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A B S T R A C T

The current and ongoing expansion of urban areas worldwide represents the largest mass migration in human
history. It is well known that the world's coastal zones are associated with large and growing concentrations of
population, urban development and economic activity. Among coastal environments, deltas have long been
recognized for both benefits and hazards. This is particularly true on the Asian megadeltas, where the majority of
the world's deltaic populations reside. Current trends in urban migration, combined with demographic mo-
mentum suggest that the already large populations on the Asian megadeltas will continue to grow. In this study,
we combine recently released gridded population density (circa 2010) with a newly developed night light
change product (1992 to 2012) and a digital elevation model to quantify the spatial distribution of population
and development on the nine Asian megadeltas. Bivariate distributions of population as functions of elevation
and coastal proximity quantify potential exposure of deltaic populations to flood and coastal hazards.
Comparison of these distributions for the Asian megadeltas show very different patterns of habitation with peak
population elevations ranging from 2 to 11m above sea level over a wide range of coastal proximities. Over all
nine megadeltas, over 174 million people reside below a peak population elevation of 7m. Changes in the spatial
extent of anthropogenic night light from 1992 to 2012 show widely varying extents and changes of lighted urban
development. All of the deltas except the Indus show the greatest increases in night light brightness occurring at
elevations< 10m. At global and continental scales, growth of settlements of all sizes takes the form of evolving
spatial networks of development. Spatial networks of lighted urban development in Asia show power law scaling
properties consistent with other continents, but much higher rates of growth. The three largest networks of
development in China all occur on deltas and adjacent lowlands, and are growing faster than the rest of the
urban network in China. Since 2000, the Huanghe Delta+North China Plain urban network has surpassed the
Japanese urban network in size and may soon connect with the Changjiang Delta+Yangtze River urban net-
work to form the largest conurbation in Asia.

1. Introduction

The current and ongoing expansion of urban areas worldwide re-
presents the largest mass migration in human history. The percentage of
global population considered to be urban has risen from 30% in 1950 to
54% in 2014 and is projected to reach 66% by 2050 (United Nations,
2015). Although the population of Asia is currently only 40% urban, it
already accounts for 53% of the world's urban population. By 2050,
India and China are projected to have urban populations of 404 and 292
million (respectively). However, almost half of the global urban po-
pulation lives in cities of< 500,000 while< 1/8 lives in megacities
of> 10million inhabitants.

It is well known that the world's coastal zones are associated with
large and growing concentrations of population, urban development

and economic activity. The global population living within 100 km of a
shoreline at elevations< 100m has been estimated at 1.2× 109 people
(circa 1990) with an average population density nearly three times
higher than global average density (Small and Nicholls, 2003). Within
this coastal zone, the highest mean population densities occur over a
range of coastal proximity reflecting large populations in low-lying
river basins and deltas. Consistent with the findings of the United
Nations (2015)), this comparison of satellite observed night light and
census-derived population indicates that most of this coastal population
occurs in relatively densely populated rural areas and small to medium
size cities rather than large cities.

Deltas have long been recognized for both benefits and hazards. The
benefits of fertile soils and fluvial to coastal transportation corridors are
balanced by a variety of coastal and flood hazards (Nicholls et al.,
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2007). Over 325 million people live on deltas worldwide (Syvitski and
Saito, 2007) with> 250 million (circa 2000) on nine Asian deltas alone
(Woodroffe et al., 2006). These so-called Asian megadeltas are of par-
ticular interest because they are among the most densely populated and
rapidly urbanizing environments on Earth. In addition to the well
known coastal and fluvial hazards posed by the deltaic environment,
human activities are also known to impact the dynamics of deltas
through the disruption of water flow (Vörösmarty and Sahagian, 2000)
and sediment delivery (Syvitski and Saito, 2007). Interruption of sedi-
ment delivery by upstream capture (Syvitski et al., 2005) and flood
control measures, compounded by natural and human-induced sub-
sidence (Syvitski et al., 2009) results in a rise in relative sea level
generally in excess of the rate of eustatic sea level rise, contributing to
increased levels of inundation and coastal erosion (Ericson et al., 2006).
This feedback between increasing levels of development and increasing
vulnerability depends critically on the spatial extent, location and type
of development within the deltaic environment. This is particularly true
on the Asian megadeltas where current rate of urban development has
been increasing over the past 20 years.

In this study, we combine recently released gridded population
density (circa 2010) with a newly developed night light change product
(1992 to 2013) and a digital elevation model to quantify the spatial
distribution of population and development within the nine Asian
megadeltas. While the earlier study of (Small and Nicholls, 2003)
quantified the global distribution of population and development in
coastal zones at continental and regional scales, the population and
elevation products available at that time did not have sufficient spatial
resolution or vertical accuracy (respectively) to quantify the relation-
ship at spatial scales appropriate for most deltas. The gridded popula-
tion data used in this study vary in spatial resolution from country to
country, but generally provide sufficient resolution (10–50 km) to dis-
tinguish the higher densities associated with large cities and their lo-
cation with respect to shorelines and sea level. We quantify the dis-
tribution of population with respect to coastal proximity and elevation
to allow comparison among deltas. We use satellite-derived maps of
night light brightness as a proxy for urban development coinciding with
outdoor lighted infrastructure. While not all forms of development co-
incide with outdoor lighting, and some outdoor lighting is not related to
urban development (e.g. resource extraction, fishing, fires, etc), the
land areas under consideration in this study do not include significant
areas of non-urban lighting. The night light change product provides
much higher spatial resolution (0.5–2.5 km) and clearly resolves the
location and spatial extent of urban development since 1992. We
quantify this change in lighted development on the megadeltas in the
context of rapid spatiotemporal evolution of networks of urban devel-
opment throughout southeastern Asia over the past 25 years. We take
the work of (Woodroffe et al., 2006) as a starting point for an inter-
comparison of the Asian megadeltas in the context of population dis-
tribution and evolution of lighted development and attempt to interpret
this evolution in the context of the ongoing rapid urban growth oc-
curring throughout Asia.

