32 research outputs found

    Energy transfer in pendant perylene diimide copolymers

    Get PDF
    We report the synthesis, characterisation and polymerisation of two novel asymmetric perylene diimide acrylate monomers. The novel monomers form a sensitiser–acceptor pair capable of undergoing Förster resonance energy transfer, and were incorporated as copolymers with tert-butyl acrylate. The tert-butyl acrylate units act as spacers along the polymer chain allowing high concentrations of dye while mitigating aggregate quenching, leading to persistent fluorescence in the solid state at high concentrations of up to 0.3 M. Analysis of fluorescence kinetics showed efficient energy transfer between the optically dense sensitiser and the lower concentration acceptor luminophores within the polymer. This reduced reabsorption within the material demonstrates that the copolymer-scaffold energy transfer system has potential for use in luminescent solar concentrators

    Long-Term Characterization of Oxidation Processes in Graphitic Carbon Nitride Photocatalyst Materials via Electron Paramagnetic Resonance Spectroscopy

    Get PDF
    Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. To determine the underlying catalytic mechanisms and overall contributions that will improve performance, the electronic structure of gCN materials has been investigated using electron paramagnetic resonance (EPR) spectroscopy. Through lineshape analysis and relaxation behavior, evidence of two independent spin species were determined to be present in catalytically active gCN materials. These two contributions to the total lineshape respond independently to light exposure such that the previously established catalytically active spin system remains responsive while the newly observed, superimposed EPR signal is not increased during exposure to light. The time dependence of these two peaks present in gCN EPR spectra recorded sequentially in air over several months demonstrates a steady change in the electronic structure of the gCN framework over time. This light-independent, slowly evolving additional spin center is demonstrated to be the result of oxidative processes occurring as a result of exposure to the environment and is confirmed by forced oxidation experiments. This oxidized gCN exhibits lower H2 production rates and indicates quenching of the overall gCN catalytic activity over longer reaction times. A general model for the newly generated spin centers is given and strategies for the alleviation of oxidative products within the gCN framework are discussed in the context of improving photocatalytic activity over extended durations as required for future functional photocatalytic device development

    the path to silicon-singlet fission heterojunction devices

    Get PDF
    Singlet exciton fission is an exciton multiplication process that occurs in certain organic materials, converting the energy of single highly-energetic photons into pairs of triplet excitons. This could be used to boost the conversion efficiency of crystalline silicon solar cells by creating photocurrent from energy that is usually lost to thermalisation. An appealing method of implementing singlet fission with crystalline silicon is to incorporate singlet fission media directly into a crystalline silicon device. To this end, we developed a solar cell that pairs the electron-selective contact of a high-efficiency silicon heterojunction cell with an organic singlet fission material, tetracene, and a PEDOT:PSS hole extraction layer. Tetracene and n-type crystalline silicon meet in a direct organic–inorganic heterojunction. In this concept the tetracene layer selectively absorbs blue-green light, generating triplet pairs that can dissociate or resonantly transfer at the organo-silicon interface, while lower-energy light is transmitted to the silicon absorber. UV photoemission measurements of the organic–inorganic interface showed an energy level alignment conducive to selective hole extraction from silicon by the organic layer. This was borne out by current–voltage measurements of devices subsequently produced. In these devices, the silicon substrate remained well-passivated beneath the tetracene thin film. Light absorption in the tetracene layer created a net reduction in current for the solar cell, but optical modelling of the external quantum efficiency spectrum suggested a small photocurrent contribution from the layer. This is a promising first result for the direct heterojunction approach to singlet fission on crystalline silicon

    Internal electric fields control triplet formation in halide perovskite-sensitized photon upconverters

    Get PDF
    Halide perovskite-based photon upconverters utilize perovskite thin films to sensitize triplet exciton formation in a small-molecule layer, driving triplet-triplet annihilation upconversion. Despite having excellent carrier mobility, these systems suffer from inefficient triplet formation at the perovskite/annihilator interface. We studied triplet formation in formamidinium-methylammonium lead iodide/rubrene bilayers using photoluminescence and surface photovoltage methods. By studying systems constructed on glass as well as hole-selective substrates, comprising self-assembled layers of the carbazole derivative 2PACz ([2-(9H-carbazol-9-yl)ethyl]phosphonic acid) on indium-doped tin oxide, we saw how changes in the carrier dynamics induced by the hole-selective substrate perturbed triplet formation at the perovskite/rubrene interface. We propose that an internal electric field, caused by hole transfer at the perovskite/rubrene interface, strongly affects triplet exciton formation, accelerating exciton-forming electron-hole encounters at the interface but also limiting the hole density in rubrene at high excitation densities. Controlling this field is a promising path to improving triplet formation in perovskite/annihilator upconverters

    Increased upconversion performance for thin film solar cells: A trimolecular composition

