Photovoltaics (PV) offer a solution for the development of sustainable energy
sources, relying on the sheer abundance of sunlight: More sunlight falls on
the Earth’s surface in one hour than is required by its inhabitants in a year.
However, it is imperative to manage the wide distribution of photon energies
available in order to generate more cost efficient PV devices because single
threshold PV devices are fundamentally limited to a maximum conversion
efficiency, the Shockley-Queisser (SQ) limit. Recent progress has enabled the
production of c-Si cells with efficiencies as high as 25%,1 close to the
limiting efficiency of ∼30%. But these cells are rather expensive, and
ultimately the cost of energy is determined by the ratio of system cost and
efficiency of the PV device. A strategy to radically decrease this ratio is to
circumvent the SQ limit in cheaper, second generation PV devices. One
promising approach is the use of hydrogenated amorphous silicon (a-Si:H),
where film thicknesses on the order of several 100nm are sufficient.
Unfortunately, the optical threshold of a-Si:H is rather high (1.7-1.8 eV) and
the material suffers from light-induced degradation. Thinner absorber layers
in a-Si:H devices are generally more stable than thicker films due to the
better charge carrier extraction, but at the expense of reduced conversion
efficiencies, especially in the red part of the solar spectrum (absorption
losses). Hence for higher bandgap materials, which includes a-Si as well as
organic and dye-sensitized cells, the major loss mechanism is the inability to
harvest low energy photons