1,002 research outputs found

    Vandetanib-eluting radiopaque beads for chemoembolization: physicochemical evaluation and biological activity of vandetanib in hypoxia.

    Get PDF
    Vandetanib-eluting radiopaque beads (VERB) have been developed for use in transarterial chemoembolization of liver tumours, with the goal of combining embolization with local delivery of antiangiogenic therapy. The objective of this study was to investigate how embolization-induced hypoxia may affect antitumoural activity of vandetanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR), in the context of hepatocellular carcinoma (HCC) treatment. We studied the effect of vandetanib on proliferation, cell cycle and apoptosis of HCC cells, in hypoxic conditions, as well as the direct effects of the beads on 3D HCC spheroids. Vandetanib suppressed proliferation and induced apoptosis of HCC cells in vitro and was equipotent in hypoxic and normoxic conditions. High degrees of apoptosis were observed among cell lines in which vandetanib suppressed ERK1/2 phosphorylation and upregulated the proapoptotic protein Bim, but this did not appear essential for vandetanib-induced cell death in all cell lines. Vandetanib also suppressed the hypoxia-induced secretion of VEGF from HCC cells and inhibited proliferation of endothelial cells. Incubation of tumour spheroids with VERB led to sustained growth inhibition equivalent to the effect of free drug. We conclude that vandetanib has both antiangiogenic and direct anticancer activity against HCC cells even in hypoxic conditions, warranting the further evaluation of VERB as novel anticancer agents

    California Current seascape influences juvenile salmon foraging ecology at multiple scales

    Get PDF
    Juvenile salmon Oncorhynchus spp. experience variable mortality rates during their first few months in the ocean, and high growth during this period is critical to minimize size selective predation. Examining links between the physical environment and foraging ecology is important to understand mechanisms that drive growth. These mechanisms are complex and include interactions among the physical environment, forage availability, bioenergetics, and salmon foraging behavior. Our objectives were to explore how seascape features (biological and physical) influence juvenile Chinook salmon O. tshawytscha foraging at annual and feedingevent scales in the California Current Ecosystem. We demonstrate that forage abundance was the most influential determinant of mean salmon stomach fullness at the annual scale, while at the feeding-event scale, fullness increased with greater cumulative upwelling during the 10 d prior and at closer distances to thermal fronts. Upwelling promotes nutrient enrichment and productivity, while fronts concentrate organisms, likely resulting in available prey to salmon and increased stomach fullness. Salmon were also more likely to consume krill when there was high prior upwelling,andswitchedtonon-krillinvertebrates(i.e.amphipods,decapods,copepods)inweaker upwelling conditions. As salmon size increased from 72−250 mm, salmon were more likely to consume fish, equal amounts of krill, and fewer non-krill invertebrates. Broad seascape processes determined overall prey availability and fullness in a given year, while fine- and meso-scale processes influenced local accessibility of prey to individual salmon. Therefore, processes occurring at multiple scales will influence how marine organisms respond to changing environment

    Comparison of DC Bead-irinotecan and DC Bead-topotecan drug eluting beads for use in locoregional drug delivery to treat pancreatic cancer

    Get PDF
    DC Bead is a drug delivery embolisation system that can be loaded with doxorubicin or irinotecan for the treatment of a variety of liver cancers. In this study we demonstrate that the topoisomerase I inhibitor topotecan hydrochloride can be successfully loaded into the DC Bead sulfonate-modified polyvinyl alcohol hydrogel matrix, resulting in a sustained-release drug eluting bead (DEBTOP) useful for therapeutic purposes. The in vitro drug loading capacity, elution characteristics and the effects on mechanical properties of the beads are described with reference to our previous work with irinotecan hydrochloride (DEBIRI). Results showed that drug loading was faster when the solution was agitated compared to static loading and a maximum loading of ca. 40–45 mg topotecan in 1 ml hydrated beads was achievable. Loading the drug into the beads altered the size, compressibility moduli and colour of the bead. Elution was shown to be reliant on the presence of ions to perform the necessary exchange with the electrostatically bound topotecan molecules. Topotecan was shown by MTS assay to have an IC50 for human pancreatic adenocarcinoma cells (PSN-1) of 0.22 and 0.27 lM compared to 28.1 and 19.2 lM for irinotecan at 48 and 72 h, respectively. The cytotoxic efficacy of DEBTOP on PSN-1 was compared to DEBIRI. DEPTOP loaded at 6 & 30 mg ml-1, like its free drug form, was shown to be more potent than DEBIRI of comparable doses at 24, 48 & 72 h using a slightly modified MTS assay. Using a PSN-1 mouse xenograft model, DEBIRI doses of 3.3–6.6 mg were shown to be well tolerated (even with repeat administration) and effective in reducing the tumour size. DEBTOP however, was lethal after 6 days at doses of 0.83–1.2 mg but demonstrated reasonable efficacy and tolerability (again with repeat injection possible) at 0.2–0.4 mg doses. Care must therefore be taken when selecting the dose of topotecan to be loaded into DC Bead given its greater potency and potential toxicity

