1,108 research outputs found
Structure formation in active networks
Structure formation and constant reorganization of the actin cytoskeleton are
key requirements for the function of living cells. Here we show that a minimal
reconstituted system consisting of actin filaments, crosslinking molecules and
molecular-motor filaments exhibits a generic mechanism of structure formation,
characterized by a broad distribution of cluster sizes. We demonstrate that the
growth of the structures depends on the intricate balance between
crosslinker-induced stabilization and simultaneous destabilization by molecular
motors, a mechanism analogous to nucleation and growth in passive systems. We
also show that the intricate interplay between force generation, coarsening and
connectivity is responsible for the highly dynamic process of structure
formation in this heterogeneous active gel, and that these competing mechanisms
result in anomalous transport, reminiscent of intracellular dynamics
Solar Particle Acceleration at Reconnecting 3D Null Points
Context: The strong electric fields associated with magnetic reconnection in
solar flares are a plausible mechanism to accelerate populations of high
energy, non-thermal particles. One such reconnection scenario occurs at a 3D
magnetic null point, where global plasma flows give rise to strong currents in
the spine axis or fan plane. Aims: To understand the mechanism of charged
particle energy gain in both the external drift region and the diffusion region
associated with 3D magnetic reconnection. In doing so we evaluate the
efficiency of resistive spine and fan models for particle acceleration, and
find possible observables for each. Method: We use a full orbit test particle
approach to study proton trajectories within electromagnetic fields that are
exact solutions to the steady and incompressible magnetohydrodynamic equations.
We study single particle trajectories and find energy spectra from many
particle simulations. The scaling properties of the accelerated particles with
respect to field and plasma parameters is investigated. Results: For fan
reconnection, strong non-uniform electric drift streamlines can accelerate the
bulk of the test particles. The highest energy gain is for particles that enter
the current sheet, where an increasing "guide field" stabilises particles
against ejection. The energy is only limited by the total electric potential
energy difference across the fan current sheet. The spine model has both slow
external electric drift speed and weak energy gain for particles reaching the
current sheet. Conclusions: The electromagnetic fields of fan reconnection can
accelerate protons to the high energies observed in solar flares, gaining up to
0.1 GeV for anomalous values of resistivity. However, the spine model, which
gave a harder energy spectrum in the ideal case, is not an efficient
accelerator after pressure constraints in the resistive model are included.Comment: 15 pages, 14 figures. Submitted to Astronomy and Astrophysic
Shape Changes of Self-Assembled Actin Bilayer Composite Membranes
We report the self-assembly of thin actin shells beneath the membranes of
giant vesicles. Ion-carrier mediated influx of Mg2+ induces actin
polymerization in the initially spherical vesicles. Buckling of the vesicles
and the formation of blisters after thermally induced bilayer expansion is
demonstrated. Bilayer flickering is dominated by tension generated by its
coupling to the actin cortex. Quantitative flicker analysis suggests the
bilayer and the actin cortex are separated by 0.4 \mum to 0.5 \mum due to
undulation forces.Comment: pdf-file, has been accepted by PR
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points.
Haematopoiesis is the complex developmental process that maintains the turnover of all blood cell lineages. It critically depends on the correct functioning of rare, quiescent haematopoietic stem cells (HSCs) and more numerous, HSC-derived, highly proliferative and differentiating haematopoietic progenitor cells (HPCs). Infection is known to affect HSCs, with severe and chronic inflammatory stimuli leading to stem cell pool depletion, while acute, non-lethal infections exert transient and even potentiating effects. Both whether this paradigm applies to all infections and whether the HSC response is the dominant driver of the changes observed during stressed haematopoiesis remain open questions. We use a mouse model of malaria, based on natural, sporozoite-driven Plasmodium berghei infection, as an experimental platform to gain a global view of haematopoietic perturbations during infection progression. We observe coordinated responses by the most primitive HSCs and multiple HPCs, some starting before blood parasitaemia is detected. We show that, despite highly variable inter-host responses, primitive HSCs become highly proliferative, but mathematical modelling suggests that this alone is not sufficient to significantly impact the whole haematopoietic cascade. We observe that the dramatic expansion of Sca-1(+) progenitors results from combined proliferation of direct HSC progeny and phenotypic changes in downstream populations. We observe that the simultaneous perturbation of HSC/HPC population dynamics is coupled with early signs of anaemia onset. Our data uncover a complex relationship between Plasmodium and its host's haematopoiesis and raise the question whether the variable responses observed may affect the outcome of the infection itself and its long-term consequences on the host
Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus
Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory
Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis
The adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, "Approximate Approximate Bayesian Computation", can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF
Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms
Background: The ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents. Expression of these genes was also analysed in internode tissue from a high sucrose cultivar undergoing water deficit stress to compare effects of sucrose accumulation and water deficit
Frozen steady states in active systems
Even simple active systems can show a plethora of intriguing phenomena and
often we find complexity were we would have expected simplicity. One striking
example is the occurrence of a quiescent or absorbing state with frozen
fluctuations that at first sight seems to be impossible for active matter
driven by the incessant input of energy. While such states were reported for
externally driven systems through macroscopic shear or agitation, the
investigation of frozen active states in inherently active systems like
cytoskeletal suspensions or active gels is still at large. Using high density
motility assay experiments, we demonstrate that frozen steady states can arise
in active systems if active transport is coupled to growth processes. The
experiments are complemented by agent-based simulations which identify the
coupling between self-organization, growth and mechanical properties to be
responsible for the pattern formation process
- …