2. Data

The spatial extent of each delta is based on the spatial extent of the
maximum transgression at highstand 6000 years ago as defined by
Woodroffe et al. (2006). Each delta study area was chosen to com-
pletely encompass the corresponding delta as defined by Woodroffe
et al. (2006). The boundaries of the delta are also apparent on the bi-
variate distributions as departures from the overall elevation gradient
extending inland. As noted by Woodroffe et al. (2006), “SRTM analysis
of those deltas for which the maximum transgression has been mapped
confirms that this margin coincides with a marked change in gradient.
“.

2.1. Population

Population counts and densities were obtained from the Gridded
Population of the World v.4 (GPW4) available from the Socioeconomic
Data and Applications Center (SEDAC) at http://sedac.ciesin.columbia.
edu/data/collection/gpw-v4. The 30″ grids were coregistered with
elevation and night light grids (described below) and resampled to 15″
to preserve the full resolution of the VIIRS DNB night light product.

Input data sources for GPW4 are obtained from National Statistical
Offices, National Mapping Agencies, and alternative international
sources when necessary. Priority is given to official national sources at
the highest possible spatial resolution, but in cases where there is no
official source, or that information cannot be acquired, alternative
sources are used. The GPW4 metadata and documentation includes
information about the citation and spatial resolution for all data
sources.

GPW4 allocates population from areal administrative, or enumera-
tion, polygons into grid cells using a uniform proportional allocation
method. Input polygons are overlaid with an inland water dataset
comprised of various national and international sources in order to
eliminate inland water areas from the gridding process. Land areas are
calculated at the national level based on a custom Mollweide Equal
Area Projection centered on each country. Population is finally dis-
tributed equally on the basis of the ratio of the land area in a given pixel
to the total land area of its parent census geometry.

GPW4 is based on>13 million input census geographies at varying
spatial resolution. The size of these input units varies among and within
countries, and generally consists of higher resolution geographies in
and around cities, and lower resolutions in areas where there are less
people. Where the resolution of an input census geography is coarse,
the uniform proportional allocation approach can lead to reduced
precision and accuracy at the pixel scale. The GPW4 data collection
includes a data quality layer on the Mean Administrative Area of input
units which should be consulted when using the dataset. This data
quality layer can be used as a guide for the appropriate size of a study
area within a region. If the size of a study area is smaller than the size of
the mean administrative area in that location, then descriptive statistics
and aggregation on that area cannot be relied upon with confidence. In
other words, the size of a study area should always be larger than the
mean administrative unit area when using GPW4 data. The mean
equivalent square length for the administrative units in each delta study
area is given on the inset population density map in the a) figure for
each delta.

Although GPW population estimates are available for multiple
years, we use only the totals from the census year (nominally 2010) and
make no attempt to estimate population change at the scale of the in-
dividual grid cell. The GPW population time series are adjusted to
target years using growth rates from two census dates and interpolation
or extrapolation as appropriate. The rates are calculated at aggregated
census levels (state/province or district) to facilitate matching between
the two census dates. The use of aggregated census data for interpola-
tion and extrapolation masks differences in change over time at the
local level; in most cases, the GPW data are only useful for calculating
change at the regional level. Therefore, we only use the nominal 2010
population distribution as a measure of the overall spatial distribution
of people in each study area. While we do provide aggregate population
change estimates at the scale of each delta, spatially explicit change
analysis is limited to spatiotemporal changes in night light between
1992 and 2012.

We prefer the proportional allocation densities from GPW4 to other
population distribution products because these densities are based on
only one assumption – uniform spatial distribution within each ad-
ministrative unit. Even though populations are known to cluster at
scales much finer than any of these administrative units, the clustering
is known to be time and space dependent so any assumptions used to
disaggregate census data to finer spatial scales are generally of
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unknown validity. While there are a potentially infinite number of
disaggregated population distributions possible at sub-kilometer scales,
the uniform distribution assumption is an important endmember case
because it represents the most conservative estimate of population
distribution within the constraints of the administrative boundaries
from which the population estimates are ultimately derived.

2.2. Night light

DMSP-OLS and VIIRS DNB night light composites were obtained from
the NOAA Earth Observation Group (https://ngdc.noaa.gov/eog/). The

VIIRS day/night band (DNB) collects nighttime low-light imaging data
similar to the DMSP predecessor, with several major improvements
(Elvidge et al., 2013). The VIIRS has in-flight calibration, a pixel footprint
45 times smaller than DMSP, lower detection limits, wider dynamic range,
and quantization is increase from 6 to 14 bits. The basic procedures used
to make VIIRS nighttime lights are similar to those used for the DMSP time
series (Elvidge et al., 2017). Annual composites of DMSP-OLS night light
from 1992 to 2013, gridded at 30″, were intercalibrated using the pro-
cedure given by Elvidge et al. (2009) but with updated intercalibration
coefficients developed for the Version 4 product. Each DMSP composite
was coregistered with a VIIRS DNB night light composite from June 2013

Fig. 1. People and deltas in southeastern Asia. Warmer colors on lower map show increasing development post-1992.
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at 15″ resolution. Full annual time series of OLS brightness were used to
generate the brightness trajectory plots of individual pixels shown in each
delta figure. These trajectories give an indication of the types of night light
change observable by OLS. To make the tri-temporal composites, only the
1992, 2002 and 2012 composites were used. The dOLS+VIIRS image
fusion procedure (described below) is used to show the current (circa
2013) extent of lighted development at VIIRS' full spatial resolution in
conjunction with changes in brightness and extent from OLS since 1992.

