61 research outputs found

    Evidence for Large Complex Networks of Plant Short Silencing RNAs

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright: © 2010 MacLean et al.BACKGROUND: In plants and animals there are many classes of short RNAs that carry out a wide range of functions within the cell; short silencing RNAs (ssRNAs) of 21-25 nucleotides in length are produced from double-stranded RNA precursors by the protein Dicer and guide nucleases and other proteins to their RNA targets through base pairing interactions. The consequence of this process is degradation of the targeted RNA, suppression of its translation or initiation of secondary ssRNA production. The secondary ssRNAs in turn could then initiate further layers of ssRNA production to form extensive cascades and networks of interacting RNA [1]. Previous empirical analysis in plants established the existence of small secondary ssRNA cascade [2], in which a single instance of this event occurred but it was not known whether there are other more extensive networks of secondary sRNA production. METHODOLOGY/PRINCIPAL FINDINGS: We generated a network by predicting targets of ssRNA populations obtained from high-throughput sequencing experiments. The topology of the network shows it to have power law connectivity distribution, to be dissortative, highly clustered and composed of multiple components. We also identify protein families, PPR and ULP1, that act as hubs within the network. Comparison of the repetition of genomic sub-sequences of ssRNA length between Arabidopsis and E.coli suggest that the network structure is made possible by the underlying repetitiveness in the genome sequence. CONCLUSIONS/SIGNIFICANCE: Together our results provide good evidence for the existence of a large, robust ssRNA interaction network with distinct regulatory function. Such a network could have a massive effect on the regulation of gene expression via mediation of transcript levels.Gatsby Charitable FoundationMarie Curie Fellowshi

    Development and characterization of a murine hepatoma model expressing hepatitis Cvirus (HCV) non-structural antigens for evaluating HCV vaccines

    Get PDF
    Hepatitis C (HCV) is a highly prevalent blood-borne virus with infection of 2-3% of world population and high rate of chronicity (\u3e70%) leading to chronic hepatitis, which often progress to cirrhosis and hepatocellular carcinoma. HCV- specific immune responses consisting of CD4 and CD8 T cells and virus neutralizing antibodies have been shown to eliminate HCV infections in humans and chimpanzees. Therefore, vaccines that can induce potent and durable anti-HCV T and B cell responses may have the potential to clear chronic HCV infections. A number of HCV vaccines have been tested clinically with limited success. One of the major limitations in developing effective HCV therapies is the lack of effective and reliable animal models due to the narrow host range of the HCV virus. The study described herein reports the generation of a murine hepatoma cell line expressing HCV non-structural proteins and its use in a metastatic tumor setting to test anti-tumor efficacy of bacterial and viral vector vaccines expressing the HCV non-structural genes. HCV-recombinant hepatoma cells formed large solid-mass tumors when implanted into syngeneic mice, allowing the testing of HCV vaccines for immunogenicity and anti-tumor efficacy. Using this model, we tested the therapeutic potential of recombinant anti-HCV-specific vaccines based on two fundamentally different attenuated pathogen vaccine systems - attenuated Salmonella and recombinant adenoviral vector based vaccine. Attenuated Salmonella secreting HCV antigens limited growth of the HCV-recombinant tumors when used in a therapeutic vaccination setting. The inhibition of tumor growth by Salmonella vector-based vaccines was significantly reduced in mice co-injected with an anti-CD8 antibody, suggesting a role by CD8+ cells in the vaccine efficacy. The model was also used to compare replication deficient and replication-competent but non-infectious adenoviral vectors expressing non-structural HCV antigens. Results showed overall greater survival and reduced weight loss with the replication-competent vector compared to the non-replicating vector. Our results demonstrate the novel recombinant murine hepatoma model expressing HCV non-structural antigens as a useful model for evaluating therapeutic vaccines against HCV. Vaccines that are capable of inducing potent anti-HCV immune responses that are capable of controlling aggressive and metastatic tumor growth in this model would likely have the potential to control chronic viral infections such as HCV. This novel approach is particularly interesting for the development of therapeutic vaccines

    Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms

    Get PDF
    Background: The ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents. Expression of these genes was also analysed in internode tissue from a high sucrose cultivar undergoing water deficit stress to compare effects of sucrose accumulation and water deficit

    Evaluation of recombinant adenovirus vectors and adjuvanted protein as a heterologous prime-boost strategy using HER2 as a model antigen.

