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Spinless impurities and Kondo-like behavior in strongly correlated electron systems

Satoshi Fujimoto
Department of Physics, Kyoto University, Kyoto 606, Japan

~Received 17 July 2000; published 14 December 2000!

We investigate magnetic properties induced by a spinless impurity in strongly correlated electron systems,
i.e., the Hubbard model in spatial dimensionD51,2, and 3. For the one-dimensional~1D! system exploiting
the Bethe ansatz exact solution we find that the spin susceptibility and the local density of states in the vicinity
of a spinless impurity show divergent behaviors. The results imply that the induced local moment is not
completely quenched at any finite temperatures. On the other hand, the spin lattice relaxation rate obtained by
bosonization and boundary conformal field theory satisfies a relation analogous to the Korringa law, 1/T1T
;x2. In the 2D and 3D systems, the analysis based upon the antiferromagnetically correlated Fermi liquid
theory reveals that the antiferromagnetic spin fluctuation developed in the bulk is much suppressed in the
vicinity of a spinless impurity, and thus magnetic properties are governed by the induced local moment, which
leads to the Korringa law of 1/T1.

DOI: 10.1103/PhysRevB.63.024406 PACS number~s!: 75.20.Hr, 71.27.1a, 74.72.2h

I. INTRODUCTION

Recently, magnetic properties induced by spinless impu-
rities in correlated electron systems have attracted much
interest.1–6 Especially, to probe antiferromagnetic correla-
tions of high-Tc cuprates the substitution of Cu sites with
nonmagnetic impurities such as Zn, Al, and Li has been stud-
ied experimentally.1–4 According to NMR experiments, it
was found that the substitution with spinless impurities in-
duces local moments in the vicinity of impurities, which also
show Kondo-like behaviors. For instance, the spin suscepti-
bility in the vicinity of an impurity shows a temperature
dependence like;1/(T1TK), which implies the existence
of the characteristic energy scaleTK analogous to the Kondo
temperature.3 Moreover, the spin-lattice relaxation rate 1/T1
shows Korringa-like behaviors, 1/T1T}K2, for T,TK .4

HereK is the Knight shift. It is noted that in the vicinity of a
spinless impurity the antiferromagnetic spin correlation
which is developed in the bulk is much suppressed, and the
magnetic correlation is dominated by the induced local mo-
ment. From theoretical points of view, it is nontrivial how
this induced local moment governs the magnetic properties
around an impurity, suppressing the antiferromagnetic corre-
lation. In this paper, we shall deal with this issue. Although
the experiments are carried out for high-Tc cuprates which
are essentially quasi-two-dimensional~quasi-2D! systems, it
is expected that such effects may depend on the lattice struc-
ture and the dimensionality. Thus, we consider Hubbard
models with a spinless impurity in spatial dimensionD51,
2, and 3 to investigate how the dimensionality affects the
induced magnetic properties. ForD51, the effects of a spin-
less impurity are incorporated into an open boundary condi-
tion as will be explained in the next section. Thus we con-
sider the 1D Hubbard model with boundaries which is
exactly solvable in terms of the Bethe ansatz method. We
analyze the magnetic properties of this model using the exact
solution and boundary conformal field theory. ForD52 and
3, we derive the Korringa relation satisfied in the vicinity of
a spinless impurity which is observed in NMR experiments.

Our argument forD52, 3 is based upon Fermi liquid theory
in the presence of antiferromagnetic spin fluctuations.

The organization of this paper is as follows. In Sec. II, the
1D Hubbard model with a spinless impurity is considered.
The spin susceptibility and the local density of states in the
vicinity of an impurity are obtained based upon the Bethe
ansatz exact solution. It is found that the induced moment is
not screened completely at any finite temperatures. We also
derive the spin-lattice relaxation rate 1/T1 which satisfies a
relation analogous to the Korringa law. In Sec. III, we dis-
cuss the 2D and 3D systems, exploiting the antiferromagneti-
cally correlated Fermi liquid theory. A summary is given in
Sec. IV.

