355 research outputs found
Prolonged progressive hypermetabolism during COVID-19 hospitalization undetected by common predictive energy equations
Background & Aims:
Indirect calorimetry (IC) is the gold-standard for determining measured resting energy expenditure (mREE) in critical illness. When IC is not available, predicted resting energy expenditure (pREE) equations are commonly utilized, which often inaccurately predict metabolic demands leading to over- or under-feeding. This study aims to longitudinally assess mREE via IC in critically ill patients with SARS-CoV-2 (COVID-19) infection throughout the entirety of, often prolonged, intensive care unit (ICU) stays and compare mREE to commonly utilized pREE equations. /
Methods:
This single-center prospective cohort study of 38 mechanically ventilated COVID-19 patients from April 1, 2020 to February 1, 2021. The Q-NRG® Metabolic Monitor was used to obtain IC data. The Harris-Benedict (HB), Mifflin St-Jeor (MSJ), Penn State University (PSU), and weight-based equations from the American Society of Parenteral and Enteral Nutrition – Society of Critical Care Medicine (ASPEN-SCCM) Clinical Guidelines were utilized to assess the accuracy of common pREE equations and their ability to predict hypo/hypermetabolism in COVID-19 ICU patients. /
Results:
The IC measures collected revealed a relatively normometabolic or minimally hypermetabolic mREE at 21.3 kcal/kg/d or 110% of predicted by the HB equation over the first week of mechanical ventilation (MV). This progressed to significant and uniquely prolonged hypermetabolism over successive weeks to 28.1 kcal/kg/d or 143% of HB predicted by MV week 3, with hypermetabolism persisting to MV week 7. Obese individuals displayed a more truncated response with significantly lower mREE versus non-obese patients in MV week 1 (19.5±1.0 kcal/kg/d vs 25.1±1.8 kcal/kg/d, respectively; p < 0.01), with little change in weeks 2-3 (19.5±1.5 kcal/kg/d vs 28.0±2.0 kcal/kg/d; p < 0.01). Both ASPEN-SCCM upper range and PSU pREE equations provided close approximations of mREE yet, like all pREE equations, occasionally over- and under-predicted energy needs and typically did not predict late hypermetabolism. /
Conclusions:
Study results show a truly unique metabolic response in COVID-19 ICU patients, characterized by significant and prolonged, progressive hypermetabolism peaking at 3 weeks’ post-intubation, persisting for up to 7 weeks in ICU. This pattern was more clearly demonstrated in non-obese versus obese patients. This response is unique and distinct from any previously described model of ICU stress response in its prolonged hypermetabolic nature. This data reaffirms the need for routine, longitudinal IC measures to provide accurate energy targets in COVID-19 ICU patients. The PSU and ASPEN-SCCM equations appear to yield the most reasonable estimation to IC-derived mREE in COVID-19 ICU patients, yet still often over-/under-predict energy needs. These findings provide a practical guide for caloric prescription in COVID-19 ICU patients in the absence of IC
“Everything You Always Wanted to Know about Sex (but Were Afraid to Ask)” in Leishmania after Two Decades of Laboratory and Field Analyses
Leishmaniases remain a major public health problem today (350 million people at risk, 12 million infected, and 2 million new infections per year). Despite the considerable progress in cellular and molecular biology and in evolutionary genetics since 1990, the debate on the population structure and reproductive mode of Leishmania is far from being settled and therefore deserves further investigation. Two major hypotheses coexist: clonality versus sexuality. However, because of the lack of clear evidence (experimental or biological confirmation) of sexuality in Leishmania parasites, until today it has been suggested and even accepted that Leishmania species were mainly clonal with infrequent genetic recombination (see [1] for review). Two recent publications, one on Leishmania major (an in vitro experimental study) and one on Leishmania braziliensis (a population genetics analysis), once again have challenged the hypothesis of clonal reproduction. Indeed, the first study experimentally evidenced genetic recombination and proposed that Leishmania parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector. The second investigation, based on population genetics studies, showed strong homozygosities, an observation that is incompatible with a predominantly clonal mode of reproduction at an ecological time scale (∼20–500 generations). These studies highlight the need to advance the knowledge of Leishmania biology. In this paper, we first review the reasons stimulating the continued debate and then detail the next essential steps to be taken to clarify the Leishmania reproduction model. Finally, we widen the discussion to other Trypanosomatidae and show that the progress in Leishmania biology can improve our knowledge of the evolutionary genetics of American and African trypanosomes
Perioperative Quality Initiative (POQI) consensus statement on fundamental concepts in perioperative fluid management: fluid responsiveness and venous capacitance
Background:
Optimal fluid therapy in the perioperative and critical care settings depends on understanding the underlying cardiovascular physiology and individualizing assessment of the dynamic patient state.
