7,011 research outputs found

    Weiss oscillations in the electronic structure of modulated graphene

    Full text link
    We present a theoretical study of the electronic structure of modulated graphene in the presence of a perpendicular magnetic field. The density of states and the bandwidth for the Dirac electrons in this system are determined. The appearance of unusual Weiss oscillations in the bandwidth and density of states is the main focus of this work.Comment: 8 pages, 2 figures, accepted in J. Phys.: Conden. mat

    Comment on the paper I. M. Suslov: Finite Size Scaling from the Self Consistent Theory of Localization

    Full text link
    In the recent paper [I.M.Suslov, JETP {\bf 114} (2012) 107] a new scaling theory of electron localization was proposed. We show that numerical data for the quasi-one dimensional Anderson model do not support predictions of this theory.Comment: Comment on the paper arXiv 1104.043

    Multifractal properties of critical eigenstates in two-dimensional systems with symplectic symmetry

    Full text link
    The multifractal properties of electronic eigenstates at the metal-insulator transition of a two-dimensional disordered tight-binding model with spin-orbit interaction are investigated numerically. The correlation dimensions of the spectral measure D~2\widetilde{D}_{2} and of the fractal eigenstate D2D_{2} are calculated and shown to be related by D2=2D~2D_{2}=2\widetilde{D}_{2}. The exponent η=0.35±0.05\eta=0.35\pm 0.05 describing the energy correlations of the critical eigenstates is found to satisfy the relation η=2D2\eta=2-D_{2}.Comment: 6 pages RevTeX; 3 uuencoded, gzipped ps-figures to appear in J. Phys. Condensed Matte

    Understanding Heisenberg's 'Magical' Paper of July 1925: a New Look at the Calculational Details

    Full text link
    In July 1925 Heisenberg published a paper [Z. Phys. 33, 879-893 (1925)] which ended the period of `the Old Quantum Theory' and ushered in the new era of Quantum Mechanics. This epoch-making paper is generally regarded as being difficult to follow, perhaps partly because Heisenberg provided few clues as to how he arrived at the results which he reported. Here we give details of calculations of the type which, we suggest, Heisenberg may have performed. We take as a specific example one of the anharmonic oscillator problems considered by Heisenberg, and use our reconstruction of his approach to solve it up to second order in perturbation theory. We emphasize that the results are precisely those obtained in standard quantum mechanics, and suggest that some discussion of the approach - based on the direct computation of transition amplitudes - could usefully be included in undergraduate courses in quantum mechanics.Comment: 24 pages, no figures, Latex, submitted to Am. J. Phy

    Phase rigidity breaking in open Aharonov-Bohm ring coupled to a cantilever

    Full text link
    The conductance and the transmittance phase shifts of a two-terminal Aharonov-Bohm (AB) ring are analyzed in the presence of mechanical displacements due to coupling to an external can- tilever. We show that phase rigidity is broken, even in the linear response regime, by means of inelastic scattering due to phonons. Our device provides a way of observing continuous variation of the transmission phase through a two-terminal nano-electro-mechanical system (NEMS). We also propose measurements of phase shifts as a way to determine the strength of the electron-phonon coupling in NEMS.Comment: 7 pages, 8 figure

    Effectiveness of an inlet flow turbulence control device to simulate flight noise fan in an anechoic chamber

    Get PDF
    A hemispherical inlet flow control device was tested on a 50.8 cm. (20-inch) diameter fan stage in the NASA-Lewis anechoic chamber. The control device used honeycomb and wire mesh to reduce turbulence intensities entering the fan. Far field acoustic power level results show about a 5 db reduction in blade passing tone and about 10 dB reduction in multiple pure tone sound power at 90% design fan speed with the inlet device in place. Hot film cross probes were inserted in the inlet to obtain data for two components of the turbulence at 65 and 90% design fan speed. Without the flow control device, the axial intensities were below 1.0%, while the circumferential intensities were almost twice this value. The inflow control device significantly reduced the circumferential turbulence intensities and also reduced the axial length scale

    Numerical simulations of chromospheric hard X-ray source sizes in solar flares

    Full text link
    X-ray observations are a powerful diagnostic tool for transport, acceleration, and heating of electrons in solar flares. Height and size measurements of X-ray footpoints sources can be used to determine the chromospheric density and constrain the parameters of magnetic field convergence and electron pitch-angle evolution. We investigate the influence of the chromospheric density, magnetic mirroring and collisional pitch-angle scattering on the size of X-ray sources. The time-independent Fokker-Planck equation for electron transport is solved numerically and analytically to find the electron distribution as a function of height above the photosphere. From this distribution, the expected X-ray flux as a function of height, its peak height and full width at half maximum are calculated and compared with RHESSI observations. A purely instrumental explanation for the observed source size was ruled out by using simulated RHESSI images. We find that magnetic mirroring and collisional pitch-angle scattering tend to change the electron flux such that electrons are stopped higher in the atmosphere compared with the simple case with collisional energy loss only. However, the resulting X-ray flux is dominated by the density structure in the chromosphere and only marginal increases in source width are found. Very high loop densities (>10^{11} cm^{-3}) could explain the observed sizes at higher energies, but are unrealistic and would result in no footpoint emission below about 40 keV, contrary to observations. We conclude that within a monolithic density model the vertical sizes are given mostly by the density scale-height and are predicted smaller than the RHESSI results show.Comment: 19 pages, 9 figures, accepted for publication in Ap
    corecore