2.3. Elevation

The SRTM (v2.1) DEMs were obtained from the USGS (http://
earthexplorer.usgs.gov) in the form of 1 arc sec (1″=~28m at 40°N)
resolution geographic grids in the WGS84 horizontal and EGM96 ver-
tical reference systems. The 1″ grids were resampled using cubic con-
volution to provide mean elevations at the 15″ resolution of the VIIRS
night light grids.

The accuracy and resolution of SRTM in coastal environments with
relatively small differences in elevation over large areas are of parti-
cular relevance to this study. At low elevations and slopes the magni-
tude of the radar signal approaches the noise level of the measurements,
reducing the absolute accuracy of the elevation estimate - which can
lead to large errors in inundation estimates on low gradient environ-
ments like deltas. This is especially relevant for developed coastal en-
vironments where the spatial extent of inundation can have dis-
proportionate consequences in terms of loss of life and property. There
have been several comparative analyses of global DEM vertical accu-
racy (e.g. (Gesch et al., 2012, Meyer et al., 2012), (Tachikawa et al.,
2011, Tadono et al., 2012), (Smith and Sandwell, 2003)). Some ana-
lyses have included coastal areas (e.g. (Gorokhovich and Voustianiouk,
2006), (Hvidegaard et al., 2012)), and some have incorporated land
cover/use information (e.g. (Gesch et al., 2012), (Hofton et al., 2006),
(Carabajal and Harding, 2006)), but developed coastal environments
are not addressed specifically by these studies. To address coastal DEM
accuracy specifically, (Small and Sohn, 2015) compared the 1” SRTM
DEM (and GDEM2) with a sub-meter resolution LiDAR-derived DEM in
a variety of coastal environments in NYC. Compared to the LiDAR DEM,
SRTM had a positive bias of 1.9m and an uncertainty of 3.6 m. Cross
spectral analysis of the LiDAR and SRTM DEMs indicated a correlation
scale of 500m below which coherency of SRTM with LiDAR attains a
signal to noise ratio of 1; closely matching the divergence scale where
the surface roughness of the land cover exceeds the roughness of the
underlying terrain. As a result, the topographic expression of features at
scales finer than 500m may be corrupted by effects of land cover in-
teraction with the radar signal. The 15″ resampling scale will effectively
average elevations below the correlation scale where they approach the
signal to noise ratio of the measurement process.

Fig. 1 shows a comparison of topography, population and night light
for southeastern Asia. The locations of the megadeltas are labeled on
the topography map. The lower panel of Fig. 1 shows a fused map of
population density with night light change superimposed. Cities show
up as white spots against a background of varying population density
indicated as shades of gray. Color indicates change in night light
brightness with warmer colors indicating increasing brightness.

2.4. Analysis

2.4.1. Bivariate population distributions
To quantify the relationship between population, elevation and

coastal proximity, we follow the approach described by (Small and
Cohen, 2004). Population counts were summed in1 km horizontal and
1m vertical bins from coregistered population elevation and coastal
proximity grids. Distance from coastline for each grid cell was com-
puted using ArcGIS for each inhabited pixel (i.e. water mask applied) in
the GPW4 grid. Spatial extents of the deltas are based on the Holocene
transgression extents given by (Woodroffe et al., 2006) with grid

coverages encompassing the full delta and surrounding areas. Each
bivariate distribution is shown as a color image with warmer colors
indicating greater numbers of people in the corresponding elevation/
distance bin. Univariate marginal distributions of population as func-
tions of coastal proximity and elevation are also given with cumulative
population at and lower than the peak (most heavily populated) ele-
vation labeled. To facilitate comparison among deltas, we also compute
the bivariate cumulative distribution of population as a function of
elevation and proximity for each delta. The diagonal cumulative giving
total population within X vertical meters and X lateral kilometers of
shoreline is shown along with the bivariate and marginal distributions
for each delta and for the sum of all nine deltas.

2.4.2. Night light change maps
The dOLS+VIIRS composite product was produced by replacing the

Value channel of a HSV-transformed tri-temporal (1992, 2002, 2012)
OLS composite with a coregistered VIIRS monthly (June 2013) bright-
ness composite then inverse transforming back to RGB space. Because
the VIIRS dnb product has greater dynamic range and much reduced
overglow, only the much brighter VIIRS pixels retain the color coded
change information from the Hue and Saturation channels of the
transformed OLS product. The inverse transformed combined product
therefore retains the spatial detail and dynamic range of the VIIRS
product and the decadal change information from the OLS product.
While the resulting change map is not suitable for quantitative analysis,
it does show the current spatial extents of the decadal change in much
greater detail than is provided by the OLS product alone. Scatterplots
showing temporal change in night light are derived from the dOLS
+VIIRS composite to reduce the effects of overglow in the DMSP
composites. For each delta, several night light brightness trajectory
plots are included in an inset to illustrate year to year change in
brightness from OLS. The color of each brightness trajectory plot cor-
responds to the color of the associated pixel on the dOLS+VIIRS
composite. Warmer colors indicate brightening and cooler colors in-
dicate dimming.

2.4.3. Population growth projections
Census data from the most current and a past census date are

matched to a common set of boundaries. Annual growth rates are cal-
culated for the matched data using a standard demographic formula:

=r ln(P2/P1)/t

where r is the annualized growth rate, P1 is the population count at the
time of the earlier census, P2 is the population count from the current
census, and t is the number of years between population counts. These
rates are used to interpolate and extrapolate population estimates based
on the current census data and boundaries, often using a many-to-one
relationship to transfer the rates from the less detailed (state/province
or county equivalent) boundaries to the more detailed boundaries
(enumeration areas, districts) that fall within them.

