results are consistent with an increase in the CD8+ T cell lifespan due to iKIR-ligand interactions. Here, we tested this prediction and investigated whether iKIRs affect T cell lifespan in humans in vivo. METHODS. We used stable isotope labeling with deuterated water to quantify memory CD8+ T cell survival in healthy individuals and patients with chronic viral infections. RESULTS. We showed that an individual’s iKIR-ligand genotype was a significant determinant of CD8+ T cell lifespan: in individuals with 2 iKIR-ligand gene pairs, memory CD8+ T cells survived, on average, for 125 days; in individuals with 4 iKIR-ligand gene pairs, the memory CD8+ T cell lifespan doubled to 250 days. Additionally, we showed that this survival advantage was independent of iKIR expression by the T cell of interest and, further, that the iKIR-ligand genotype altered the CD8+ and CD4+ T cell immune aging phenotype. CONCLUSIONS. Together, these data reveal an unexpectedly large effect of iKIR genotype on T cell survival

    Severe malnutrition with and without HIV-1 infection in hospitalised children in Kampala, Uganda: differences in clinical features, haematological findings and CD4(+ )cell counts

    Get PDF
    BACKGROUND: The aim of this study was to describe the clinical features, haematological findings and CD4(+ )and CD8(+ )cell counts of severely malnourished children in relation to human immunodeficiency virus (HIV) infection. METHODS: The study was conducted in the paediatric wards of Mulago hospital, which is Uganda's national referral and teaching hospital. We studied 315 severely malnourished children (presence of oedema and/or weight-for-height: z-score < -3) and have presented our findings. At admission, the CD4(+ )and CD8(+ )cells were measured by the flow cytometry and HIV serology was confirmed by Enzyme linked Immunoassay for children >18 months of age, and RNA PCR was performed for those ≤18 months. Complete blood count, including differential counts, was determined using a Beckman Coulter counter. RESULTS: Among the 315 children, 119 (38%) were female; the median age of these children was 17 months (Interquartile range 12–24 months), and no difference was observed in the HIV status with regard to gender or age. The children showed a high prevalence of infections: pneumonia (68%), diarrhoea (38%), urinary tract infection (26%) and bacteraemia (18%), with no significant difference with regard to the HIV status (HIV-positive versus HIV-negative children). However, the HIV-positive children were more likely to have persistent diarrhoea than the HIV-uninfected severely malnourished children (odds ratio (OR) 2.0, 95% confidence interval (CI) 1.2–3.6). When compared with the HIV-negative children, the HIV-positive children showed a significantly lower median white blood cell count (10700 versus 8700) and lymphocyte count (4033 versus 2687). The CD4(+ )cell percentages were more likely to be lower in children with non-oedematous malnutrition than in those with oedematous malnutrition even after controlling for the HIV infection. The novel observation of this study is that the CD4(+ )percentages in both HIV-positive and HIV-negative children without oedema were lower that those in children with oedema. These observations appear to imply that the development of oedema requires a certain degree of immunocompetence, which is an interesting clue to the pathophysiology of oedema in severe malnutrition
    • …
    corecore