965 research outputs found

    Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.

    Get PDF
    © American Chemical Society,2010. Post-print version of article deposited in accordance with SHERPA RoMEO guidelinesPeroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity

    Sub-threshold depressive symptoms and brain structure: A magnetic resonance imaging study within the Whitehall II cohort

    Get PDF
    BACKGROUND: Late-life sub-threshold depressive symptoms (i.e. depressive symptoms that do not meet the criteria for a diagnosis of major depressive disorder) are associated with impaired physical health and function, and increased risk of major depressive disorder. Magnetic resonance imaging (MRI) studies examining late-life major depressive disorder find structural brain changes in grey and white matter. However, the extent to which late-life sub-threshold depression is associated with similar hallmarks is not well established. METHODS: Participants with no history of major depressive disorder were selected from the Whitehall Imaging Sub-Study (n=358, mean age 69±5 years, 17% female). Depressive symptoms were measured using the Centre for Epidemiological Studies Depression Scale (CES-D) at three previous Whitehall II Study phases (2003-04, 2007-09 and 2012-13) and at the time of the MRI scan (2012-14). The relationships between current and cumulative depressive symptoms and MRI brain measures were explored using Voxel-Based Morphometry (VBM) for grey matter and Tract Based Spatial Statistics (TBSS) for white matter. RESULTS: Current sub-threshold depressive symptoms were associated with significant reductions in fractional anisotropy and increases in axial and radial diffusivity. There were no significant relationships between current depressive symptoms and grey matter measures, or cumulative depressive symptoms and MRI measures. LIMITATIONS: The prevalence (10%) of sub-threshold depressive symptoms means that analyses may be underpowered to detect subtle differences in brain structure. CONCLUSIONS: Current sub-threshold depressive symptoms are associated with changes in white matter microstructure, indicating that even mild depressive symptoms are associated with similar MRI hallmarks to those in major depressive disorder

    Association of trajectories of depressive symptoms with vascular risk, cognitive function and adverse brain outcomes: The Whitehall II MRI sub-study

    Get PDF
    BACKGROUND: Trajectories of depressive symptoms over the lifespan vary between people, but it is unclear whether these differences exhibit distinct characteristics in brain structure and function. METHODS: In order to compare indices of white matter microstructure and cognitive characteristics of groups with different trajectories of depressive symptoms, we examined 774 participants of the Whitehall II Imaging Sub-study, who had completed the depressive subscale of the General Health Questionnaire up to nine times over 25 years. Twenty-seven years after the first examination, participants underwent magnetic resonance imaging to characterize white matter hyperintensities (WMH) and microstructure and completed neuropsychological tests to assess cognition. Twenty-nine years after the first examination, participants completed a further cognitive screening test. OUTCOMES: Using K-means cluster modelling, we identified five trajectory groups of depressive symptoms: consistently low scorers ("low"; n = 505, 62·5%), a subgroup with an early peak in depression scores ("early"; n = 123, 15·9%), intermediate scorers ("middle"; n = 89, 11·5%), a late symptom subgroup with an increase in symptoms towards the end of the follow-up period ("late"; n = 29, 3·7%), and consistently high scorers ("high"; n = 28, 3·6%). The late, but not the consistently high scorers, showed higher mean diffusivity, larger volumes of WMH and impaired executive function. In addition, the late subgroup had higher Framingham Stroke Risk scores throughout the follow-up period, indicating a higher load of vascular risk factors. INTERPRETATION: Our findings suggest that tracking depressive symptoms in the community over time may be a useful tool to identify phenotypes that show different etiologies and cognitive and brain outcomes

    Measuring maternal mortality : an overview of opportunities and options for developing countries

    Get PDF
    Background:There is currently an unprecedented expressed need and demand for estimates of maternal mortality in developing countries. This has been stimulated in part by the creation of a Millennium Development Goal that will be judged partly on the basis of reductions in maternal mortality by 2015. Methods: Since the launch of the Safe Motherhood Initiative in 1987, new opportunities for data capture have arisen and new methods have been developed, tested and used. This paper provides a pragmatic overview of these methods and the optimal measurement strategies for different developing country contexts. Results: There are significant recent advances in the measurement of maternal mortality, yet also room for further improvement, particularly in assessing the magnitude and direction of biases and their implications for different data uses. Some of the innovations in measurement provide efficient mechanisms for gathering the requisite primary data at a reasonably low cost. No method, however, has zero costs. Investment is needed in measurement strategies for maternal mortality suited to the needs and resources of a country, and which also strengthen the technical capacity to generate and use credible estimates. Conclusion: Ownership of information is necessary for it to be acted upon: what you count is what you do. Difficulties with measurement must not be allowed to discourage efforts to reduce maternal mortality. Countries must be encouraged and enabled to count maternal deaths and act.WJG is funded partially by the University of Aberdeen. OMRC is partially funded by the London School of Hygiene and Tropical Medicine. CS and SA are partially funded by Johns Hopkins University. CAZ is funded by the Health Metrics Network at the World Health Organization. WJG, OMRC, CS and SA are also partially supported through an international research program, Immpact, funded by the Bill & Melinda Gates Foundation, the Department for International Development, the European Commission and USAID

    BAFF Mediates Splenic B Cell Response and Antibody Production in Experimental Chagas Disease

    Get PDF
    Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Central and South America. It affects 20 million people and about 100 million people are at risk of infection in endemic areas. Some cases have been identified in non-endemic countries as a consequence of blood transfusion and organ transplantation. Chagas disease presents three stages of infection. The acute phase appears one to two weeks after infection and includes fever, swelling around the bite site, enlarged lymph glands and spleen, and fatigue. This stage is characterized by circulating parasites and many immunological disturbances including a massive B cell response. In general, the acute episode self-resolves in about 2 months and is followed by a clinically silent indeterminate phase characterized by absence of circulating parasites. In about one-third of the cases, the indeterminate phase evolves into a chronic phase with clinically defined cardiac or digestive disturbances. Current knowledge suggests that the persistence of parasites coupled with an unbalanced immune response sustain inflammatory response in the chronic stage. We believe that an effective treatment for chronic Chagas disease should combine antiparasitic drugs with immunomodulators aimed at reducing inflammation and autoreactive response. Our findings enlighten a new role of BAFF-BAFF-R signaling in parasite infection that partially controls polyclonal B cell response but not parasitespecific class-switched primary effectors B cells

    Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs

    Get PDF
    <p>Various anti-epileptic drugs (AEDs) are used for the management of idiopathic epilepsy (IE) in dogs. Their safety profile is an important consideration for regulatory bodies, owners and prescribing clinicians. However, information on their adverse effects still remains limited with most of it derived from non-blinded non-randomized uncontrolled trials and case reports.</p><p><span>This poster won third place, which was presented at the Veterinary Evidence Today conference, Edinburgh November 1-3, 2016. </span></p><br /> <img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" /

    Functional Genomics Complements Quantitative Genetics in Identifying Disease-Gene Associations

    Get PDF
    An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, each of these approaches have technical and biological shortcomings. For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by our approach. Focusing on bone mineral density (BMD), a phenotype related to osteoporotic fracture, we experimentally validated two of our novel predictions (not observed in any previous GWAS/QTL studies) and found significant bone density defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary approach to quantitative genetics to predict disease risks. All supplementary material is available at http://cbfg.jax.org/phenotype

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer

    Get PDF
    Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes
    corecore