1,429 research outputs found

    Direct Imaging of Multiple Planets Orbiting the Star HR 8799

    Full text link
    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science Express Nov 13th, 200

    Improving the speckle noise attenuation of simultaneous spectral differential imaging with a focal plane holographic diffuser

    Get PDF
    Direct exoplanet detection is limited by speckle noise in the point spread function (PSF) of the central star. This noise can be reduced by subtracting PSF images obtained simultaneously in adjacent narrow spectral bands using a multi-channel camera (MCC), but only to a limit imposed by differential optical aberrations in the MCC. To alleviate this problem, we suggest the introduction of a holographic diffuser at the focal plane of the MCC to convert the PSF image into an incoherent illumination scene that is then re-imaged with the MCC. The re-imaging is equivalent to a convolution of the scene with the PSF of each spectral channel of the camera. Optical aberrations in the MCC affect only the convolution kernel of each channel and not the PSF globally, resulting in better correlated images. We report laboratory measurements with a dual channel prototype (1.575 micron and 1.625 micron) to validate this approach. A speckle noise suppression factor of 12-14 was achieved, an improvement by a factor ~5 over that obtained without the holographic diffuser. Simulations of realistic exoplanet populations for three representative target samples show that the increase in speckle noise attenuation achieved in the laboratory would roughly double the number of planets that could be detected with current adaptive optics systems on 8-m telescopes.Comment: 9 pages, 8 figure, to be published in ApJ June 20, 200

    Speckle Control with a remapped-pupil PIAA-coronagraph

    Full text link
    The PIAA is a now well demonstrated high contrast technique that uses an intermediate remapping of the pupil for high contrast coronagraphy (apodization), before restoring it to recover classical imaging capabilities. This paper presents the first demonstration of complete speckle control loop with one such PIAA coronagraph. We show the presence of a complete set of remapping optics (the so-called PIAA and matching inverse PIAA) is transparent to the wavefront control algorithm. Simple focal plane based wavefront control algorithms can thus be employed, without the need to model remapping effects. Using the Subaru Coronagraphic Extreme AO (SCExAO) instrument built for the Subaru Telescope, we show that a complete PIAA-coronagraph is compatible with a simple implementation of a speckle nulling technique, and demonstrate the benefit of the PIAA for high contrast imaging at small angular separation.Comment: 6 figures, submitted to PAS

    Mid Infrared Observations of Van Maanen 2: No Substellar Companion

    Get PDF
    The results of a comprehensive infrared imaging search for the putative 0.06 solar mass astrometric companion to the 4.4 pc white dwarf van Mannen 2 are reported. Adaptive optics images acquired at 3.8 microns reveal a diffraction limited core of 0.09" and no direct evidence of a secondary. Models predict that at 5 Gyr, a 50 jupiter mass brown dwarf would be only 1 magnitude fainter than van Maanen 2 at this wavelength and the astrometric analysis suggested a separation of 0.2". In the case of a chance alignment along the line of sight, a 0.4 mag excess should be measured. An independent photometric observation at the same wavelength reveals no excess. In addition, there exist published ISO observations of van Maanen 2 at 6.8 and 15.0 microns which are consistent with photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are correct, there is no substellar companion with T > 500 K.Comment: 11 pages, 3 figures, 1 table, accepted to ApJ Letter

    Speckle noise and dynamic range in coronagraphic images

    Full text link
    This paper is concerned with the theoretical properties of high contrast coronagraphic images in the context of exoplanet searches. We derive and analyze the statistical properties of the residual starlight in coronagraphic images, and describe the effect of a coronagraph on the speckle and photon noise. Current observations with coronagraphic instruments have shown that the main limitations to high contrast imaging are due to residual quasi-static speckles. We tackle this problem in this paper, and propose a generalization of our statistical model to include the description of static, quasi-static and fast residual atmospheric speckles. The results provide insight into the effects on the dynamic range of wavefront control, coronagraphy, active speckle reduction, and differential speckle calibration. The study is focused on ground-based imaging with extreme adaptive optics, but the approach is general enough to be applicable to space, with different parameters.Comment: 31 pages, 18 figure

    The VAST Survey - IV. A wide brown dwarf companion to the A3V star ζ\zeta Delphini

    Full text link
    We report the discovery of a wide co-moving substellar companion to the nearby (D=67.5±1.1D=67.5\pm1.1 pc) A3V star ζ\zeta Delphini based on imaging and follow-up spectroscopic observations obtained during the course of our Volume-limited A-Star (VAST) multiplicity survey. ζ\zeta Del was observed over a five-year baseline with adaptive optics, revealing the presence of a previously-unresolved companion with a proper motion consistent with that of the A-type primary. The age of the ζ\zeta Del system was estimated as 525±125525\pm125 Myr based on the position of the primary on the colour-magnitude and temperature-luminosity diagrams. Using intermediate-resolution near-infrared spectroscopy, the spectrum of ζ\zeta Del B is shown to be consistent with a mid-L dwarf (L5±25\pm2), at a temperature of 1650±2001650\pm200 K. Combining the measured near-infrared magnitude of ζ\zeta Del B with the estimated temperature leads to a model-dependent mass estimate of 50±1550\pm15 MJup_{\rm Jup}, corresponding to a mass ratio of q=0.019±0.006q=0.019\pm0.006. At a projected separation of 910±14910\pm14 au, ζ\zeta Del B is among the most widely-separated and extreme-mass ratio substellar companions to a main-sequence star resolved to-date, providing a rare empirical constraint of the formation of low-mass ratio companions at extremely wide separations.Comment: 12 pages, 11 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Society, 2014 September 25. Revised to incorporate typographical errors noted during the proofing proces

    The VAST Survey - III. The multiplicity of A-type stars within 75 pc

    Full text link
    With a combination of adaptive optics imaging and a multi-epoch common proper motion search, we have conducted a large volume-limited (D ≤\le 75 pc) multiplicity survey of A-type stars, sensitive to companions beyond 30 au. The sample for the Volume-limited A-STar (VAST) survey consists of 435 A-type stars: 363 stars were observed with adaptive optics, 228 stars were searched for wide common proper motion companions and 156 stars were measured with both techniques. The projected separation coverage of the VAST survey extends from 30 to 45,000 au. A total of 137 stellar companions were resolved, including 64 new detections from the VAST survey, and the companion star fraction, projected separation distribution and mass ratio distribution were measured. The separation distribution forms a log-normal distribution similar to the solar-type binary distribution, but with a peak shifted to a significantly wider value of 387 (+132,-98) au. Integrating the fit to the distribution over the 30 to 10,000 au observed range, the companion star fraction for A-type stars is estimated as 33.8%+-2.6%. The mass ratio distribution of closer (<125 au) binaries is distinct from that of wider systems, with a flat distribution for close systems and a distribution that tends towards smaller mass ratios for wider binaries. Combining this result with previous spectroscopic surveys of A-type stars gives an estimate of the total companion star fraction of 68.9%+-7.0%. The most complete assessment of higher order multiples was estimated from the 156-star subset of the VAST sample with both adaptive optics and common proper motion measurements, combined with a literature search for companions, yielding a lower limit on the frequency of single, binary, triple, quadruple and quintuple A-type star systems of 56.4 (-4.0,+3.8), 32.1 (-3.5,+3.9), 9.0 (-1.8,+2.8), 1.9 (-0.6,+1.8) and 0.6 (-0.2,+1.4) per cent, respectively.Comment: 46 pages, 24 figures. Accepted for publication in the Monthly Notices of the Royal Astronomical Society, 7th October 201
    • …
    corecore