Methods:
The Perioperative Quality Initiative (POQI-5) consensus conference brought together an international team of multidisciplinary experts to survey and evaluate the literature on the physiology of volume responsiveness and perioperative fluid management. The group used a modified Delphi method to develop consensus statements applicable to the physiologically based management of intravenous fluid therapy in the perioperative setting.
Discussion:
We discussed the clinical and physiological evidence underlying fluid responsiveness and venous capacitance as relevant factors in fluid management and developed consensus statements with clinical implications for a broad group of clinicians involved in intravenous fluid therapy. Two key concepts emerged as follows: (1) The ultimate goal of fluid therapy and hemodynamic management is to support the conditions that enable normal cellular metabolic function in order to produce optimal patient outcomes, and (2) optimal fluid and hemodynamic management is dependent on an understanding of the relationship between pressure, volume, and flow in a dynamic system which is distensible with variable elastance and capacitance properties
The potential for land sparing to offset greenhouse gas emissions from agriculture
Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing-increasing agricultural yields, reducing farm land area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the United Kingdom as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential, however economic and implementation considerations might limit the degree to which this technical potential could be realised in practice.This research was funded by the Cambridge Conservation Initiative Collaborative Fund for Conservation and we thank its major sponsor Arcadia. We thank J. Bruinsma for the provision of demand data, the CEH for the provision of soil data and J. Spencer for invaluable discussions. A.L. was supported by a Gates Cambridge Scholarship.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nclimate291
Cord blood calcium, phosphate, magnesium, and alkaline phosphatase gestational age-specific reference intervals for preterm infants
<p>Abstract</p> <p>Background</p> <p>The objective was to determine the influence of gestational age, maternal, and neonatal variables on reference intervals for cord blood bone minerals (calcium, phosphate, magnesium) and related laboratory tests (alkaline phosphatase, and albumin-adjusted calcium), and to develop gestational age specific reference intervals based on infants without influential pathological conditions.</p> <p>Methods</p> <p>Cross-sectional study. 702 babies were identified as candidates for this study in a regional referral neonatal unit. After exclusions (for anomalies, asphyxia, maternal magnesium sulfate administration, and death), relationships were examined between cord blood serum laboratory analytes (calcium, phosphate, magnesium, alkaline phosphatase, and albumin-adjusted calcium) with gestation age and also with maternal and neonatal variables using multiple linear regression. Infants with influential pathological conditions were omitted from the development of gestational age specific reference intervals for the following categories: 23-27, 28-31, 32-34, 35-36 and > 36 weeks.</p> <p>Results</p> <p>Among the 506 preterm and 54 terms infants included in the sample. Phosphate, magnesium, and alkaline phosphatase in cord blood serum decreased with gestational age, calcium increased with gestational age. Those who were triplets, small for gestational age, and those whose mother had pregnancy-induced hypertension were influential for most of the analytes. The reference ranges for the preterm infants ≥ 36 weeks were: phosphate 1.5 to 2.6 mmol/L (4.5 to 8.0 mg/dL), calcium: 2.1 to 3.1 mmol/L (8.3 to 12.4 mg/dL); albumin-adjusted calcium: 2.3 to 3.2 mmol/L (9.1 to 12.9 mg/dL); magnesium 0.6 to 1.0 mmol/L (1.4 to 2.3 mg/dL), and alkaline phosphatase 60 to 301 units/L.</p> <p>Conclusions</p> <p>These data suggest that gestational age, as well as potentially pathogenic maternal and neonatal variables should be considered in the development of reference intervals for preterm infants.</p
Ethnic differences in smoking intensity and COPD risk: an observational study in primary care
A.G. was in receipt of an NIHR In-Practice