II. A SPINLESS IMPURITY IN THE ONE-DIMENSIONAL
HUBBARD MODEL

A. Mapping to the Hubbard model with boundaries and the
Bethe ansatz exact solution

The effects of a single impurity in one-dimensional cor-
related systems have been extensively studied so far.7,8 If the
interaction between fermions is repulsive, a potential scatter-
ing in the 1D Hubbard model is renormalized to an infinite
strength, eventually cutting the system into two half-infinite
chains in the low-energy scaling limit. Thus at sufficiently
low temperatures the system can be treated as a Hubbard
chain with open boundaries, of which the Hamiltonian is
given by

H52 (
s,i 51

L21

cs i
† cs i 111H.c.1U(

i 51

L

n↑ in↓ i2m (
s,i 51

L

ns i

2
H

2 (
i 51

L

~n↑ i2n↓ i !1V(
s

ns1 , ~1!

where the last term is a boundary potential. As we will see
below, the low-energy spin dynamics around the impurity
with which we are concerned is mainly described by this
model, and the interaction or hopping between the two half-
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infinite chains is a subleading irrelevant interaction which
can be incorporated by perturbative calculations.

The Bethe ansatz exact solutions of 1D correlated systems
with boundaries have been studied by many authors.9–21 In
connection with the spin dynamics in the vicinity of the
boundary, an intriguing result was obtained for the super-
symmetrict-J model by Essler.16 He obtained the divergent
behavior of the boundary spin susceptibility as a function of
a magnetic fieldH, i.e., xboundary;1/H(ln H)2. It was first
predicted by de Sa and Tsvelik that such a Curie-like behav-
ior is universal for integral models with boundaries.14 Later,
similar behavior was also found for the Hubbard model at
half-filling by Asakawa and Suzuki.17 In the next subsection,
we shall show that this divergent behavior holds also for the
case away from half-filling with finiteU.

Here we summarize the basic equations which are rel-
evant to the following arguments. The Bethe ansatz equa-
tions of the 1D Hubbard model with boundaries obtained by
Schulz many years ago are10

ei2kjLeif0(kj )5 )
b51

M

e1~sin kj2lb!e1~sinkj1lb!, ~2!

)
j 51

N

e1~la2sinkj !e1~la1sinkj !

5 )
b51
bÞa

e2~la2lb!e2~la1lb!, ~3!

whereen(x)5(x1 inu)/(x2 inu), u5U/4, andf0,L is a po-
tential at boundaries.N is the total number of electrons.M is
the total number of down spins.kj andla are rapidities for
charge and spin degrees of freedom, respectively. In the fol-
lowing, we consider only the case of repulsive boundary po-
tentials. Thus the above equations have real roots. Putting
k2 j52kj , l2a52la , and taking a continuum limit, we
have the integral equations for the distribution functions of
rapidities,

r~k!5
1

p
1

1

pL
f08~k!2

1

2pL

2u cosk

~sink!21u2

1coskE
2B

B dl

p

u

~sink2l!21u2
s~l!, ~4!

s~l!5
1

pL

2u

l214u2
1E

2Q

Q dk

p

u

~l2sink!21u2
r~k!

2E
2B

B dl8

p

2u

~l2l8!214u2
s~l8!. ~5!

N andM are given by

E
2Q

Q

r~k!dk5
2N11

L
, ~6!

E
2B

B

s~l!dl5
2M11

L
. ~7!

Then the magnetization is expressed as

Sz

L
5

1

4E2Q

Q

r~k!dk2
1

2E2B

B

s~l!dl1
1

4L
. ~8!

The total energy is expressed in terms of the dressed ener-
gies,

E

L
5E

2Q

Q

dkS 1

p
1

1

pL
f08~k!2

1

2pL

2u cosk

~sink!21u2D «c~k!

1E
2B

B dl

pL

2u

l214u2
«s~l!, ~9!

where the dressed energies«c(k) and«s(l) are determined
by the integral equations

«c~k!522 cosk2
H

2
2m1E

2B

B dl

p

u

~sink2l!21u2
«s~l!,

~10!

«s~l!5H1E
2Q

Q dk

p

u

~sink2l!21u2
«c~k!

2E
2B

B dl8

p

2u

~l2l8!214u2
«s~l8!. ~11!

If one fixes the magnetic fieldH, B is determined by the
equilibrium condition]E/]B50, which is equivalent to the
condition«s(B)50. In the subsequent sections, we calculate
the spin susceptibility and the local density of states using
the above equations.