2.4.4. Spatiotemporal analysis of urban development networks
The evolving spatial structure of settlements (cities, towns villages,

etc) on a landscape can be analyzed quantitatively as an evolving
spatial network. To put the observed growth in lighted development
occurring on the Asian megadeltas into the context of the rapid urban
growth occurring throughout Asia, we conduct a spatiotemporal ana-
lysis of urban development networks using night light. The brightness
of night light on the surface of the Earth is a continuous field. Maps of
night light are useful because they show explicitly the intricate spatial
patterns of the field reflecting the spatial structure of the settlements
that produce the light. One of the primary observations immediately
apparent in night light maps is the presence of interconnected spatial
networks of lighted development. One way of conceptualizing the in-
formation contained in a continuous field is by quantifying its internal
spatial connectivity structure. One useful framework for analyzing
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fields with complex spatial structure is an approach based on spatial
network analysis. Using this set of tools, a network is considered to be a
composition of nodes connected by links. Each set of interlinked nodes is
called a component. Taken together, a set of components forms a net-
work. The nodes in many non-spatial networks are often interconnected
to form a single “giant” component (Newman, 2010). However, seg-
mentation of continuous geospatial fields generally results in a network
with many components. For theoretical background on a network ap-
proach to continuous fields of land cover see (Small and Sousa, 2015).

To quantify the spatial network structure of a gridded continuous
field like night light, a threshold brightness value is imposed which
segments the continuous field into a binary map of pixels with data
values greater than the threshold and pixels with values less than the
threshold. Pixels exceeding the threshold become nodes in the network.
Neighboring pixel nodes become connected into components (also
called segments in this context). For more detail on the segmentation of
continuous fields see (Small et al., 2011). In order to quantify the size
distribution and network structure of lighted settlements at each time
interval, we apply a brightness threshold to each OLS night light
composite and compare the size distributions of the resulting con-
tiguous components. As urban areas nucleate, grow and interconnect,
the size distribution changes accordingly.

The size distribution of the components in a network can give in-
formation about its structure. Component size distribution for spatial
networks of land cover are often heavy tailed (Small and Sousa, 2016;
Sousa and Small, 2016). Plotting the sorted distribution of network
components as a function of their ordinal rank (largest to smallest) on a
log-log plot gives a clear and intuitive depiction of the size distribution
of large numbers of components spanning a wide range of sizes. Rank
size plots can be a convenient tool to explicitly display the information
in heavy tailed distributions, and are typically shown on logarithmic
axes because both the size range and numbers of components often span
several orders of magnitude. This method of display is attractive be-
cause of its simplicity and minimum of assumptions regarding the in-
herent properties of the data.

Linearity of a rank-size plot on logarithmic axes is often interpreted
to suggest the power law distribution as a likely candidate for the un-
derlying process. A power law distribution is defined by a constant
factor and an exponent. If observations are distributed according to a
power law, the slope of the plot in logarithmic space can be directly
converted to the exponent α by the following expression from (Li,
2002):

= −

−

slope
α

1
1

Power law statistics such as the best fit model parameters, the subset
of the data most likely to follow this distribution, and confidence in-
tervals can be computed using Monte Carlo methods and the
Kolmogorov-Smirnoff nonparametric goodness-of-fit statistic. Methods
to compute these statistics and example applications are given by
(Clauset et al., 2009). Binned logarithmically, a rank-size distribution
with a slope of −1 (and thus a power law exponent of −2) corresponds
to a uniform distribution across scales (Small et al., 2011). Distributions
with slopes less than −1 are dominated by large numbers of small
components while distributions with slopes greater than −1 are
dominated by small numbers of large components. The degree of line-
arity of the distribution indicates the degree to which it may conform to
a scaling law between size and number of components.

In this analysis, we consider the process of urban growth on deltas
in the context of evolving spatial networks of development. If the rank-
size distributions of lighted settlement networks exhibit consistent
scaling properties (as they have been observed to do elsewhere), this
may imply some degree of predictability of future distributions of set-
tlements. In addition, consistent scaling properties can provide pow-
erful constraints with which to test urban growth models.

Using the procedure described by Small and Sousa (2015), we apply

a brightness threshold to the 1992, 2002 and 2012 OLS night light
composites, calculate the area of each spatially contiguous lighted area
(city, town, village, etc), and compare the slope and linearity of the
resulting logarithmic rank-size distributions across time and space.
Power law fits are characterized by size cutoffs describing how much of
the distribution is well-described as the lower limit is extended into the
lower tail of the distribution. All distributions considered in this study
had cut-offs smaller than 100 km2. Cut-offs were determined using the
same algorithm by choosing the minimum of the Kolmogorov-Smirnoff
(KS) statistic for sets of points extending sequentially farther into the
lower tail of the distribution. Statistical significance was estimated
using a Monte Carlo approach to generate 1000 synthetic datasets and
calculating the KS goodness-of-fit for each. Using this approach, large p
values represent plausible power law fits. We follow the re-
commendation of Clauset et al. (2009) in presenting significant power
law fits as those with p > 0.1.

It is important to remember that linearity of this rank-size dis-
tribution alone does not guarantee that it is a power law process, or
exclude the possibility that other heavy tailed distributions may de-
scribe the data equally well – or even better (Clauset et al., 2009). In
this analysis, we do not seek to draw any conclusions about the specific
functional form of the underlying theoretical distribution from which
the observations are derived. We merely use the statistical estimates of
the best fit power law exponents as a convenient way to quantify the
slope of the rank-size distribution and the range over which it may be
considered linear. By comparing slopes of rank-size distributions of
different regions at different times we can quantify the form of the
spatial network of settlements and the ways in which it evolves through
time.

3. Results

The results of the analysis of individual deltas are presented in Figs.
A1 to A9 as a set of maps and population distributions for each delta
with population distributions and elevation maps in the a) figure and
VIIRS night light + SRTM shaded relief with dOLS+VIIRS change
composite in the b) figure. Brief summaries of principal observations
are given below.

