1,716 research outputs found

    Confidence Level and Sensitivity Limits in High Contrast Imaging

    Full text link
    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5sigma for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3*10^-7 confidence level detection threshold when averaging a partially correlated non-Gaussian noise.Comment: 29 pages, 13 figures, accepted to Ap

    Alien Registration- Macintosh, Vera B. (Presque Isle, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33386/thumbnail.jp

    Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    Full text link
    Angular differential imaging is a high-contrast imaging technique that reduces quasi-static speckle noise and facilitates the detection of nearby companions. A sequence of images is acquired with an altitude/azimuth telescope while the instrument field derotator is switched off. This keeps the instrument and telescope optics aligned and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF is constructed from other appropriately-selected images of the same sequence and subtracted to remove quasi-static PSF structure. All residual images are then rotated to align the field and are combined. Observed performances are reported for Gemini North data. It is shown that quasi-static PSF noise can be reduced by a factor \~5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of acquired images. A total speckle noise attenuation of 20-50 is obtained for one-hour long observing sequences compared to a single 30s exposure. A PSF noise attenuation of 100 was achieved for two-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 8". For a 30-minute long sequence, ADI achieves 30 times better signal-to-noise than a classical observation technique. The ADI technique can be used with currently available instruments to search for ~1MJup exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.Comment: 27 pages, 7 figures, accepted for publication in Ap

    Effective genealogical history: Possibilities for critical accounting history research

    Get PDF
    This essay, following up on the recent Sy and Tinker [2005] and Tyson and Oldroyd [2007] debate, argues that accounting history research needs to present critiques of the present state of accounting\u27s authoritative concepts and principles, theory, and present-day practices. It proposes that accounting history research could benefit by adopting a genealogical, effective history approach. It outlines four fundamental strengths of traditional history investigate only the real with facts; the past is a permanent dimension of the present; history has much to say about the present; and the past, present, and future constitute a seamless continuum. It identifies Nietzsche\u27s major concerns with traditional history, contrasts it with his genealogical approach, and reviews Foucault\u27s [1977] follow up to Nietzsche\u27s approach. Two examples of genealogical historiography are presented Williams\u27 [1994] exposition of the major shift in British discourse regarding slavery and Macintosh et al.\u27s [2000] genealogy of the accounting sign of income from feudal times to the present. The paper critiques some of the early Foucauldian-based accounting research, as well as some more recent studies from this perspective. It concludes that adopting a genealogical historical approach would enable accounting history research to become effective history by presenting critiques of accounting\u27s present state

    Accurate Astrometry and Photometry of Saturated and Coronagraphic Point Spread Functions

    Get PDF
    Accurate astrometry and photometry of saturated and coronagraphic point spread functions (PSFs) are fundamental to both ground- and space-based high contrast imaging projects. For ground-based adaptive optics imaging, differential atmospheric refraction and flexure introduce a small drift of the PSF with time, and seeing and sky transmission variations modify the PSF flux distribution. For space-based imaging, vibrations, thermal fluctuations and pointing jitters can modify the PSF core position and flux. These effects need to be corrected to properly combine the images and obtain optimal signal-to-noise ratios, accurate relative astrometry and photometry of detected objects as well as precise detection limits. Usually, one can easily correct for these effects by using the PSF core, but this is impossible when high dynamic range observing techniques are used, like coronagrahy with a non-transmissive occulting mask, or if the stellar PSF core is saturated. We present a new technique that can solve these issues by using off-axis satellite PSFs produced by a periodic amplitude or phase mask conjugated to a pupil plane. It will be shown that these satellite PSFs track precisely the PSF position, its Strehl ratio and its intensity and can thus be used to register and to flux normalize the PSF. A laboratory experiment is also presented to validate the theory. This approach can be easily implemented in existing adaptive optics instruments and should be considered for future extreme adaptive optics coronagraph instruments and in high-contrast imaging space observatories.Comment: 25 pages, 6 figures, accepted for publication in Ap

    Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements

    Full text link
    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this dataset, we detect acceleration for two of the planets (HR 8799b and e) at >>3σ\sigma. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns χ2\chi^2 consistent to within 1σ\sigma of the best fit values, suggesting that if inclination offsets of \lesssim20o^{o} are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1σ\sigma with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.Comment: 18 pages, 11 figures. Accepted for publication in A
    corecore