B. Spin susceptibility

In order to derive the spin susceptibility, we solve Eqs.~4!
and~5! for s(l) using the Wiener-Hopf method, and obtain
the magnetization, Eq.~8!.

Applying the Fourier transformation and shifting the ar-
gument,l→l1B, we rewrite Eq.~5! as,

s~l1B!5 f 0~l1B!1E
0

`dl8

p
R~l2l8!s~l81B!

1E
0

`dl8

p
R~l1l812B!s~l81B!, ~12!

where

f 0~l1B!5
1

LE2`

` dv

2p

e2uuvue2 iv(l1B)

2 coshuv

1E
2Q

Q

dk
r~k!

2 cosh
p

u
~l1B2sink!

, ~13!
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R~x!5E
2`

` dv

2p

e2uuvue2 ivx

2 coshuv
. ~14!

The last term of the right-hand side of Eq.~12! is O(1/B2)
for small magnetic fields. Thus we neglect it. Then Eq.~12!
can be solved by using the standard Wiener-Hopf method.22

The solution is expressed in terms of the following functions:

G1~v!5A2p
S 2 i

uv

p D 2 iuv/p

GS 1

2
2 i

uv

p D eiuv/p, ~15!

G2~v!5@G1~2v!#21, ~16!

Q1~v!1Q2~v!5G2~v! f̃ 0~v!, ~17!

f̃ 0~v!5E
2`

`

dl f 0~l1B!eivl, ~18!

whereQ1(v)@Q2(v)# is the analytic part ofG2(v) f̃ 0(v)
defined in the upper@lower# half-plane. Fourier transforming
Eq. ~12! and introducing the function s1(v)
5*0

`dleivls(l1B), we obtain the solution ass1(v)
5G1(v)Q1(v).

Now we deriveQ1(v) as follows. For small magnetic
fields, i.e., largeB, andl.0 the second term off 0(l1B) is
approximated as

E
2Q

Q

dk
r~k!

2 cosh
p

u
~l1B2sink!

'
2N11

L

1

2 cosh
p

u
~l1B!

.

~19!

This driving term is essentially the same as the bulk contri-
bution, with which we are not concerned. The first term of
f 0(l1B) gives rise an interesting boundary effect. Using
e2uuvu/2 coshuv5(n51

` (21)n21e22nuuvu and the Laplace
transformation

2nu

~l1B!21~2nu!2
5E

0

`

dte2(l1B)tsin~2nut!, ~20!

we rewrite the first term off 0(l1B) as

1

LE2`

` dv

2p

e2uuvue2 iv(l1B)

2 coshuv

5
1

pL (
n51

`

~21!n21E
2`

` dv

2pE0

`

dt sin~2nut!

3F 1

v1 i t
2

1

v2 i t G ie2 iv(l1B). ~21!

The analytic property of Eq.~21! solves Eq.~17!,

Q1~v!5
1

L (
n51

` E
0

`

dt sin~2nut!
e2tB

v1 i t
iG2~2 i t !

1bulk terms. ~22!

Finally, using Eq.~8!, we obtain the magnetization,

Sz5
1

2E0

`

dls~l1B!5
1

2
s1~0!;

1

LB
1bulk terms,

~23!

for largeB, i.e., small magnetic fields.B is related toH from
the condition«s(B)50. From Eqs.~10! and ~11!, we have
H5Ce2pB/2u for H!u. Here C is an constant. Then the
spin susceptibilityx5]Sz /]H behaves like

x;
1

L

1

H~ ln H !2
1bulk terms. ~24!

This H dependence is the same as that found for the half-
filling case.17 The above result implies that in 1D systems the
magnetic moment induced by a nonmagnetic impurity is not
screened completely even at zero temperature. This behavior
is analogous to the underscreening multichannel Kondo ef-
fect, as pointed out by de Sa and Tsvelik.14 The leadingH
dependence of Eq.~24! is not altered, even if one includes
irrelevant interactions such as the hopping between the two
half-infinite chains.