3.1. Indus Fig. A1

Aside from the coastal city of Karachi, the population of the Indus
delta is distributed more landward than the other deltas. Although the
peak population occurs at an elevation of 11m with only 4million at
lower elevations, the population is more broadly distributed with ele-
vation than any of the other deltas. In part, this is due to the fact that
most of the lower delta is sparsely populated with most of the popu-
lation extending further north in the Indus river valley. Lighted de-
velopment is largely confined to the Indus river valley in relatively
close proximity to the main channel of the river. The Indus is the only
delta with almost no urban expansion and many areas showing a sig-
nificant decrease in night light brightness since 1992.

3.2. Ganges-Brahmaputra Fig. A2

The Ganges-Brahmaputra delta is, by far, the largest and most po-
pulous delta. With two densely populated megacities, Kolkata and
Dhaka, numerous smaller cities and relatively dense rural populations
extending far inland, the population is relatively evenly distributed
with respect to coastal proximity. However, because of its large size and
low gradient, it has a peak population at 9m with 47 million living at
lower elevations. Most of this population is displaced landward as most
of the coastal zone is occupied by the Sundarban mangrove forest
preserve. There is a noticeable disparity between population density
and night light spanning the India/Bangladesh border with comparable
densities in both countries but less extensive night light in many parts
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of Bangladesh. In both countries, most of the increase in lighted de-
velopment has occurred at the periphery of the larger cities.

3.3. Irrawaddy Fig. A3

The Irrawaddy is, by far, the least populous delta with the smallest
extent of lighted urban development and almost no urban growth. Like
the Indus, it has a relatively small population of 4million below its peak
population elevation of 7m, but this is due to the modest population

densities (< 1000 people/km2) – even in Yangon. However, almost all
of the population of the delta is below 20m elevation.

3.4. Chao Phraya Fig. A4

Aside from the Chinese deltas, the Chao Phraya is the most ex-
tensively developed delta with considerable increases in lighted de-
velopment throughout the delta, as well as along the coasts south of
Bangkok. Both population and development are heavily concentrated

Fig. A1. a Population and topography on the Indus delta. Coregistered elevation (top) and population (inset), combined with distance from nearest coastline
(proximity) yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right) show the
most populous elevation and distance. Inset cumulative shows total population along bivariate diagonal.
Fig. A1b Lighted development on the Indus delta. VIIRS dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development in context of
topography. VIIRS dnb mean luminance from 2013 fused with OLS luminance change (bottom) shows little brightening (red & yellow) post-2002 with many areas
apparently dimming (blue & green). Inset plots show example trajectories of brightness change for individual pixels. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. A1. (continued)
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on the delta and coastlines with the surrounding mountains and pla-
teaus sparsely populated and undeveloped. With a population of
9million below a peak population elevation of 7m, the population of
the Chao Phraya is heavily localized in Bangkok, despite the extensive
development of the entire delta.

3.5. Mekong Fig. A5

Because if its relatively low topographic gradient, the Mekong has a

relatively large population of 12 million below a relatively low peak
population elevation of 4m. Most of the delta is sparsely illuminated
but shows considerable increases in brightness of large areas around the
periphery of Ho Chi Minh City, Tan An and Phnom Penh as well as at
Phan Thiet on the coast to the north.

3.6. Red Fig. A6

The Red River delta is one of the smaller of the megadeltas and has

Fig. A2. a Population and topography on the Ganges-Brahmaputra delta. Coregistered elevation (top) and population (inset), combined with distance from nearest
coastline (proximity) yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right)
show the most populous.elevation and distance. Inset cumulative shows total population on bivariate diagonal.
Fig. A2b Lighted development on the Ganges-Brahmaputra delta. VIIRS dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development
in context of topography. VIIRS dnb mean luminance from 2013 fused with OLS luminance change (bottom) shows considerable brightening post-2002 over the
entire delta. Peripheral brightening of cities, combined with infill development, results in interconnection of the spatial network of development. Inset plots show
example trajectories of brightness change for individual pixels.
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most of its population displaced landward away from the coast. As a
result, it has a relatively small population of 5million below its peak
population elevation of 5m. Nonethless, it is almost completely illu-
minated with considerable expansion of lighted development around
both Hanoi and Haiphong. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this
article.)

3.7. Pearl Fig. A7

The Pearl is the smallest of the Chinese megadeltas but has a large
population therefore relatively high density. This, combined with its
very low gradient, gives it a relatively high population of 7million
below a relatively low peak population elevation of 2m. The Pearl
River delta is heavily urbanized throughout the Macau-Guangzhou-
Shenzhen-Hong Kong conurbation but has also experienced consider-
able expansion in lighted development along its entire periphery.

Fig. A3. a Population and topography on the Irrawaddy delta. Coregistered elevation (top) and population (inset), combined with distance from nearest coastline
(proximity) yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right) show the
most populous elevation and distance. Inset cumulative shows total population on bivariate diagonal.
Fig. A3b Lighted development on the Irrawaddy delta. VIIRS dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development in context
of topography. VIIRS dnb mean luminance from 2013 fused with OLS luminance change (bottom) shows almost no change on the delta post-1992, except around
Yangon.
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3.8. Changjiang Fig. A8

The Changjiang delta is the most densely populated and extensively
developed of the Asian megadeltas. This, combined with its low gra-
dient, gives it a considerable population of 24 million below its peak
population elevation of 6m. In addition to Shanghai, most of the delta,
as well as the coast of Hangzhou Bay to the south, has experienced a
great increase in lighted development since 2000.

