Motivated by recent STM experiments, we present a theoretical study of the
electronic and magnetic properties of the Mn-induced acceptor level obtained by
substituting a single Ga atom in the (110) surface layer of GaAs or in one of
the atoms layers below the surface. We employ a kinetic-exchange tight-binding
model in which the relaxation of the (110) surface is taken into account. The
acceptor wave function is strongly anisotropic in space and its detailed
features depend on the depth of the sublayer in which the Mn atom is located.
The local-density-of-states (LDOS) on the (110) surface associated with the
acceptor level is more sensitive to the direction of the Mn magnetic moment
when the Mn atom is located further below the surface. We show that the total
magnetic anisotropy energy of the system is due almost entirely to the
dependence of the acceptor level energy on Mn spin orientation, and that this
quantity is strongly dependent on the depth of the Mn atom.Comment: 14 pages, 13 figure