    Get PDF
    Photochemical upconversion based on triplet-triplet annihilation (TTA-UC) is employed to enhance the short-circuit currents generated by two varieties of thin-film solar cells, a hydrogenated amorphous silicon (a-Si:H) solar cell and a dye-sensitized solar cell (DSC). TTA-UC is exploited to harvest transmitted sub-bandgap photons, combine their energies and re-radiate upconverted photons back towards the solar cells. In the present study we employ a dual-emitter TTA-UC system which allows for significantly improved UC quantum yields as compared to the previously used single-emitter TTA systems. In doing so we achieve record photo-current enhancement values for both the a-Si:H device and the DSC, surpassing 10-3 mA cm-2 sun-2 for the first time for a TTA-UC system and marking a record for upconversion-enhanced solar cells in general. We discuss pertinent challenges of the TTA-UC technology which need to be addressed in order to achieve its viable device application

    a trimolecular composition

    Get PDF
    Photochemical upconversion based on triplet–triplet annihilation (TTA-UC) is employed to enhance the short-circuit currents generated by two varieties of thin-film solar cells, a hydrogenated amorphous silicon (a-Si:H) solar cell and a dye-sensitized solar cell (DSC). TTA-UC is exploited to harvest transmitted sub-bandgap photons, combine their energies and re-radiate upconverted photons back towards the solar cells. In the present study we employ a dual-emitter TTA-UC system which allows for significantly improved UC quantum yields as compared to the previously used single-emitter TTA systems. In doing so we achieve record photo-current enhancement values for both the a-Si:H device and the DSC, surpassing 10−3 mA cm−2 sun−2 for the first time for a TTA-UC system and marking a record for upconversion-enhanced solar cells in general. We discuss pertinent challenges of the TTA-UC technology which need to be addressed in order to achieve its viable device application

    Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion

    Get PDF
    Single-threshold solar cells are fundamentally limited by their ability to harvest only those photons above a certain energy. Harvesting below-threshold photons and re-radiating this energy at a shorter wavelength would thus boost the efficiency of such devices. We report an increase in light harvesting efficiency of a hydrogenated amorphous silicon (a-Si:H) thin-film solar cell due to a rear upconvertor based on sensitized triplet–triplet-annihilation in organic molecules. Low energy light in the range 600–750 nm is converted to 550–600 nm light due to the incoherent photochemical process. A peak efficiency enhancement of (1.0 ± 0.2)% at 720 nm is measured under irradiation equivalent to (48 ± 3) suns (AM1.5). We discuss the pathways to be explored in adapting photochemical UC for application in various single threshold devices

    Improving the light-harvesting of second generation solar cells with photochemical upconversion

    Get PDF
    Photovoltaics (PV) offer a solution for the development of sustainable energy sources, relying on the sheer abundance of sunlight: More sunlight falls on the Earth’s surface in one hour than is required by its inhabitants in a year. However, it is imperative to manage the wide distribution of photon energies available in order to generate more cost efficient PV devices because single threshold PV devices are fundamentally limited to a maximum conversion efficiency, the Shockley-Queisser (SQ) limit. Recent progress has enabled the production of c-Si cells with efficiencies as high as 25%,1 close to the limiting efficiency of ∼30%. But these cells are rather expensive, and ultimately the cost of energy is determined by the ratio of system cost and efficiency of the PV device. A strategy to radically decrease this ratio is to circumvent the SQ limit in cheaper, second generation PV devices. One promising approach is the use of hydrogenated amorphous silicon (a-Si:H), where film thicknesses on the order of several 100nm are sufficient. Unfortunately, the optical threshold of a-Si:H is rather high (1.7-1.8 eV) and the material suffers from light-induced degradation. Thinner absorber layers in a-Si:H devices are generally more stable than thicker films due to the better charge carrier extraction, but at the expense of reduced conversion efficiencies, especially in the red part of the solar spectrum (absorption losses). Hence for higher bandgap materials, which includes a-Si as well as organic and dye-sensitized cells, the major loss mechanism is the inability to harvest low energy photons

    Reaction of porphyrin-based surface-anchored metal-organic frameworks to prolonged illumination

    Get PDF
    Crystalline surface-anchored metal–organic framework (SURMOF) thin films made from porphyrin-based organic linkers have recently been used in both photon upconversion and photovoltaic applications. While these studies showed promising results, the question of photostability in this organic–inorganic hybrid material has to be investigated before applications can be considered. Here, we combine steady-state photoluminescence, transient absorption, and time-resolved electron paramagnetic resonance spectroscopy to examine the effects of prolonged illumination on a palladium-porphyrin based SURMOF thin film. We find that phototreatment leads to a change in the material\u27s photoresponse caused by the creation of stable products of photodecomposition – likely chlorin – inside the SURMOF structure. When the mobile triplet excitons encounter such a defect site, a short-lived (80 ns) cation–anion radical pair can be formed by electron transfer, wherein the charges are localized at a porphyrin and the photoproduct site, respectively

    Effect of a back reflector

    Get PDF
    Photochemical upconversion is applied to a hydrogenated amorphous silicon solar cell in the presence of a back-scattering layer. A custom-synthesized porphyrin was utilized as the sensitizer species, with rubrene as the emitter. Under a bias of 24 suns, a peak external quantum efficiency (EQE) enhancement of ~2 % was observed at a wavelength of 720 nm. Without the scattering layer, the EQE enhancement was half this value, indicating that the effect of the back-scatterer is to double the efficacy of the upconverting device. The results represent an upconversion figure of merit of 3.5 × 10–4 mA cm–2 sun–2, which is the highest reported to date
    corecore