3.9. Huanghe Fig. A9

The Huanghe delta is relatively large, and grades into the North
China Plain to the southwest. Aside from the cities of Beijing and
Tianjin, it has relatively modest population densities. Because of the
topographic gradient it has only 14 million people below the peak
population elevation of 9m. Nonetheless, it is extensively developed
with a large network cities of varying size. Like the other Chinese
deltas, it has experienced considerable increase in lighted development

Fig. A4. a Population and topography on the Chao Phraya delta. Coregistered elevation (top) and population (inset), combined with distance from nearest coastline
(proximity), yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right) show the
most populous elevation and distance. Inset cumulative shows total population on bivariate diagonal. Fig. A4b Lighted development on the Chao Phraya delta. VIIRS
dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development in context of topography. VIIRS dnb mean luminance from 2013 fused
with OLS luminance change (bottom) shows considerable brightening post-2002 over the entire delta and in coastal areas south of the delta. Peripheral brightening of
cities combined with infill and corridor development results in interconnection of the spatial network. Lights in the Gulf of Thailand and Andaman Sea indicate dense
fleets of fishing boats.
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since 2000 with brightening occurring around the periphery of almost
all settlements.

Comparison of the bivariate distributions reveals a common pattern
of high populations at low elevations. The distributions differ primarily
in their topographic gradient inland and in the extent to which popu-
lation is concentrated near coastlines. All of the bivariate distributions
show the largest number of people at the lowest elevation over the
range of coastal proximities. In part, this is a function of the land area
distribution, but it also reflects that fact that the highest population
densities generally occur at the lowest elevation available.

The bivariate population distributions of all nine megadeltas can be

summed to give an overall population distribution as shown in Fig. 2.
The total distribution clearly shows the varying gradients of the in-
dividual deltas extending away from the coast, as well. The total dis-
tribution has a total of 174 million people below a peak population
elevation of 7m. The coastal proximity distribution shows a peak po-
pulation at 3 km with 35 million people closer to the coasts, but with a
relatively gradual decrease of population extending landward.

Because of the differences in spatial resolution of census data dis-
cussed above, we do not produce spatially explicit maps of population
change for the megadeltas. However, we do provide projections of the
aggregate population change within the study area of each delta, using

Fig. A5. b Population and topography on the Mekong delta. Coregistered elevation (top) and population (inset), combined with distance from nearest coastline
(proximity) yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right) show the
most populous elevation and distance. Inset cumulative shows total population on bivariate diagonal.
Fig. A5b Lighted development on the Mekong delta. VIIRS dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development in context of
topography. VIIRS dnb mean luminance from 2013 fused with OLS luminance change (bottom) shows considerable brightening post 2002 around the larger cities.
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the procedure described above. These projections are summarized in
the bar charts in Fig. 5. For comparison, the intercalibration of the
DMSP-OLS night light composites does allow us to map changes in the
location and spatial extent of lighted urban development at meaningful
scales. Figs. 3 and 4 show changes in night light brightness between
1992 and 2012 as functions of coastal proximity and elevation for all of
the megadeltas. The color of each bivariate distribution indicates the
relative area that has experienced a given amount of brightening or

dimming at each distance and elevation. Warmer colors correspond to
greater areas. Both figures immediately show the marked difference in
development with the South Asian deltas (Indus, Ganges-Brahmaputra,
Irrawaddy) having the least lighted development, the Southeast Asian
deltas (Chao Phraya, Mekong, Red) having moderate levels of devel-
opment and brightening and the Chinese deltas having the greatest
amount of lighted development and greatest extent of brightening. All
deltas except the Indus show the greatest amount of lighted

Fig. A6. a Population and topography on the Red River delta. Coregistered elevation (top) and population (inset), combined with distance from nearest coastline
(proximity) yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right) show the
most populous elevation and distance. Inset cumulative shows total population on bivariate diagonal. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. A6b Lighted development on the Red River delta. VIIRS dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development in context of
topography. VIIRS dnb mean luminance from 2013 fused with OLS luminance change (bottom) shows considerable brightening post-2002 around Hanoi and Hai
Phong. Lights in Gulf of Tonkin show fleets of fishing boats. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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development and greatest increase in brightness at low elevations
(Fig. 3) but with increases occurring over a wide range of coastal
proximities.

The rank-size distributions of lighted development in China and
throughout Asia provide a complementary approach to understanding
the growth of their networks. Fig. 6 compares rank-size distributions for
China to those for all of Asia in 1994, 2004 and 2013 from the analysis
of Small and Sousa (2015). The rank-size distributions for Asia are
linear, maintaining slopes near −1 from 1994 to 2013. Although the
Japan network was the largest in 1994, it fragmented in 2004 and was

surpassed by both the Punjab and Huanghe networks in 2013. In
comparison, China shows much more pronounced growth with network
components of all spatial scales increasing in size over both time in-
tervals. Even the differences among the three largest Chinese compo-
nents are revealing. All three are approximately the same size in 1994 –
but in 2013 now span almost an order of magnitude in size. Much of
this is due to the rapid, expansive growth of the North China Plain
component southward from Beijing to encompass the smaller cities of
the plain, as well as the corridor of larger municipalities between
Beijing and Xi'an. Much of this growth occurred after 2004, since at that

Fig. A7. a Population and topography on the Pearl River delta. Coregistered elevation (top) and population (inset), combined with distance from nearest coastline
(proximity) yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right) show the
most populous elevation and distance. Inset cumulative shows total population on bivariate diagonal.
Fig. A7b Lighted development on the Pearl River delta. VIIRS dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development in context
of topography. VIIRS dnb mean luminance from 2013 fused with OLS luminance change (bottom) shows considerable infill brightening post-1992 with more
peripheral brightening post-2002. Both phases of development result in rapid interconnection of the spatial network.
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time the area of the Changjiang Delta component actually slightly
surpassed it. Finally, the nucleation of new lighted settlements at the
bottom of the distributions has steadily increased for China. This is
expected to be the result of increasing rural electrification, not ne-
cessarily the formation of new villages. As expected, all the rank-size
distributions in Fig. 6 roll off at the smallest segment sizes because of
these components approach the sensor detection limit. However, the
persistence of slopes near −1 suggests consistent scaling properties of
the Chinese and Asian networks at multiple spatial scales over the

course of two decades.

