390 research outputs found

    Cation‐π Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field

    Get PDF
    Cation-π interactions between tryptophan and choline or trimethylated lysines are vital for many biological processes. The performance of the additive CHARMM36 force field against target quantum mechanical data is shown to reproduce QM equilibrium geometries but required modified Lennard-Jones potentials to accurately reproduce the QM interaction energies. The modified parameter set allows accurate modeling, including free energies, of cation-π indole-choline and indole-trimethylated lysines interactions relevant for protein–ligand, protein–membrane, and protein–protein interfaces.acceptedVersio

    Cooperative binding of DNA and CBFβ to the Runt domain of the CBFα studied via MD simulations

    Get PDF
    The Runt domain (RD) is the DNA-binding region of the Runx genes. A related protein, known as core binding factor β (CBFβ) also binds to the RD to enhance RD–DNA interaction by 6- to 10-fold. Here, we report results from molecular dynamics (MD) simulations of RD alone, as a dimer in complexes with DNA and CBFβ and in a ternary complex with DNA and CBFβ. Consistent with the experimental findings, in the presence of CBFβ the estimated free energy of binding of RD to the DNA is more favorable, which is shown to be due to more favorable intermolecular interactions and desolvation contributions. Also contributing to the enhanced binding are favorable intramolecular interactions between the ‘wing’ residues (RD residues 139–145) and the ‘wing1’ residues (RD residues 104–116). The simulation studies also indicate that the RD–CBFβ binding is more favorable in the presence of DNA due to a more favorable RD–CBFβ interaction energy. In addition, it is predicted that long-range interactions involving ionic residues contribute to binding cooperativity. Results from the MD calculations are used to interpret a variety of experimental mutagenesis data. A novel role for RD Glu116 to the RD–CBFβ interaction is predicted

    Intrinsic Conformational Energetics Associated with the Glycosyl Torsion in DNA: A Quantum Mechanical Study

    Get PDF
    AbstractThe glycosyl torsion (χ) in nucleic acids has long been recognized to be a major determinant of their conformational properties. χ torsional energetics were systematically mapped in deoxyribonucleosides using high-level quantum mechanical methods, for north and south sugar puckers and with γ in the g+ and trans conformations. In all cases, the syn conformation is found higher in energy than the anti. When γ is changed from g+ to trans, the anti orientation of the base is strongly destabilized, and the energy difference and barrier between anti and syn are significantly decreased. The barrier between anti and syn in deoxyribonucleosides is found to be less than 10kcal/mol and tends to be lower with purines than with pyrimidines. With γ=g+/χ=anti, a south sugar yields a significantly broader energy well than a north sugar with no energy barrier between χ values typical of A or B DNA. Contrary to the prevailing view, the syn orientation is not more stable with south puckers than with north puckers. The syn conformation is significantly more energetically accessible with guanine than with adenine in 5-nucleotides but not in nucleosides. Analysis of nucleic acid crystal structures shows that γ=trans/χ=anti is a minor but not negligible conformation. Overall, χ appears to be a very malleable structural parameter with the experimental χ distributions reflecting, to a large extent, the associated intrinsic torsional energetics

    Using Caenorhabditis elegans as a model organism for evaluating extracellular signal-regulated kinase docking domain inhibitors

    Get PDF
    We have recently identified several novel ATP-independent inhibitors that target the extracellular signal-regulated kinase-2 (ERK2) protein and inhibit substrate phosphorylation. To further characterize these compounds, we describe the use of C. elegans as a model organism. C. elegans is recognized as a versatile and cost effective model for use in drug development. These studies take advantage of the well characterized process of vulva development and egg laying, which requires MPK-1, the homolog to human ERK2. It is shown that treatment of C. elegans eggs or larvae prior to vulva formation with a previously identified lead compound (76) caused up to 50% reduction in the number of eggs produced from the adult worm. In contrast, compound 76 had no effect on egg laying in young adult or adult worms with fully formed vulva. The reduction in egg laying by the test compound was not due to effects on C. elegans life span, general toxicity, or non-specific stress. However, compound 76 did show selective inhibition of phosphorylation of LIN-1, a MPK-1 substrate essential for vulva precursor cell formation. Moreover, compound 76 inhibited cell fusion necessary for vulva maturation and reduced the multivulva phenotype in LET-60 (Ras) mutant worms that have constitutive activation of MPK-1. These findings support the use of C. elegans as a model organism to evaluate the selectivity and specificity of novel ERK targeted compounds

    Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    Get PDF
    This is the peer reviewed version of the following article: Jo, S., Song, K. C., Desaire, H., MacKerell, A. D., & Im, W. (2011). Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins. Journal of Computational Chemistry, 32(14), 3135–3141. http://doi.org/10.1002/jcc.21886, which has been published in final form at http://doi.org/10.1002/jcc.21886. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMMGUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics

    Improving the force field description of tyrosine-choline cation-π interactions : QM investigation of phenol-N(Me)₄⁺ interactions

    Get PDF
    Cation-pi interactions between tyrosine amino acids and compounds containing N,N,N-trimethylethanolammonium (N(CH3)(3)) are involved in the recognition of histone tails by chromodomains and in the recognition of phosphatidylcholine (PC) phospholipids by membrane-binding proteins. Yet, the lack of explicit polarization or charge transfer effects in molecular mechanics force fields raises questions about the reliability of the representation of these interactions in biomolecular simulations. Here, we investigate the nature of phenol tetramethylammonium (TMA) interactions using quantum mechanical (QM) calculations, which we also use to evaluate the accuracy of the additive CHARIVIM36 and Drude polarizable force fields in modeling tyrosine-choline interactions. We show that the potential energy surface (PES) obtained using SAPT2+/aug-cc-pVDZ compares well with the large basis-set CCSD(T) PES when TMA approaches the phenol ring perpendicularly. Furthermore, the SAPT energy decomposition reveals comparable contributions from electrostatics and dispersion in phenol-TMA interactions. We then compared the SAPT2+/augcc-pVDZ PES obtained along various approach directions to the corresponding PES obtained with CHARMM, and we show that the force field accurately reproduces the minimum distances while the interaction energies are underestimated. The use of the Drude polarizable force field significantly improves the interaction energies but decreases the agreement on distances at energy minima. The best agreement between force field and QM PES is obtained by modifying the Lennard-Jones terms for atom pairs involved in the phenol-TMA cation-pi interactions. This is further shown to improve the correlation between the occupancy of tyrosine-choline cation-pi interactions obtained from molecular dynamics simulations of a bilayer-bound bacterial phospholipase and experimental affinity data of the wild-type protein and selected mutants
    corecore