In this section, we restrict our discussion to the zero-
temperature case. It is expected that at finite temperatures the
boundary spin susceptibility behaves likexboundary
;1/T(ln T)2. In order to confirm this prediction, we need to
explore the thermodynamic Bethe ansatz method in the pres-
ence of boundaries. However, in the presence of boundaries,
the entropy cannot be expressed in terms of rapidity distri-
bution functions in the continuum limit, because of the pres-
ence of spurious states for vanishing rapidities, and thus the
usual technique of the thermodynamic Bethe ansatz method
is not applicable. If we limit the argument to sufficiently
low-temperature regions, undesirable contributions from the
spurious state around the bottom of the energy spectrum may
be small, and not give rise to serious errors. Even if we admit
this approximation, it is still a cumbersome task to solve the
thermodynamic Bethe ansatz equations numerically for low
temperatures. Thus here we just give a field-theoretical argu-
ment to justify the above speculation. According to the
boundary conformal field theory, the above divergent behav-
ior of the spin susceptibility is due to the presence of a
boundary entropySbound5T ln(A4pR).23,17HereR is the ra-
dius of the boson field of the Gaussian model which is the
low-energy effective theory. If the leading irrelevant interac-
tion is the marginal operator in the spin degrees of freedom,
JL•JR , we haveR;R02g/ ln T for small T.24 Then, the
boundary spin susceptibility should behave likexboundary
;1/T(ln T)2. Thus we expect that this temperature depen-
dence which signifies the presence of an unquenched local
moment may realize in this system.
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C. Local density of states

In models solvable in terms of the Bethe ansatz method,
the local density of states is defined as the derivative of the
quantum number, which parametrizes rapidities, with respect
to the pseudoenergy, i.e.,]I j /]«(kj ).

25 For the 1D Hubbard
model, we can consider the density of states of holons and
spinons, respectively. An interesting singular behavior due to
the boundary appears in the spin degrees of freedom.

The local density of states of spinon as a function of en-
ergy is given by

rspin~«!5
]l

]«s
s~l!. ~25!

In the absence of magnetic fields,B→`, the solution of
Eq. ~5! is expressed as

s~l!5
1

LE2`

` dv

2p

euuvue2 ivl

2 coshuv

1E
2`

` dv

2p

e2 ivl

2 coshuvE2Q

Q

dkr~k!eiv sin k. ~26!

For l@1, the first term of Eq.~26! behaves like;1/l2,
while the second term is just the order ofO(e2pl/u). Thus
the main singular contribution comes from the former which
is nothing but the boundary term. In a similar manner, from
Eq. ~11! we obtain the asymptotic form of«s(l) for largel,
i.e., «s(l);Ae2pl/u, whereA is a constant. Then from Eqs.
~25! and ~26!, we have

rspin~«!;
1

«~ ln «!2
, ~27!

for small «. Thus the local density of states also shows sin-
gular divergent behavior because of the presence of the
boundary. It is noted that this result is similar to that of the
underscreened multichannel Kondo effect.25

The important message of this and the previous subsec-
tions is that in 1D correlated electron systems the localized
moment induced by a nonmagnetic impurity is not quenched
at any temperatures. The inclusion of irrelevant interactions
such as hopping between semi-infinite chains does not
change the result qualitatively. It should be stressed that this
unquenched local moment is a particular property of the 1D
systems where an impurity divides the system into two semi-
infinite chains. Such a separation of the system is not pos-
sible in higher-dimensional systems.

D. Spin-lattice relaxation rate

Here we calculate the spin-lattice relaxation rate 1/T1 in
the vicinity of a spinless impurity, i.e., a boundary, using the
bosonization method and boundary conformal field theory.
The same kinds of calculations have been done for Heisen-
berg spin chains before.26,27 Some parts of the following re-
sults are similar to those obtained in Refs. 26 and 27. How-
ever, combining them with the results from the Bethe ansatz
exact solution, we shall see some new aspects. In the previ-
ous subsections, it was shown that the induced moment is not
screened completely at any temperatures. Then one might
expect that 1/T1 behaves like that of an isolated spin, 1/T1

;Tx. However, as will be seen below, this naive expecta-
tion is incorrect.