4. Discussion

The spatial resolution of the population density and night light
brightness data used in this analysis allow for a more spatially explicit
analysis of the relationship between the morphology of each delta and
the distribution of its human inhabitants and development. In com-
parison to earlier global analyses, the intersection of the anthropogenic

Fig. A8. a Population and topography on the Changjiang delta. Coregistered elevation (top) and population (inset), combined with distance from nearest coastline
(proximity) yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right) show the
most populous elevation and distance. Inset cumulative shows total population on bivariate diagonal.
Fig. A8b Lighted development on the Changjiang delta. VIIRS dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development in context
of topography. VIIRS dnb mean luminance from 2013 fused with OLS luminance change (bottom) shows some peripheral brightening around the larger cities post-
1992, followed by considerable infill brightening post-2002 over the entire delta. More isolated cities in the mountains to the south also show brightening post-2002,
with more connection along corridors of development.
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and geodynamic characteristics of individual deltas allow each to be
considered in the context of its specific combination of morphology and
anthropogenic land use. While we hope that these maps and data will
be informative for local and regional specialists considering specific
scenarios on their delta of interest, we can also draw some more general
conclusions about two specific aspects of anthro-deltaic processes in the
context of earlier studies. The relationship(s) between delta mor-
phology and land use have implications for the future, should devel-
opment on each of these deltas continue on its present trajectory over
the past 25 years. The relationship between the current distribution of

population and the low elevation coastal zone has related implications
for potential exposure to coastal and flood hazards.

4.1. Geomorphology and land use

Whereas the inspirational work of Woodroffe et al. (2006) focused
primarily on the natural processes operating on the Asian megadeltas,
this analysis focuses on distribution of population distribution and
evolution of lighted development on these deltas. Comparison of the
bivariate distributions of population shows very different relationships

Fig. A9. a Population and topography on the Huanghe delta. Coregistered elevation (top) and population (inset), combined with distance from nearest coastline
(proximity) yield a bivariate distribution of population as a function of elevation and coastal proximity (lower left). Marginal distributions (lower right) show the
most populous elevation and distance. Inset cumulative shows total population on bivariate diagonal.
Fig. A9b Lighted development on the Huanghe delta. VIIRS dnb mean luminance superimposed on SRTM shaded relief (top) shows lighted development in context of
topography. VIIRS dnb mean luminance from 2013 fused with OLS luminance change (bottom) shows considerable peripheral brightening post-2002 around cities of
all sizes. Lights in the Bohai Sea correspond to both fishing boats and offshore oil and gas production.
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between the populations and the deltas they inhabit. The populations of
the South Asian deltas (Indus & GBD) are less urban and more evenly
dispersed with respect to coastal proximity and elevation, while the
populations of the Southeast Asian deltas (Irrawaddy, Chao Phraya,
Mekong, Red) are concentrated within 60 km of the coastline. The three
Chinese deltas provide examples of both patterns – but with much faster
recent rates of development. The obvious reason for the difference is
related to the geomorphology of the deltas and their watersheds, with

the presence of uplifted highlands and rougher terrain limiting the
areas suitable for agriculture. However, geomorphology also constrains
the form of urban development networks, thereby creating competition
between urban and agricultural land use for both space and water.

Observed differences in the form and rate of urban growth among
deltas highlights the differing impact of socioeconomic factors and the
competition between agriculture and urban development in different
settings. The impact of urban development on the loss of potential

Fig. 2. Combined population distribution for all nine Asian deltas. The bivariate distribution shows different elevation gradients for different deltas as distinct ridges
of population increasing in elevation with distance from coastline. The marginal distributions show clear population peaks at elevations< 7m and proximities<
3 km. Inset cumulative shows total population on bivariate diagonal.
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agricultural land in the USA has been estimated as equivalent to the
caloric requirement of 6% of the US population by (Imhoff et al., 2004).
However, the analysis of the USA includes mostly non-deltaic agri-
cultural areas, often without the spatial constraints imposed by deltas.
The study of (Jiang et al., 2015) estimated a loss of 0.137 TgC of Net
Primary Productivity (NPP) from the combined loss of forest and
agricultural land to urban growth on the Pearl River Delta between
2000 and 2010. An urban growth model was used by (d'Amoura et al.,
2017) to project potential loss of cropland to urban development
worldwide, projecting a total loss of 16 to 21Mha for all of Asia. Of the
deltas considered here, the most obvious loss of cropland to recent
urban development is the rapid and extensive development of the
Chinese deltas. Although agricultural land use continues to be inter-
spersed within the development on the Chinese deltas, this develop-
ment does come at the expense of reduced area available for agriculture
on some of the most fertile and well-watered soils available.

4.2. Implications for hazards

While the data used in this analysis do not provide a sufficient basis
for detailed hazard assessments, they do illustrate the relationship be-
tween population and delta morphology at levels of detail not pre-
viously available, as well as temporal evolution of development in a
variety of geomorphic and socioeconomic settings. Even with advances
in phone-based studies of call/text volumes and individual mobility,
detailed mapping of population distribution remains challenging.
However, increases in the spatial resolution of night light sensors, and
their integration into multi-sensor fusion products will continue to
provide increasingly detailed maps of infrastructure and development.
Combined with more detailed DEMs, the analytical methods illustrated
here can be extended to higher spatial resolution to inform more

detailed hazard assessments.
As demonstrated by earlier continental-scale analyses (e.g.,(Small

and Nicholls, 2003),(McGranahan et al., 2008)), coastal zones are often
the locus of countries' largest cities, although it is not clear whether
these coastal cities are necessarily the fastest growing (Balk et al.,
2009). The delta-specific population growth rates given in Fig. 14 are
generally greater than the corresponding country growth rates but some
inland areas may still be growing faster. Regardless, it is clear from
Figs. 12–14 that delta populations are growing at considerable rates
and that urban expansion is occurring rapidly over the past two dec-
ades. This has implications for coastal hazard because, as demonstrated
by Ericson et al. (2006), anthropogenic processes often contribute more
than eustatic sea level rise than the effective sea level rise that actually
impacts coastal zones.

