2,684 research outputs found

    Structural and thermal response of 30 cm diameter ion thruster optics

    Get PDF
    Tabular and graphical data are presented which are intended for use in calibrating and validating structural and thermal models of ion thruster optics. A 30 cm diameter, two electrode, mercury ion thruster was operated using two different electrode assembly designs. With no beam extraction, the transient and steady state temperature profiles and center electrode gaps were measured for three discharge powers. The data showed that the electrode mount design had little effect on the temperatures, but significantly impacted the motion of the electrode center. Equilibrium electrode gaps increased with one design and decreased with the other. Equilibrium displacements in excess of 0.5 mm and gap changes of 0.08 mm were measured at 450 W discharge power. Variations in equilibrium gaps were also found among assemblies of the same design. The presented data illustrate the necessity for high fidelity ion optics models and development of experimental techniques to allow their validation

    Estimated Greenhouse Gas Emissions from PFAS Treatment of Maine Drinking Water

    Get PDF
    State law requires the adoption of a maximum contaminant level (MCL) for PFAS contamination in drinking water by June 1, 2024. While discussion of mitigation options has included the degree of risk reduction and the cost of treatment, indirect environmental effects are missing from the conversation. Until other technologies are developed, water treatment in Maine will likely rely on the established, energy-intensive method of PFAS adsorption (binding) to granular activated carbon. We conducted an inventory of greenhouse gas emissions associated with water treatment using this treatment media to fill gaps in the discussion. We found that greenhouse gas emissions for water treatment to bring PFAS down to the current interim standard are substantial, raising the footprint of an average user by 6.7–18 percent. We use this information to discuss implications for policymaking

    Non‐native species have multiple abundance–impact curves

    Full text link
    The abundance–impact curve is helpful for understanding and managing the impacts of non‐native species. Abundance–impact curves can have a wide range of shapes (e.g., linear, threshold, sigmoid), each with its own implications for scientific understanding and management. Sometimes, the abundance–impact curve has been viewed as a property of the species, with a single curve for a species. I argue that the abundance–impact curve is determined jointly by a non‐native species and the ecosystem it invades, so that a species may have multiple abundance–impact curves. Models of the impacts of the invasive mussel Dreissena show how a single species can have multiple, noninterchangeable abundance–impact curves. To the extent that ecosystem characteristics determine the abundance–impact curve, abundance–impact curves based on horizontal designs (space‐for‐time substitution) may be misleading and should be used with great caution, it at all. It is important for scientists and managers to correctly specify the abundance–impact curve when considering the impacts of non‐native species. Diverting attention from the invading species to the invaded ecosystem, and especially to the interaction between species and ecosystem, could improve our understanding of how non‐native species affect ecosystems and reduce uncertainty around the effects of management of populations of non‐native species.The abundance–impact curve is a useful tool for understanding and managing the impacts of invasive species. Using models based on the impacts of the zebra mussel, I show that a single invasive species can have radically different abundance–impact curves in different habitats. This means that managers must be careful to use the correct abundance–impact curve and that scientists should avoid using space‐for‐time substitution to understand the impacts of invaders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156222/2/ece36364.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156222/1/ece36364_am.pd

    Metabolic oscillations on the circadian time scale in <i>Drosophila</i> cells lacking clock genes.

    Get PDF
    Circadian rhythms are cell-autonomous biological oscillations with a period of about 24 h. Current models propose that transcriptional feedback loops are the primary mechanism for the generation of circadian oscillations. Within this framework, &lt;i&gt;Drosophila&lt;/i&gt; S2 cells are regarded as "non-rhythmic" cells, as they do not express several canonical circadian components. Using an unbiased multi-omics approach, we made the surprising discovery that &lt;i&gt;Drosophila&lt;/i&gt; S2 cells do in fact display widespread daily rhythms. Transcriptomics and proteomics analyses revealed that hundreds of genes and their products, and in particular metabolic enzymes, are rhythmically expressed in a 24-h cycle. Metabolomics analyses extended these findings and demonstrate that central carbon metabolism and amino acid metabolism are core metabolic pathways driven by protein rhythms. We thus demonstrate that 24-h metabolic oscillations, coupled to gene and protein cycles, take place in nucleated cells without the contribution of any known circadian regulators. These results therefore suggest a reconsideration of existing models of the clockwork in &lt;i&gt;Drosophila&lt;/i&gt; and other eukaryotic systems

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision

    Spontaneous Gender Categorization in Masking and Priming Studies: Key for Distinguishing Jane from John Doe but Not Madonna from Sinatra

    Get PDF
    Facial recognition is key to social interaction, however with unfamiliar faces only generic information, in the form of facial stereotypes such as gender and age is available. Therefore is generic information more prominent in unfamiliar versus familiar face processing? In order to address the question we tapped into two relatively disparate stages of face processing. At the early stages of encoding, we employed perceptual masking to reveal that only perception of unfamiliar face targets is affected by the gender of the facial masks. At the semantic end; using a priming paradigm, we found that while to-be-ignored unfamiliar faces prime lexical decisions to gender congruent stereotypic words, familiar faces do not. Our findings indicate that gender is a more salient dimension in unfamiliar relative to familiar face processing, both in early perceptual stages as well as later semantic stages of person construal

    Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)iron(II) bis­(dicyanamidate) 4.5-hydrate

    Get PDF
    In the title compound, [Fe(C24H16N6)2][N(CN)2]2·4.5H2O, the central iron(II) ion is hexa­coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine (tppz) ligands. Two dicyanamide anions [dca or N(CN)2 −] act as counter-ions, and 4.5 water mol­ecules act as solvation agents. The structure contains isolated cationic iron(II)–tppz complexes and the final neutrality is obtained with the two dicyanamide anions. One of the dicyanamide anions and a water mol­ecule are disordered with an occupancy ratio of 0.614 (8):0.386 (8). O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds involving dca, water and tppz mol­ecules are observed
    corecore