According to the boundary conformal field theory, corre-
lation functions for any operators in the vicinity of bound-
aries are obtained by the analytic continuation of the antiho-

lomorphic part to the holomorphic part,O(z,z̄)5OL(vt
1 ix)OR(vt2 ix);OL(vt1 ix)OL(vt2 ix).28,29 Following
the standard technique, we have the asymptotic behaviors of
the spin-spin correlation function in the presence of the
boundary,28,23,30

x~x,y,t !;S pT

vs
D 2Fsinh

pT

vs
~x2y2vt !G22

1e2ikF(x2y)

3 )
n5s,c F S pT

vn
D 2 sinh

2pTx

vn
sinh

2pTy

vn

sinh
pT

vn
~x1y1vnt !sinh

pT

vn
~x1y2vnt !sinh

pT

vn
~x2y1vnt !sinh

pT

vn
~x2y2vnt !

G Kn/2

.

~28!

Here vs and vc are the velocities of spinons and holons,
respectively. Kc is the Luttinger liquid parameter in
the charge sector, and 1/2<Kc<1. Ks51 because of
the SU(2) symmetry of the spin sector. In the vicinity of
the boundary, i.e.,x,y,ux2yu!vst, the staggered part
~the second term! of Eq. ~28! is less relevant in comparison

with the uniform part ~the first term!. Thus in contrast
to the bulk behavior, the antiferromagnetic spin fluctuation
is much suppressed, and the uniform part gives the
dominant contribution to 1/T1 near the boundary. Fourier
transforming Eq.~28!,31,32 we obtain, up to logarithmic cor-
rections,
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1

T1T
5 lim

v→0

1

v (
q,q8

Imx~q,q8,v!;
C

vs
2

1O~T2Kc!. ~29!

Here we have assumed that the hyperfine coupling constant
is independent ofq, and omitted it.C is a temperature-
independent constant. In the case thatvs is a constant, the
above result is equivalent to that obtained by Brunelet al. for
Luttinger liquids with boundaries.26 The spinon velocityvs is
related to the spin susceptibility obtained before, 1/vs
5xbulk1xboundary/L. As claimed in the previous subsections,
xboundary should show enhanced local correlations like
xboundary;1/T(ln T)2. Thus, near the boundary,

1

T1T
;~xboundary!

2. ~30!

Surprisingly, this relation is analogous to the Korringa rela-
tion. However, it is noted that in contrast to the conventional
Korringa law, the right-hand side of Eq.~30! shows a strong
temperature dependence. As mentioned in the previous sub-
sections, the induced local moment is not quenched com-
pletely. In spite of such an unscreened character of the mo-
ment, the Korringa-like relation holds in the vicinity of a
spinless impurity.

III. SPINLESS IMPURITY IN 2D AND 3D HUBBARD
MODELS

In this section, we discuss the local magnetic properties
caused by a spinless impurity in 2D and 3D Hubbard models
in the presence of bulk antiferromagnetic fluctuations, i.e.,
very close to the half-filling. The main purpose of this sec-
tion is to derive the Korringa relation satisfied at the nearest
neighbor of the impurity site, which is observed in the NMR
experiment for cuprates.4 The model Hamiltonian is given by

H5(
ks

Ekcsk
† csk1U(

i
n↑ in↓ i1E0(

s
ns0 . ~31!

Here Ek522t(a51
D coska (D52 or 3), and the last term

represents a spinless impurity localized at site 0. We restrict
our discussion to the case of the square lattice in 2D and the
cubic lattice in 3D. Because of the presence of an impurity,
correlation functions are nonlocal. In the case ofU50, the
single-particle Green’s function is given by

Gkk8
0

~«n!5
dkk8

i«n1m2Ek
1

1

i«n1m2Ek

3
E0

12E0(
k9

1

i«n1m2Ek9

1

i«n1m2Ek8

,

~32!

where m is a chemical potential. ForUÞ0, the single-
particle Green’s function is obtained by solving the equation

(
k9

@~ i«n1m2«k!dkk92Skk9~«n!2E0#Gk9k8~«n!5dkk8 .

~33!

The self-energySkk8(«) may be obtained by perturbative
calculation in terms ofU. However, in the following quali-
tative argument we do not need an explicit expression of
Gkk8(«n).

