782 research outputs found

    Aerodynamic investigations of ventilated brake discs.

    Get PDF
    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometries, rotated in free air, were measured using a five-hole pressure probe and a hot-wire anemometry system. The principal measurements were taken using two-component hot-wire techniques and were used to determine mean and unsteady flow characteristics at the exit of the brake rotors. Using phase-locked data processing, it was possible to reveal the spatial and temporal flow variation within individual rotor passages. The effects of disc geometry and rotational speed on the mean flow, passage turbulence intensity, and mass flow were determined. The rotor exit jet and wake flow were clearly observed as characterized by the passage geometry as well as definite regions of high and low turbulence. The aerodynamic flow characteristics were found to be reasonably independent of rotational speed but highly dependent upon rotor geometry

    Installed performance assessment of a boundary layer ingesting distributed propulsion system at design point

    Get PDF
    Boundary layer ingesting systems have been proposed as a concept with great potential for reducing the fuel consumption of conventional propulsion systems and the overall drag of an aircraft. These studies have indicated that if the aerodynamic and efficiency losses were minimised, the propulsion system demonstrated substantial power consumption benefits in comparison to equivalent propulsion systems operating in free stream flow. Previously assessed analytical methods for BLI simulation have been from an uninstalled perspective. This research will present the formulation of an rapid analytical method for preliminary design studies which evaluates the installed performance of a boundary layer ingesting system. The method uses boundary layer theory and one dimensional gas dynamics to assess the performance of an integrated system. The method was applied to a case study of the distributed propulsor array of a blended wing body aircraft. There was particular focus on assessment how local flow characteristics influence the performance of individual propulsors and the propulsion system as a whole. The application of the model show that the spanwise flow variation has a significant impact on the performance of the array as a whole. A clear optimum design point is identified which minimises the power consumption for an array with a fixed configuration and net propulsive force requirement. In addition, the sensitivity of the system to distortion related losses is determined and a point is identi ed where a conventional free-stream propulsor is the lower power option. Power saving coefficient for the configurations considered is estimated to lie in the region of 15%

    Thin-Film Trilayer Manganate Junctions

    Full text link
    Spin-dependent conductance across a manganate-barrier-manganate junction has recently been demonstrated. The junction is a La0.67_{0.67}Sr0.33_{0.33}MnO3_3% -SrTiO3_3-La0.67_{0.67} Sr0.33_{0.33}MnO3_3 trilayer device supporting current-perpendicular transport. Large magnetoresistance of up to a factor of five change was observed in these junctions at 4.2K in a relatively low field of the order of 100 Oe. Temperature and bias dependent studies revealed a complex junction interface structure whose materials physics has yet to be understood.Comment: 20 pages, 14 figures. To appear in Phil. Trans. R. Soc. Lond. A vol.356 (1998

    Enzymatic synthesis of glycosides and oligosaccharides

    Get PDF
    The β-D-galactosidase of Escherichia coli catalysed galactosyl transfer to a variety of acceptor substrates. Transfers to simple alcohols were followed by transfers to chiral alcohols, chiral diols (bearing primary and secondary hydroxyl groups) and to a me so- diol. In particular, the regio- and stereoselective aspects of the reactions were investigated. In general, transfer to primary hydroxyl groups was favoured over transfer to secondary hydroxyl groups, but little or no preference for the transfer to specific enantiomers in a racemic mixture was observed. The results for propane-1,2-diol and butane- 1,3-diol are interpreted in terms of the possible conformations which might be adopted at the active site of the enzyme. Transfer to cii-cyclohexa-3,5-diene- 1,2-diol gave rise to two diastereoisomers. During the early stages of the reaction, a diastereoisomeric excess of ca. 80% was observed; this was reduced to ca. 20% as the yields of product reached their maximum values. Assignment of the structures of the products was based on a combination of the techniques of nuclear Overhauser enhancement and molecular modelling. α-Galactosyl transfers to lactose and cellobiose using Mortierella vinacea a-D-galactosidase were also studied. In both cases, a single trisaccharide was isolated. Spectroscopic evidence indicated that a (1-6) linkages had been formed in both cases. An acrylamide/acrylic acid polymer intended for use in enzymatic oligosaccharide synthesis was developed. The polymer was high swelling so as to allow permeation by the enzyme and could be easily stored. An attempt to introduce chiral cavities specific for certain monosaccharides was made by substituting part of the acrylamide for a boronate-containing acrylamide and carrying out the polymerisation in the presence of the monosaccharide. The success of the imprinting procedure was measured by the ability of the polymer to separate the components of a racemic mixture of the monosaccharide. The application of such "molecular imprinting" as an aid to oligosaccharide synthesis is discussed

