3,743 research outputs found

    Spectroscopy of 50^{50}Sc and ab initio calculations of B(M3)B(M3) strengths

    Full text link
    The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states and transitions in 50^{50}Sc following the β\beta-decay of 50^{50}Ca. Branching ratios were determined from the measured γ\gamma-ray intensities, and angular correlations of γ\gamma rays have been used to firmly assign the spins of excited states. The presence of an isomeric state that decays by an M3M3 transition with a B(M3)B(M3) strength of 13.6(7)\,W.u. has been confirmed. We compare with the first {\it ab initio} calculations of B(M3B(M3) strengths in light and medium-mass nuclei from the valence-space in-medium similarity renormalization group approach, using consistently derived effective Hamiltonians and M3M3 operator. The experimental data are well reproduced for isoscalar M3M3 transitions when using bare gg-factors, but the strength of isovector M3M3 transitions are found to be underestimated by an order of magnitude

    Magnetic Ordering, Orbital Ordering and Resonant X-ray Scattering in Perovskite Titanates

    Get PDF
    The effective Hamiltonian for perovskite titanates is derived by taking into account the three-fold degeneracy of t2gt_{2g} orbitals and the strong electron-electron interactions. The magnetic and orbital ordered phases are studied in the mean-field approximation applied to the effective Hamiltonian. A large degeneracy of the orbital states in the ferromagnetic phase is found in contrast to the case of the doubly degenerate ege_g orbitals. Lifting of this orbital degeneracy due to lattice distortions and spin-orbit coupling is examined. A general form for the scattering cross section of the resonant x-ray scattering is derived and is applied to the recent experimental results in YTiO3_3. The spin wave dispersion relation in the orbital ordered YTiO3_3 is also studied.Comment: 10 pages, 6 figure

    Release and activity of rifampicin from biodegradable polymer formulations

    Get PDF
    Implantation of an indwelling medical device is often required in order to successfully treat a serious medical issue. However, infection of such devices is an ongoing problem, and can occur when microorganisms, predominantly Staphylococcus species, adhere to the device surface1 . Biodegradable polymer drug delivery technology may be of use in some devices as a means of delivering a high local dose of antimicrobial in order to help prevent infection pathogenesis. In this study the broad spectrum antibiotic rifampicin has been formulated with the polymers PLA (Poly(L-Lactide)) and PLGA (Poly(D,L-lactic-co-glycolic acid(65:35)) and the in vitro drug release over 1 week analysed. Based on the release data (Fig. 1A), the PLGA:rifampicin formulations of 50:50 and 60:40 were selected for further analysis. A 4 week drug release study showed that over the examined period >95% of the rifampicin load was released from both formulations, however increasing the ratio of polymer to drug significantly changed the percentage release profile (Fig. 1B). Investigation of antimicrobial activity revealed that both formulations were able to produce consistently large zones of inhibition in disk diffusion assays over the 4 weeks examined, indicating successful bacterial inhibition (Fig. 1C). What this preliminary study has revealed is that rifampicin can be readily released from PLA and PLGA, and that release can be controlled by adjusting the ratio of polymer to drug. It has also shown that the antimicrobial activity of the rifampicin can be retained for at least 4 weeks. Therefore biodegradable polymers may represent a promising material for use in implanted medical devices as a means of delivering a high local concentration of antimicrobial to help prevent infection pathogenesis

    MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension

    Get PDF
    Rationale: The pathogenesis of PAH remains unclear. The four microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. Objective: To elucidate the transcriptional regulation of the miR-143/145 cluster, and the role of miR-143 in PAH. Methods and Results: We identified the promoter region that regulates miR-143/145 miRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signalling pathways, including estrogens receptor (ER), liver X factor/retinoic X receptor (LXR/RXR), TGF-β (Smads), and hypoxia (HRE) that regulated levels of all pri-miR stem loop transcription and resulting miRNA expression. We observed that miR-143-3p is selectively upregulated compared to miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMCs-derived exosomes. Using assays with pulmonary arterial endothelial cells (PAECs) we demonstrated a paracrine pro-migratory and pro-angiogenic effect of miR-143-3p enriched exosomes from PASMC. Quantitative PCR and in situ hybridisation showed elevated expression of miR-143 in calf models of PAH as well as in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role for miR-143 in experimental PH in vivo in miR-143-/- and antimiR143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. Conclusions: MiR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while inhibition of miR-143-3p blocked experimental PH. Taken together these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology

    Orbital Wave and its Observation in Orbital Ordered Titanates and Vanadates

    Get PDF
    We present a theory of the collective orbital excitation termed orbital wave in perovskite titanates and vanadates with the triply degenerate t2gt_{2g} orbitals. The dispersion relations of the orbital waves for the orbital ordered LaVO3_3, YVO3_3 and YTiO3_3 are examined in the effective spin-orbital coupled Hamiltonians associated with the Jahn-Teller type couplings. We propose possible scattering processes for the Raman and inelastic neutron scatterings from the orbital wave and calculate the scattering spectra for titanates and vanadates. It is found that both the excitation spectra and the observation methods of the orbital wave are distinct qualitatively from those for the ege_g orbital ordered systems.Comment: 9 pages, 7 figure
    corecore