Fellowship while completing this work. S.H. and R.M. were supported by a Curriers’
Company Millennium Healthcare Bursary. P.S. was supported by a UK Medical
Research Council fellowshi
Systematic review of factors influencing patient and practitioner delay in diagnosis of upper gastrointestinal cancer
As knowledge on the causation of cancers advances and new treatments are developed, early recognition and accurate diagnosis becomes increasingly important. This review focused on identifying factors influencing patient and primary care practitioner delay for upper gastrointestinal cancer. A systematic methodology was applied, including extensive searches of the literature published from 1970 to 2003, systematic data extraction, quality assessment and narrative data synthesis. Included studies were those evaluating factors associated with the time interval between a patient first noticing a cancer symptom and presenting to primary care, between a patient first presenting to primary care and being referred to secondary care, or describing an intervention designed to reduce those intervals. Twenty-five studies were included in the review. Studies reporting delay intervals demonstrated that the patient phase of delay was greater than the practitioner phase, whilst patient-related research suggests that recognition of symptom seriousness is more important than recognition of the presence of the symptom. The main factors related to practitioner delay were misdiagnosis, application and interpretation of tests, and the confounding effect of existing disease. Greater understanding of patient factors is required, along with evaluation of interventions to ensure appropriate diagnosis, examination and investigation
Sex, Subdivision, and Domestic Dispersal of Trypanosoma cruzi Lineage I in Southern Ecuador
Trypanosoma cruzi is transmitted by blood sucking insects known as triatomines. This protozoan parasite commonly infects wild and domestic mammals in South and Central America. However, triatomines also transmit the parasite to people, and human infection with T. cruzi is known as Chagas disease, a major public health concern in Latin America. Understanding the complex dynamics of parasite spread between wild and domestic environments is essential to design effective control measures to prevent the spread of Chagas disease. Here we describe T. cruzi genetic diversity and population dynamics in southern Ecuador. Our findings indicate that the parasite circulates in two largely independent cycles: one corresponding to the sylvatic environment and one related to the domestic/peridomestic environment. Furthermore, our data indicate that human activity might promote parasite dispersal among communties. This information is the key for the design of control programmes in Southern Ecuador. Finally, we have encountered evidence of a sexual reproductive mode in the domestic T. cruzi population, which constitutes a new and intriguing finding with regards to the biology of this parasite
Longitudinal multi-centre brain imaging studies: guidelines and practical tips for accurate and reproducible imaging endpoints and data sharing
Abstract Background Research involving brain imaging is important for understanding common brain diseases. Study endpoints can include features and measures derived from imaging modalities, providing a benchmark against which other phenotypical data can be assessed. In trials, imaging data provide objective evidence of beneficial and adverse outcomes. Multi-centre studies increase generalisability and statistical power. However, there is a lack of practical guidelines for the set-up and conduct of large neuroimaging studies. Methods We address this deficit by describing aspects of study design and other essential practical considerations that will help researchers avoid common pitfalls and data loss. Results The recommendations are grouped into seven categories: (1) planning, (2) defining the imaging endpoints, developing an imaging manual and managing the workflow, (3) performing a dummy run and testing the analysis methods, (4) acquiring the scans, (5) anonymising and transferring the data, (6) monitoring quality, and (7) using structured data and sharing data. Conclusions Implementing these steps will lead to valuable and usable data and help to avoid imaging data wastage
- …