    Spinless impurities and Kondo-like behavior in strongly correlated electron systems

    Get PDF
    We investigate magnetic properties induced by a spinless impurity in strongly correlated electron systems, i.e. the Hubbard model in the spatial dimension D=1,2,D=1,2, and 3. For the 1D system exploiting the Bethe ansatz exact solution we find that the spin susceptibility and the local density of states in the vicinity of a spinless impurity show divergent behaviors. The results imply that the induced local moment is not completely quenched at any finite temperatures. On the other hand, the spin lattice relaxation rate obtained by bosonization and boundary conformal field theory satisfies a relation analogous to the Korringa law, 1/T1Tχ21/T_1T \sim \chi^2. In the 2D and 3D systems, the analysis based upon the antiferromagnetically correlated Fermi liquid theory reveals that the antiferromagnetic spin fluctuation developed in the bulk is much suppressed in the vicinity of a spinless impurity, and thus magnetic properties are governed by the induced local moment, which leads to the Korringa law of 1/T11/T_1.Comment: 9pages,1figure, final version accepted for publication in Phys.Rev.B(Jan2001

    Chronic widespread bodily pain is increased among individuals with history of fracture:findings from UK Biobank

    Get PDF
    Acknowledgments This work was supported by grants from the Medical Research Council, British Heart Foundation, Arthritis Research UK, National Osteoporosis Society, International Osteoporosis Foundation, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, and NIHR Musculoskeletal Biomedical Research Unit, University of Oxford. This research has been conducted using the UK Biobank Resource. Compliance with ethical standards.Peer reviewedPublisher PD

    Targeted delivery of a designed sTRAIL mutant results in superior apoptotic activity towards EGFR-positive tumor cells

    Get PDF
    Previously, we have shown that epidermal growth factor receptor (EGFR)-selective delivery of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL), by genetic fusion to antibody fragment scFv425, enhances the tumor-selective pro-apoptotic activity of sTRAIL. Insight into the respective contribution of the agonistic receptors TRAIL-R1 and TRAIL-R2 to TRAIL-induced apoptosis may provide a rational approach to further optimize TRAIL-based therapy. Recently, this issue has been investigated using sTRAIL mutants designed to selectively bind to either receptor. However, the relative contribution of the respective TRAIL receptors, in particular TRAIL-R1, in TRAIL signaling is still unresolved. Here, we fused scFv425 to designed sTRAIL mutant sTRAILmR1–5, reported to selectively activate TRAIL-R1, and investigated the therapeutic apoptotic activity of this novel fusion protein. EGFR-specific binding of scFv425:sTRAILmR1–5 potently induced apoptosis, which was superior to the apoptotic activity of scFv425:sTRAIL-wt and a nontargeted MOCK-scFv:sTRAILmR1–5. During cotreatment with cisplatin or the histone deacetylase inhibitor valproic acid, scFv425:sTRAILmR1–5 retained its superior pro-apoptotic activity compared to scFv425:sTRAIL-wt. However, in catching-type Enzyme-Linked ImmunoSorbent Assays with TRAIL-R1:Fc and TRAIL-R2:Fc, scFv425:sTRAILmR1–5 was found to not only bind to TRAIL-R1 but also to TRAIL-R2. Binding to TRAIL-R2 also had functional consequences because the apoptotic activity of scFv425:sTRAILmR1–5 was strongly inhibited by a TRAIL-R2 blocking monoclonal antibody. Moreover, scFv425:sTRAILmR1–5 retained apoptotic activity upon selective knockdown of TRAIL-R1 using small inhibitory RNA. Collectively, these data indicate that both agonistic TRAIL receptors are functionally involved in TRAIL signaling by scFv425:sTRAILmR1–5 in solid tumor cells. Moreover, the superior target cell-restricted apoptotic activity of scFv425:sTRAILmR1–5 indicates its therapeutic potential for EGFR-positive solid tumors

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag
    corecore