7,212 research outputs found

    Supersonic Discrete Kink-Solitons and Sinusoidal Patterns with "Magic" wavenumber in Anharmonic Lattices

    Full text link
    The sharp pulse method is applied to Fermi-Pasta-Ulam (FPU) and Lennard-Jones (LJ) anharmonic lattices. Numerical simulations reveal the presence of high energy strongly localized ``discrete'' kink-solitons (DK), which move with supersonic velocities that are proportional to kink amplitudes. For small amplitudes, the DK's of the FPU lattice reduce to the well-known ``continuous'' kink-soliton solutions of the modified Korteweg-de Vries equation. For high amplitudes, we obtain a consistent description of these DK's in terms of approximate solutions of the lattice equations that are obtained by restricting to a bounded support in space exact solutions with sinusoidal pattern characterized by the ``magic'' wavenumber k=2π/3k=2\pi/3. Relative displacement patterns, velocity versus amplitude, dispersion relation and exponential tails found in numerical simulations are shown to agree very well with analytical predictions, for both FPU and LJ lattices.Comment: Europhysics Letters (in print

    ``Critical'' phonons of the supercritical Frenkel-Kontorova model: renormalization bifurcation diagrams

    Full text link
    The phonon modes of the Frenkel-Kontorova model are studied both at the pinning transition as well as in the pinned (cantorus) phase. We focus on the minimal frequency of the phonon spectrum and the corresponding generalized eigenfunction. Using an exact decimation scheme, the eigenfunctions are shown to have nontrivial scaling properties not only at the pinning transition point but also in the cantorus regime. Therefore the phonons defy localization and remain critical even where the associated area-preserving map has a positive Lyapunov exponent. In this region, the critical scaling properties vary continuously and are described by a line of renormalization limit cycles. Interesting renormalization bifurcation diagrams are obtained by monitoring the cycles as the parameters of the system are varied from an integrable case to the anti-integrable limit. Both of these limits are described by a trivial decimation fixed point. Very surprisingly we find additional special parameter values in the cantorus regime where the renormalization limit cycle degenerates into the above trivial fixed point. At these ``degeneracy points'' the phonon hull is represented by an infinite series of step functions. This novel behavior persists in the extended version of the model containing two harmonics. Additional richnesses of this extended model are the one to two-hole transition line, characterized by a divergence in the renormalization cycles, nonexponentially localized phonons, and the preservation of critical behavior all the way upto the anti-integrable limit.Comment: 10 pages, RevTeX, 9 Postscript figure

    The Entropy of a Binary Hidden Markov Process

    Full text link
    The entropy of a binary symmetric Hidden Markov Process is calculated as an expansion in the noise parameter epsilon. We map the problem onto a one-dimensional Ising model in a large field of random signs and calculate the expansion coefficients up to second order in epsilon. Using a conjecture we extend the calculation to 11th order and discuss the convergence of the resulting series

    Heteroclinic intersections between Invariant Circles of Volume-Preserving Maps

    Full text link
    We develop a Melnikov method for volume-preserving maps with codimension one invariant manifolds. The Melnikov function is shown to be related to the flux of the perturbation through the unperturbed invariant surface. As an example, we compute the Melnikov function for a perturbation of a three-dimensional map that has a heteroclinic connection between a pair of invariant circles. The intersection curves of the manifolds are shown to undergo bifurcations in homologyComment: LaTex with 10 eps figure

    Finding the complement of the invariant manifolds transverse to a given foliation for a 3D flow

    Get PDF
    A method is presented to establish regions of phase space for 3D vector fields through which pass no co-oriented invariant 2D submanifolds transverse to a given oriented 1D foliation. Refinements are given for the cases of volume-preserving or Cartan-Arnol’d Hamiltonian flows and for boundaryless submanifolds

    Stability of non-time-reversible phonobreathers

    Get PDF
    Non-time reversible phonobreathers are non-linear waves that can transport energy in coupled oscillator chains by means of a phase-torsion mechanism. In this paper, the stability properties of these structures have been considered. It has been performed an analytical study for low-coupling solutions based upon the so called {\em multibreather stability theorem} previously developed by some of the authors [Physica D {\bf 180} 235]. A numerical analysis confirms the analytical predictions and gives a detailed picture of the existence and stability properties for arbitrary frequency and coupling.Comment: J. Phys. A.:Math. and Theor. In Press (2010

    Statistical mechanical aspects of joint source-channel coding

    Full text link
    An MN-Gallager Code over Galois fields, qq, based on the Dynamical Block Posterior probabilities (DBP) for messages with a given set of autocorrelations is presented with the following main results: (a) for a binary symmetric channel the threshold, fcf_c, is extrapolated for infinite messages using the scaling relation for the median convergence time, tmed1/(fcf)t_{med} \propto 1/(f_c-f); (b) a degradation in the threshold is observed as the correlations are enhanced; (c) for a given set of autocorrelations the performance is enhanced as qq is increased; (d) the efficiency of the DBP joint source-channel coding is slightly better than the standard gzip compression method; (e) for a given entropy, the performance of the DBP algorithm is a function of the decay of the correlation function over large distances.Comment: 6 page

    Excitation Thresholds for Nonlinear Localized Modes on Lattices

    Full text link
    Breathers are spatially localized and time periodic solutions of extended Hamiltonian dynamical systems. In this paper we study excitation thresholds for (nonlinearly dynamically stable) ground state breather or standing wave solutions for networks of coupled nonlinear oscillators and wave equations of nonlinear Schr\"odinger (NLS) type. Excitation thresholds are rigorously characterized by variational methods. The excitation threshold is related to the optimal (best) constant in a class of discr ete interpolation inequalities related to the Hamiltonian energy. We establish a precise connection among dd, the dimensionality of the lattice, 2σ+12\sigma+1, the degree of the nonlinearity and the existence of an excitation threshold for discrete nonlinear Schr\"odinger systems (DNLS). We prove that if σ2/d\sigma\ge 2/d, then ground state standing waves exist if and only if the total power is larger than some strictly positive threshold, νthresh(σ,d)\nu_{thresh}(\sigma, d). This proves a conjecture of Flach, Kaldko& MacKay in the context of DNLS. We also discuss upper and lower bounds for excitation thresholds for ground states of coupled systems of NLS equations, which arise in the modeling of pulse propagation in coupled arrays of optical fibers.Comment: To appear in Nonlinearit
    corecore