Quantifying the spatiotemporal evolution of urban networks of de-
velopment throughout Asia provides a context for urban growth on the
megadeltas relative to other geomorphic settings. This is particularly
apparent on the more rapidly developing Chinese deltas as their net-
works have now grown beyond the deltas and become interconnected
with much larger regional networks. The fact that the Huanghe Delta +
North China Plain network is now the largest in Asia, and may soon
connect with the Chiangjiang Delta network underscores the im-
portance of the development on the Chinese deltas. In contrast, the
corridor structure of network development in India does not appear to
be driven by development on the deltas (Small and Sousa, 2015).

4.3. Comparison to earlier analyses

The higher spatial resolution of the GPW4 population grids allow
the relationship between population, elevation and coastal proximity in
different deltaic settings to be quantified in much greater detail than

Fig. 3. Change in lighted development and coastal
proximity. Bivariate distributions of land area as
function of coastal proximity and change in lumi-
nance between 1992 and 2012. All deltas except the
Indus have far more area brightening than dimming.
Greatest increases in luminance generally occur
nearest the coastline but moderate increases occur
over a wide range of distances from the coast.
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previously possible. For the most densely populated Chinese deltas, the
11–14 km mean resolution of the census administrative units allows for
the distribution relative to the topography of the delta to be seen clearly
in the a) figures. The lower resolution of the South Asian countries

introduces more uncertainty, but the grand scale and low gradient of
the Ganges-Brahmaputra delta offsets this uncertainty somewhat. The
bivariate distributions in the a) figures clearly show the mean gradients
relative to coastal proximity as the envelope of the overall population

Fig. 4. Change in lighted development and elevation. Bivariate distributions of land area as function of elevation and change in luminance between 1992 and 2012.
All deltas except the Indus have far more area brightening than dimming. Greatest increases in luminance generally occur at elevations< 25m and diminish rapidly
upward.

Fig. 5. Past and projected population growth on the Asian megadeltas and surrounding areas. Total population given within the bounds of each delta study areas.
Projections for 2015 and 2020 are based on regional growth rates between 2000 and 2010.
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distribution. Comparison of the distributions of population relative to
this gradient across deltas illustrates one of the principal morphologic
differences among deltas.

The sub-kilometer resolution of the VIIRS DNB night light allows the
current distribution of lighted development to be compared with delta
morphology at comparable spatial scales. The much greater dynamic
range of the VIIRS instrument clearly resolves brightness variations
within urban areas to distinguish more brightly lighted transportation
corridors and high density commercial and industrial areas whereas the
OLS sensors were generally saturated in these areas. However, the
combination of tri-temporal OLS night light and higher spatial resolu-
tion VIIRS night light shows the extent and evolution of lighted de-
velopment that has occurred on the Asian megadeltas over the past
25 years, while preserving the more detailed brightness variations as-
sociated with the current urban structure. In addition to intra-urban
structure, the much lower detection threshold of the VIIRS sensor re-
solves much smaller settlements and even vehicle lights on more
heavily trafficked roads.

5. Conclusions

The analysis of Asian megadeltas described here combines recently
released gridded population density (circa 2010) with a newly devel-
oped night light change product (1992 to 2012) and a digital elevation
model to quantify the spatial distribution of population and develop-
ment on the nine Asian megadeltas. Bivariate distributions of popula-
tion as functions of elevation and coastal proximity quantify potential
exposure of deltaic populations to flood and coastal hazards. While
these data do not provide sufficient spatial or temporal resolution to
serve as the basis for rigorous hazard assessments, they do provide a
self-consistent basis for mapping the spatiotemporal evolution of de-
velopment across deltas with very different fluvial and tectonic settings.
As the required resolution can generally not be acquired retroactively,
especially for deltas in developing countries, the observations given
here provide a potentially valuable perspective on the evolution of
urban development and potential exposure of population to flood-re-
lated hazards on nine of the most densely populated deltas in the world.

Comparison of these distributions for the Asian megadeltas show
very different patterns of habitation with peak population elevations
ranging from 2 to 11m above sea level over a wide range of coastal
proximities. Over all nine megadeltas, over 174 million people reside
below a peak population elevation of 7m. On three of the nine deltas

(Changjiang, Pearl, Chao Phraya) dense urban populations are con-
centrated in close proximity to the coastline, potentially vulnerable to
both fluvial and coastal hazards. The Changjiang and Pearl contain two
of the most rapidly growing urban networks in Asia.

Changes in the spatial extent of anthropogenic night light from 1992
to 2012 show widely varying extents and changes of lighted urban
development. All of the deltas except the Indus show the greatest in-
creases in night light brightness occurring at elevations< 10m. While
this is probably beyond the elevation range of most storm surges, the
fact that the cities are located within fluvial networks raises the pos-
sibility of multi-hazard impacts from combined river and coastal
flooding.

At global and continent scales, growth of settlements of all sizes
takes the form of evolving spatial networks of development. Spatial
networks of lighted urban development in Asia show power law scaling
properties consistent with other continents, but much higher rates of
growth. While much of the urban growth observed in Asia occurs on
inland agricultural plains, the three largest networks of development in
China all occur on deltas and adjacent lowlands, and are growing faster
than the rest of the urban network in China. Since 2000, the Huanghe
Delta + North China Plain urban network has surpassed the Japanese
urban network in size and may soon connect with the Changjiang Delta
+ Yangtze River urban network to form the largest conurbation in Asia.
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