    Get PDF
    Induction of strong antigen-specific cell-mediated and humoral responses are critical to developing a successful therapeutic vaccine. Herein, using HER2 as a model antigen, we aim to evaluate a therapeutic vaccine protocol that elicits anti-tumor antibody and cytotoxic T cells to HER2/neu antigen. Replication-competent (ΔPS AdV) and non-replicating recombinant adenoviral vectors (AdV) expressing a rat HER2/neu (ErbB2) oncogene, were generated and compared for four different doses and over four time points for their ability to induce antigen-specific T and B cell responses in mice. Although ΔPS AdV:Her2 vector was shown to induce more durable antigen-specific CD8⁺ T cell responses, overall, the AdV:Her2 vector induced broader T and B cell responses. Hence the AdV:Her2 vector was used to evaluate a heterologous prime-boost vaccination regimen using rat HER2 protein encapsulated in archaeosomes composed of a semi-synthetic glycolipid (sulfated S-lactosylarchaeol, SLA; and lactosylarchaeol, LA) (SLA/LA:HER2enc) or admixed with archaeosomes composed of SLA alone (SLA:HER2adm). We first tested AdV:Her2 using a prime-boost approach with SLA/LA:HER2enc, and thereafter evaluated a sub-optimal AdV:Her2 dose in a heterologous prime-boost approach with SLA:HER2adm. A single administration of AdV:Her2 alone induced strong cell-mediated immune responses, whereas SLA/LA:HER2enc alone induced strong antigen-specific IgG titers. In mice primed with a suboptimal dose of AdV:Her2, strong CD8⁺ T-cell responses were observed after a single dose which were not further augmented by protein boost. AdV:Her2 induced CD4⁺ specific T-cell responses were augmented by SLA:HER2adm. Homologous vaccination using SLA:HER2adm induced strong antigen-specific antibody responses. However, the overall magnitude of the responses was similar with three doses of SLA:HER2adm or Ad:HER2 prime followed by two doses of SLA:HER2adm. We demonstrate that AdV:Her2 is capable of inducing strong antigen-specific CD8⁺ T cell responses, even at a low dose, and that these responses can be broadened to include antigen-specific antibody responses by boosting with SLA adjuvanted proteins without compromising CD8 T cell responses elicited by AdV priming

    Dynamics of Water Diffusion Changes in Different Tissue Compartments From Acute to Chronic Stroke—A Serial Diffusion Tensor Imaging Study

    Get PDF
    Background and Purpose: The immediate decrease of the apparent diffusion coefficient (ADC) is the main characteristic change of water diffusion in acute ischemic stroke. There is only limited information on the time course of diffusion parameters in different tissue compartments of cerebral ischemia.Materials and Methods: In a longitudinal study, we examined 21 patients with acute ischemic stroke by diffusion tensor imaging within 5 h after symptom onset, 3 h later, 2 days, and 1 month after symptom onset. Acute diffusion lesion and the fluid-attenuated inversion recovery (FLAIR) after 2 days were used as volumes of interest to define persistent core, lesion growth, and reversible acute diffusion lesion. For all diffusion parameters ratios between the stroke lesion VOIs and the mirror VOIs were calculated for each time point. ADC ratio, fractional anisotropy ratios, and eigenvalues ratios were measured in these volumes of interest and in contralateral mirror regions at each time points.Results: In the persistent core, ADC ratio (0.772) and all eigenvalues ratios were reduced on admission up to 1 day after stroke and increased after 1 month (ADC ratio 1.067). Within the region of infarct growth time course of diffusion parameter changes was similar, but delayed. In the brain area with reversible diffusion lesion, a partial normalization of diffusion parameters over the time was observed, while after 1 month diffusion parameters did not show the signature of healthy brain tissue. There were significantly different trends for all parameters over time between the three tissue compartments.Conclusion: Diffusion tensor imaging displays characteristic changes of water diffusion in different tissue compartments over time in acute ischemic stroke. Even regions with reversible diffusion lesion show diffusion signatures of persisting tissue alterations

    Programmable Attenuation of Antigenic Sensitivity for a Nanobody-Based EGFR Chimeric Antigen Receptor Through Hinge Domain Truncation

    Get PDF
    Epidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs. Single amino acid hinge-domain truncation progressively decreased both EGFR-sdCAR-Jurkat cell binding to EGFR-expressing targets and expression of the CD69 activation marker. Attenuated signaling in hinge-truncated EGFR-sdCAR constructs increased selectivity for antigen-dense EGFR-overexpressing cells over an EGFR-low tumor cell line or healthy donor derived EGFR-positive fibroblasts. We also provide evidence that epitope location is critical for determining hinge-domain requirement for CARs, as hinge truncation similarly decreased antigenic sensitivity of a membrane-proximal epitope targeting HER2-CAR but not a membrane-distal EGFRvIII-specific CAR. Hinge-modified EGFR-sdCAR cells showed clear functional attenuation in Jurkat-CAR-T cells and primary human CAR-T cells from multiple donors in vitro and in vivo. Overall, these results indicate that hinge length tuning provides a programmable strategy for throttling antigenic sensitivity in CARs targeting membrane-proximal epitopes, and could be employed for CAR-optimization and improved tumor selectivity

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study

    Get PDF
    Background: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. Methods: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. Findings: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17–43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32–3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08–1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47–8·05] and for hospital admission or emergency care attendance 1·58 [0·69–3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29–4·16] and 1·43 [1·04–1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. Interpretation: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. Funding: Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
    corecore