Before discussing the magnetic properties, it is useful to
sketch the spatial dependence of the density of states in the
vicinity of an impurity. The density of states at the Fermi
level is given by

r~x,x8!52~1/p!(
kk8

ImGkk8
R

~0!eikxe2 ik8x8. ~34!

To simplify the calculation, we consider the strong limit of
an impurity potential, i.e.,E0@U,t. The following argu-
ments do not change qualitatively even in the case of a finite
E0. Using Eq.~32!, we obtain the density of states at the
Fermi level for the noninteracting system,U50,

r0~x,x8!5Nx2x8~m!2
Nx~m!Nx8~m!

N0~m!
, ~35!

Nx~«![(
k

d~«2Ek!e
ikx5E

2`

` ds

2p
eis«)

i 51

D

Jni
~ ts!,

~36!

with Jn(x) the Bessel function andx5(n1 ,n2) for D52 and
x5(n1 ,n2 ,n3) for D53. Note that ifx or x8 is the impurity
site, the density of states vanishes,r0(x,0)5r0(0,x8)50.
We can easily show that if the electron density is close to
half-filling, i.e., umu/t!1, then Nx(m);O„(m/t)2

… for the
site x on the sublattice which includes the nearest-neighbor
site of the impurity,xNN ~denoted by theA sublattice!, and
Nx(m);N0(m) for the site x on the sublattice which in-
cludes the impurity site (B sublattice!. Thus from Eq.~35!
we immediately see that the local density of states around the
impurity site shows strong spatial modulation similar to the
Friedel oscillation. The period of the oscillation is;1/kF
which is close to the half-filling value in this case. Ifx andx8
belong to theA sublattice, the local density of states is nearly
equal to that of bulk systems,r0(x,x8);r0(uxu→`,
ux8u→`). On the other hand, ifxÞ0 andx8Þ0 belong to
the B sublattice,r0(x,x8);O„(m/t)2

…. Since the density of
states at the Fermi level is not renormalized by electron-
electron interactions, this Friedel oscillation occurs forU
Þ0. This observation leads to an important implication for
local magnetic properties on the nearest-neighbor site of the
impurity, xNN . Because of the Friedel oscillation and the
bipartite lattice structure, the local density of states on all the
sites surrounding the sitexNN is much suppressed provided
that the impurity potential is sufficiently strong. Thus the
spin on the sitexNN is less screened than spins of electrons in
the bulk. As a result, the local spin susceptibility on the site
xNN is strongly enhanced.

Now we consider the spin-lattice relaxation rate 1/T1 in
the vicinity of a spinless impurity. For simplicity, we assume
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024406-5



that the hyperfine coupling constant does not depend onq.
We apply the general argument from the Fermi liquid theory
to the case with a single spinless impurity.33,34 Then 1/T1 at
site xi is given by, up to constant factors,

1

T1T
5 lim

v→0
(
q,q8

Imx~q,q8,v!

v
eiqxie2 iq8xi

5 (
q1 ,q2 ,q3 ,q4 ,k,k8

ReL~q1 ,k1q2 ,k!

3ImGkk8
R

~0!ImGk1q2k81q3

R
~0!

3ReL~q4 ,k81q3 ,k8!eiq1xie2 iq4xi, ~37!

where L(q,k1q8,k) is a three-point vertex function. The
diagrammatic expression of Eq.~37! which is thev-linear
term of Imx(q,q8,v) is shown in Fig. 1. The detail deriva-
tion of this formula is given in Refs. 33 and 34. In the pres-
ence of strong antiferromagnetic fluctuations, it is plausible
to assume thatL(q,k1q8,k) depends mainly onq andq8.
Thus in the following we discard thek dependence of
L(q,k1q8,k). It is useful to rewrite Eq.~37! in terms of
quantities in coordinate space,

1

T1T
5p2(

s,t
r~2xi2s,2xi1t !r~xi1s,xi2t !

3L~xi ,xi1s!L~xi2t,xi !. ~38!

Here,

L~x,x8!5 (
q,q8

ReL~q,q8!eiqxe2 iq8x8. ~39!

In the case that sitexi is far from the impurity, i.e.,uxi u
@a, where a is a lattice constant,r(xi1s,xi2t)→r(s
1t), L(xi ,xi1s)→L(2s), and thus the above expression
is reduced to the usual formula of 1/T1 in bulk systems. It is
also noted that ifxi50, 1/T1T vanishes, sinceL(0,s) in-
cludesG(0,xj ) which vanishes as mentioned above. Here we
are concerned with the case that the sitexi is the nearest
neighbor of the impurity site,xi5xNN .