    Site-specific Mutants of Oncomodulin: 1H NMR and optical stopped-flow studies of the effect on the metal binding properties of an Asp59 → Glu59 substitution in the calcium-specific site

    Get PDF
    Abstract High resolution 1H nuclear magnetic resonance spectroscopy and optical stopped-flow techniques have been used to study the metal binding properties of a site-specific mutant of bacterial recombinant oncomodulin in which glutamate has replaced a liganding aspartate at position 59 in the CD calcium-binding site. In particular we have followed the replacement of calcium by lutetium in bacterial recombinant oncomodulin and D59E oncomodulin to provide a measure of the protein's preferences for metal ions of different ionic radii. The result of the Asp----Glu substitution is to make the mutant oncomodulin more similar to rat parvalbumin in terms of its relative CD- and EF-domain affinities for lutetium(III), that is to increase its affinity for metal ions with smaller ionic radii. This finding supports the original hypothesis that the presence of Asp at sequence position 59 is an important factor in the reduced preference of the CD site of oncomodulin for smaller metals such as magnesium (Williams, T. C., Corson, D. C., Sykes, B. D., and MacManus, J. P. (1987) J. Biol. Chem. 262, 6248-6256). However, our studies show that both the CD and the EF sites are affected by this single residue substitution suggesting that many factors play a role in the metal binding affinity and interaction between the two sites

    Image Deblurring and Near-real-time Atmospheric Seeing Estimation through the Employment of Convergence of Variance

    Get PDF
    A new image reconstruction algorithm is presented that will remove the effect of atmospheric turbulence on motion compensated frame average images. The primary focus of this research was to develop a blind deconvolution technique that could be employed in a tactical military environment where both time and computational power are limited. Additionally, this technique can be employed to measure atmospheric seeing conditions. In a blind deconvolution fashion, the algorithm simultaneously computes a high resolution image and an average model for the atmospheric blur parameterized by Fried’s seeing parameter. The difference in this approach is that it does not assume a prior distribution for the seeing parameter, rather it assesses the convergence of the image’s variance as the stopping criteria and identification of the proper seeing parameter from a range of candidate values. Experimental results show that the convergence of variance technique allows for estimation of the seeing parameter accurate to within 0.5 cm and often even better depending on the signal to noise ratio

    Characteristics of shock-induced boundary layer separation on nacelles under windmilling diversion conditions

    Get PDF
    The boundary layer on the external cowl of an aero-engine nacelle under windmilling diversion conditions is subjected to a notable adverse pressure gradient due to the interaction with a near-normal shock wave. Within the context of Computational Fluid Dynamics (CFD) methods, the correct representation of the characteristics of the boundary layer is a major challenge to capture the onset of the separation. This is important for the aerodynamic design of the nacelle as it may assist in the characterization of candidate designs. This work uses experimental data obtained from a quasi-2D rig configuration to provide an assessment of the CFD methods typically used within an industrial context. A range of operating conditions is investigated to assess the sensitivity of the boundary layer to changes in inlet Mach number and mass flow through a notional windmilling engine. Fully turbulent and transitional boundary layer computations are used to determine the characteristics of the boundary layer and the interaction with the shock on the nacelle cowl. The correlation between the onset of shock induced boundary layer separation and pre-shock Mach number is assessed and the boundary layer integral characteristics ahead of the shock and the post-shock recovery evaluated and quantified. Overall, it was found that the CFD is able to discern the onset of boundary layer separation for a nacelle under windmilling conditions

    MIRIAD--Public release of a multiple time point Alzheimer's MR imaging dataset

    Get PDF
    The Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD) dataset is a series of longitudinal volumetric T1 MRI scans of 46 mild-moderate Alzheimer's subjects and 23 controls. It consists of 708 scans conducted by the same radiographer with the same scanner and sequences at intervals of 2, 6, 14, 26, 38 and 52 weeks, 18 and 24 months from baseline, with accompanying information on gender, age and Mini Mental State Examination (MMSE) scores. Details of the cohort and imaging results have been described in peer-reviewed publications, and the data are here made publicly available as a common resource for researchers to develop, validate and compare techniques, particularly for measurement of longitudinal volume change in serially acquired MR
    • …
    corecore