43 research outputs found

    Extensive Crosstalk between O-GlcNAcylation and Phosphorylation Regulates Akt Signaling

    Get PDF
    O-linked N-acetylglucosamine glycosylations (O-GlcNAc) and O-linked phosphorylations (O-phosphate), as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling

    O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis

    Get PDF
    Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human OGT recognizes the sugar donor and acceptor peptide and uses a new catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base as well as an essential lysine. This mechanism seems to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate and explains the unexpected specificity of a recently reported metabolic OGT inhibitor. © 2012 Nature America, Inc. All rights reserved

    Allelic spectrum of the natural variation in CRP

    Get PDF
    With the recent completion of the International HapMap Project, many tools are in hand for genetic association studies seeking to test the common variant/common disease hypothesis. In contrast, very few tools and resources are in place for genotype–phenotype studies hypothesizing that rare variation has a large impact on the phenotype of interest. To create these tools for rare variant/common disease studies, much interest is being generated towards investing in re-sequencing either large sample sizes of random chromosomes or smaller sample sizes of patients with extreme phenotypes. As a case study for rare variant discovery in random chromosomes, we have re-sequenced ~1,000 chromosomes representing diverse populations for the gene C-reactive protein (CRP). CRP is an important gene in the fields of cardiovascular and inflammation genetics, and its size (~2 kb) makes it particularly amenable medical or deep re-sequencing. With these data, we explore several issues related to the present-day candidate gene association study including the benefits of complete SNP discovery, the effects of tagSNP selection across diverse populations, and completeness of dbSNP for CRP. Also, we show that while deep re-sequencing uncovers potentially medically relevant coding SNPs, these SNPs are fleetingly rare when genotyped in a population-based survey of 7,000 Americans (NHANES III). Collectively, these data suggest that several different types re-sequencing and genotyping approaches may be required to fully understand the complete spectrum of alleles that impact human phenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at http://dx.doi.org/10.1007/s00439-006-0160-y and is accessible for authorized users
    corecore