To proceed further, we use a phenomenological expres-
sion for L(q,q8). We assume that the three-point vertex
function L(q,q8) consists of a part which is strongly en-
hanced by antiferromagnetic spin fluctuations and a local
part which depends onq andq8 weakly,

L~q,q8!;LAF~q!dq,q81L loc~q,q8!. ~40!

The antiferromanetically correlated partLAF(q) has a strong
peak atq5Q, the staggered vector, and then is approxi-
mated as ReLAF(q);Rex(q;Q)5x(Q)/$11@jAF(q
2Q)#2%. Here we used the phenomenological expression for
x(q;Q).35 As mentioned above,L loc(q,q8) is enhanced by
local magnetic correlations at sitexNN , i.e., L loc(q,q8)
;L loce

2 iqxNNeiq8xNN. Then, Eq.~37! is rewritten as

S 1

T1TD
NN

;F x~Q!

~jAF!mG 2

(
k,k8

ImGk,k8
R

~0!ImGk1Q,k81Q
R

~0!

1@ReL loc#
2 (

k,k8,q2 ,q3

ImGk,k8,q2 ,q3

R
~0!

3ImGk1q2 ,k81q3

R
~0!, ~41!

wherem52 for 2D systems andm53 for 3D systems. Since
x(Q);(jAF)2,35 the first term of Eq.~41!, which is the an-
tiferromagnetically correlated part, is much suppressed com-
pared to the second term, i.e., the local correlation part. Thus
we obtain

S 1

T1TD
NN

;~ReL loc!
2. ~42!

Here we neglect all factors which are not enhanced by elec-
tron correlation. On the other hand, the local spin suscepti-
bility at xNN is approximately given byx loc;ReL loc . Thus
Eq. ~42! establishes the Korringa relation satisfied at the
nearest-neighbor site of the impurity. As mentioned before,
this relation is actually observed in NMR experiments.4

IV. SUMMARY AND DISCUSSION

We have discussed some magnetic properties analogous
to the Kondo effect induced by a spinless impurity in
strongly correlated electrons systems. In the 1D system, we
have shown that the spin susceptibility and the local density
of states near the impurity indicate divergent behaviors, im-
plying the presence of an unquenched local moment at any
temperatures. We have also obtained a Korringa-like relation
between the spin-lattice relaxation rate and the local spin
susceptibility, 1/T1T;(xboundary)

2. In 2D and 3D systems,
the antiferromagnetically correlated Fermi liquid theory has
been applied. It has been shown that magnetic properties in
the vicinity of a spinless impurity are dominated by the in-
duced moment rather than the antiferromagnetic spin fluctua-
tion developed in the bulk, and that the Korringa relation
holds at the near-neighbor site of the impurity.

The results obtained for the 1D system have an interesting
implication to higher-dimensional systems. Suppose a semi-
infinite 2D Hubbard model with a boundary line, which is
regarded as the coupled semi-infinite Hubbard chains. Ac-
cording to the results obtained in Sec. II, it is expected that at
some finite temperatures 1D-like strong spin correlations oc-
cur in the vicinity of the boundary line, leading to a strongly
enhanced density of states near the boundary. Such an en-

FIG. 1. diagram of thev-linear term of Imx(q1 ,q4 ,v). The
shaded part is the three-point vertex.
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hanced electron correlation and one dimensionality of the
boundary line may give rise to strong fluctuations toward
some surface phase transition. For instance, if there exists a
pairing interaction in the bulk system, the pairing correlation
may be enhanced near the boundary, leading to a higher
transition temperature than the bulk superconductivity. Actu-
ally, it is reported that Sr2RuO4 with lamellar microdomains
of Ru metal shows a superconducting transition at a tempera-
ture higher thanTc of the pure system, and that supercon-
ductivity with higherTc occurs in the vicinity of the bound-

ary between Sr2RuO4 and Ru metal.36 We would like to
pursue this possible mechanism of the enhanced transition
temperature in the near future.
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