131 research outputs found

    Energy Flow in Interjet Radiation

    Get PDF
    We study the distribution of transverse energy, Q_Omega, radiated into an arbitrary interjet angular region, Omega, in high-p_T two-jet events. Using an approximation that emphasizes radiation directly from the partons that undergo the hard scattering, we find a distribution that can be extrapolated smoothly to Q_Omega=Lambda_QCD, where it vanishes. This method, which we apply numerically in a valence quark approximation, provides a class of predictions on transverse energy radiated between jets, as a function of jet energy and rapidity, and of the choice of the region Omega in which the energy is measured. We discuss the relation of our approximation to the radiation from unobserved partons of intermediate energy, whose importance was identified by Dasgupta and Salam.Comment: 26 pages, 8 eps figures. Revised to include a discussion of non-global logarithm

    Introducing the UK Antimicrobial Registry (UKAR) study: providing real world data on new antimicrobials to support antimicrobial stewardship and tackle antimicrobial resistance

    Get PDF
    The UK Antimicrobial Registry (UKAR) has been developed to capture data on real world usage of antimicrobial agents with an initial focus on those used to treat drug-resistant infections. Several industry partners have committed support for the study, which is included in the National Institute for Health and Care Research (NIHR) portfolio in England with similar arrangements in the three devolved UK nations. The two antimicrobials in the National Institute for Health and Care Excellence (NICE) subscription model pilot (cefiderocol and ceftazidime/avibactam) are included in the UKAR and future expansion of work in this area is planned. This model decouples payment from usage by using a fixed annual fee. The study will provide information on the characteristics of patients receiving study drugs, the infections being treated, treatment effectiveness and adverse events. UKAR potentially provides a novel resource of enduring value to support healthcare in the UK and more widely and contribute to AMR National Action Plan goals for optimal use of antimicrobials

    Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection

    Get PDF
    The activating natural killer (NK) cell receptor Ly49H recognizes the mouse cytomegalovirus (MCMV) m157 glycoprotein expressed on the surface of infected cells and is required for protection against MCMV. Although Ly49H has previously been shown to signal via DAP12, we now show that Ly49H must also associate with and signal via DAP10 for optimal function. In the absence of DAP12, DAP10 enables Ly49H-mediated killing of m157-bearing target cells, proliferation in response to MCMV infection, and partial protection against MCMV. DAP10-deficient Ly49H+ NK cells, expressing only Ly49H–DAP12 receptor complexes, are partially impaired in their ability to proliferate during MCMV infection, display diminished ERK1/2 activation, produce less IFN-γ upon Ly49H engagement, and demonstrate reduced control of MCMV infection. Deletion of both DAP10 and DAP12 completely abrogates Ly49H surface expression and control of MCMV infection. Thus, optimal NK cell–mediated immunity to MCMV depends on Ly49H signaling through both DAP10 and DAP12

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
    • 

    corecore