21,835 research outputs found

    Calculus on surfaces with general closest point functions

    Get PDF
    The Closest Point Method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys. 2008] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs

    Topological derivation of shape exponents for stretched exponential relaxation

    Get PDF
    In homogeneous glasses, values of the important dimensionless stretched-exponential shape parameter beta are shown to be determined by magic (not adjusted) simple fractions derived from fractal configuration spaces of effective dimension d* by applying different topological axioms (rules) in the presence (absence) of a forcing electric field. The rules are based on a new central principle for defining glassy states: equal a priori distributions of fractal residual configurational entropy. Our approach and its beta estimates are fully supported by the results of relaxation measurements involving many different glassy materials and probe methods. The present unique topological predictions for beta typically agree with observed values to ~ 1% and indicate that for field-forced conditions beta should be constant for appreciable ranges of such exogenous variables as temperature and ionic concentration, as indeed observed using appropriate data analysis. The present approach can also be inverted and used to test sample homogeneity and quality.Comment: Original 13 pages lengthened to 21 pages (longer introduction, added references and discussion of new experimental data published since original submission

    Imaging crystal orientations in multicrystalline silicon wafers via photoluminescence

    Get PDF
    We present a method for monitoring crystal orientations in chemically polished and unpassivated multicrystalline silicon wafers based on band-to-band photoluminescence imaging. The photoluminescence intensity from such wafers is dominated by surface recombination, which is crystal orientation dependent. We demonstrate that a strong correlation exists between the surface energy of different grain orientations, which are modelled based on first principles, and their corresponding photoluminescence intensity. This method may be useful in monitoring mixes of crystal orientations in multicrystalline or so-called “cast monocrystalline” wafers.H. C. Sio acknowledges scholarship support from BT Imaging and the Australian Solar Institute, and the Centre for Advanced Microscopy at ANU for SEM access. This work has been supported by the Australian Research Council

    Magnetic interactions of substitutional Mn pairs in GaAs

    Full text link
    We employ a kinetic-exchange tight-binding model to calculate the magnetic interaction and anisotropy energies of a pair of substitutional Mn atoms in GaAs as a function of their separation distance and direction. We find that the most energetically stable configuration is usually one in which the spins are ferromagnetically aligned along the vector connecting the Mn atoms. The ferromagnetic configuration is characterized by a splitting of the topmost unoccupied acceptor levels, which is visible in scanning tunneling microscope studies when the pair is close to the surface and is strongly dependent on pair orientation. The largest acceptor splittings occur when the Mn pair is oriented along the symmetry direction, and the smallest when they are oriented along . We show explicitly that the acceptor splitting is not simply related to the effective exchange interaction between the Mn local moments. The exchange interaction constant is instead more directly related to the width of the distribution of all impurity levels -- occupied and unoccupied. When the Mn pair is at the (110) GaAs surface, both acceptor splitting and effective exchange interaction are very small except for the smallest possible Mn separation.Comment: 25 figure

    Magneto-electric coupling in zigzag graphene nanoribbons

    Full text link
    Zigzag graphene nanoribbons can have magnetic ground states with ferromagnetic, antiferromagnetic, or canted configurations, depending on carrier density. We show that an electric field directed across the ribbon alters the magnetic state, favoring antiferromagnetic configurations. This property can be used to prepare ribbons with a prescribed spin-orientation on a given edge.Comment: 4 pages, 5 figure

    Chern number spins of Mn acceptor magnets in GaAs

    Full text link
    We determine the effective total spin JJ of local moments formed from acceptor states bound to Mn ions in GaAs by evaluating their magnetic Chern numbers. We find that when individual Mn atoms are close to the sample surface, the total spin changes from J=1J = 1 to J=2J = 2, due to quenching of the acceptor orbital moment. For Mn pairs in bulk, the total JJ depends on the pair orientation in the GaAs lattice and on the separation between the Mn atoms. We point out that Berry curvature variation as a function of local moment orientation can profoundly influence the quantum spin dynamics of these magnetic entities.Comment: 4 pages, 3 figure

    Magnetic properties of substitutional Mn in (110) GaAs surface and subsurface layers

    Full text link
    Motivated by recent STM experiments, we present a theoretical study of the electronic and magnetic properties of the Mn-induced acceptor level obtained by substituting a single Ga atom in the (110) surface layer of GaAs or in one of the atoms layers below the surface. We employ a kinetic-exchange tight-binding model in which the relaxation of the (110) surface is taken into account. The acceptor wave function is strongly anisotropic in space and its detailed features depend on the depth of the sublayer in which the Mn atom is located. The local-density-of-states (LDOS) on the (110) surface associated with the acceptor level is more sensitive to the direction of the Mn magnetic moment when the Mn atom is located further below the surface. We show that the total magnetic anisotropy energy of the system is due almost entirely to the dependence of the acceptor level energy on Mn spin orientation, and that this quantity is strongly dependent on the depth of the Mn atom.Comment: 14 pages, 13 figure

    Non-equilibrium Entanglement and Noise in Coupled Qubits

    Full text link
    We study charge entanglement in two Coulomb-coupled double quantum dots in thermal equilibrium and under stationary non-equilibrium transport conditions. In the transport regime, the entanglement exhibits a clear switching threshold and various limits due to suppression of tunneling by Quantum Zeno localisation or by an interaction induced energy gap. We also calculate quantum noise spectra and discuss the inter-dot current correlation as an indicator of the entanglement in transport experiments.Comment: 4 pages, 4 figure

    Itinerant Electron Ferromagnetism in the Quantum Hall Regime

    Full text link
    We report on a study of the temperature and Zeeman-coupling-strength dependence of the one-particle Green's function of a two-dimensional (2D) electron gas at Landau level filling factor ν=1\nu =1 where the ground state is a strong ferromagnet. Our work places emphasis on the role played by the itinerancy of the electrons, which carry the spin magnetization and on analogies between this system and conventional itinerant electron ferromagnets. We discuss the application to this system of the self-consistent Hartree-Fock approximation, which is analogous to the band theory description of metallic ferromagnetism and fails badly at finite temperatures because it does not account for spin-wave excitations. We go beyond this level by evaluating the one-particle Green's function using a self-energy, which accounts for quasiparticle spin-wave interactions. We report results for the temperature dependence of the spin magnetization, the nuclear spin relaxation rate, and 2D-2D tunneling conductances. Our calculations predict a sharp peak in the tunneling conductance at large bias voltages with strength proportional to temperature. We compare with experiment, where available, and with predictions based on numerical exact diagonalization and other theoretical approaches.Comment: 29 pages, 20 figure

    On the Distribution of a Second Class Particle in the Asymmetric Simple Exclusion Process

    Get PDF
    We give an exact expression for the distribution of the position X(t) of a single second class particle in the asymmetric simple exclusion process (ASEP) where initially the second class particle is located at the origin and the first class particles occupy the sites {1,2,...}
    • …
    corecore