19 research outputs found

    Interactions between metabolic, reward and cognitive processes in appetite control:Implications for novel weight management therapies

    Get PDF
    Traditional models of appetite control have emphasised the role of parallel homeostatic and hedonic systems, but more recently the distinction between independent homeostatic and hedonic systems has been abandoned in favour of a framework that emphasises the cross talk between the neurochemical substrates of the two systems. In addition, evidence has emerged more recently, that higher level cognitive functions such as learning, memory and attention play an important role in everyday appetite control and that homeostatic signals also play a role in cognition. Here, we review this evidence and present a comprehensive model of the control of appetite that integrates cognitive, homeostatic and reward mechanisms. We discuss the implications of this model for understanding the factors that may contribute to disordered patterns of eating and suggest opportunities for developing more effective treatment approaches for eating disorders and weight management

    The effect of intranasal insulin on appetite and mood in women with and without obesity: an experimental medicine study

    Get PDF
    Background/Objectives Intranasal (IN) administration of insulin decreases appetite in humans, but the underlying mechanisms are unclear, and it is unknown whether IN insulin affects the food intake of women with obesity. Subjects/Methods In a double-blind, placebo-controlled, crossover design, participants (35 lean women and 17 women with obesity) were randomized to receive 160 IU/1.6 mL of IN insulin or placebo in a counterbalanced order in the post prandial state. The effects of IN insulin on cookie intake, appetite, mood, food reward, cognition and neural activity were assessed. Results IN insulin in the post prandial state reduced cookie intake, appetite and food reward relative to placebo and these effects were more pronounced for women with obesity compared with lean women. IN insulin also improved mood in women with obesity. In both BMI groups, IN insulin increased neural activity in the insula when viewing food pictures. IN insulin did not affect cognitive function. Conclusions These results suggest that IN insulin decreases palatable food intake when satiated by reducing food reward and that women with obesity may be more sensitive to this effect than lean women. Further investigation of the therapeutic potential of IN insulin for weight management in women with obesity is warranted

    Neural correlates of top-down guidance of attention to food: an fMRI study

    Get PDF
    We investigated the neural correlates of working memory guided attentional selection of food versus non-food stimuli in young women. Participants were thirty-two women, aged 20.6y (± 0.5) who were presented with a cue (food or non-food item) to hold in working memory. Subsequently, they had to search for a target in a 2-item display where target and distractor stimuli were each flanked by a picture of a food or a non-food item. The behavioural data showed that attention is particularly efficiently drawn to food stimuli when thinking about food. Using fMRI, we found that holding a non-food versus food stimulus in working memory was associated with increased activity in occipital gyrus, fusiform, inferior and superior frontal gyrus. In the posterior cingulum, retrosplenial cortex, a food item that re-appeared in the search array when it was held in memory led to a reduced response, compared to when it did not re-appear. The reverse effect was found for non-food stimuli. The extent of the reappearance effect correlated with the attentional capture of food as measured behaviourally. In conclusion, these results suggest that holding food in mind may bias attention because thinking of food facilitated neuronal responses to sensory input related to food stimuli and because holding food-related information in mind is less taxing on memory

    Oxytocin curbs calorie intake via food-specific increases in the activity of brain areas that process reward and establish cognitive control

    No full text
    Abstract The hypothalamic neurohormone oxytocin decreases food intake via largely unexplored mechanisms. We investigated the central nervous mediation of oxytocin’s hypophagic effect in comparison to its impact on the processing of generalized rewards. Fifteen fasted normal-weight, young men received intranasal oxytocin (24 IU) or placebo before functional magnetic resonance imaging (fMRI) measurements of brain activity during exposure to food stimuli and a monetary incentive delay task (MID). Subsequently, ad-libitum breakfast intake was assessed. Oxytocin compared to placebo increased activity in the ventromedial prefrontal cortex, supplementary motor area, anterior cingulate, and ventrolateral prefrontal cortices in response to high- vs. low-calorie food images in the fasted state, and reduced calorie intake by 12%. During anticipation of monetary rewards, oxytocin compared to placebo augmented striatal, orbitofrontal and insular activity without altering MID performance. We conclude that during the anticipation of generalized rewards, oxytocin stimulates dopaminergic reward-processing circuits. In contrast, oxytocin restrains food intake by enhancing the activity of brain regions that exert cognitive control, while concomitantly increasing the activity of structures that process food reward value. This pattern points towards a specific role of oxytocin in the regulation of eating behaviour in humans that might be of relevance for potential clinical applications

    Neural correlates of top-down guidance of attention to food: An fMRI study

    No full text
    We investigated the neural correlates of working memory guided attentional selection of food versus non-food stimuli in young women. Participants were thirty-two women, aged 20.6y (± 0.5) who were presented with a cue (food or non-food item) to hold in working memory. Subsequently, they had to search for a target in a 2-item display where target and distractor stimuli were each flanked by a picture of a food or a non-food item. The behavioural data showed that attention is particularly efficiently drawn to food stimuli when thinking about food. Using fMRI, we found that holding a non-food versus food stimulus in working memory was associated with increased activity in occipital gyrus, fusiform, inferior and superior frontal gyrus. In the posterior cingulum, retrosplenial cortex, a food item that re-appeared in the search array when it was held in memory led to a reduced response, compared to when it did not re-appear. The reverse effect was found for non-food stimuli. The extent of the reappearance effect correlated with the attentional capture of food as measured behaviourally. In conclusion, these results suggest that holding food in mind may bias attention because thinking of food facilitated neuronal responses to sensory input related to food stimuli and because holding food-related information in mind is less taxing on memory

    The Sum of Its Parts—Effects of Gastric Distention, Nutrient Content and Sensory Stimulation on Brain Activation

    No full text
    <div><p></p><p>During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural evidence for the importance of sensory stimulation in the process of satiation.</p><p>Trial Registration</p><p>ClinicalTrials.gov <a href="http://clinicaltrials.gov/ct2/results?term=NCT01644539" target="_blank">NCT01644539</a>.</p></div

    The effects of lisdexamfetamine dimesylate on eating behaviour and homeostatic, reward and cognitive processes in women with binge-eating symptoms: an experimental medicine study

    No full text
    Lisdexamfetamine dimesylate (LDX) is the only drug currently approved by the FDA for the treatment of Binge-Eating Disorder (BED), but little is known about the behavioural mechanisms that underpin the efficacy of LDX in treating BED. We examined the behavioural and neural effects of an acute dose of LDX (50 mg) in 22 women with binge-eating symptomatology using a randomised, crossover, double-blind, placebo-controlled experimental medicine design. LDX reduced self-reported appetite ratings and intake of both a pasta meal and a palatable cookie snack. LDX also decreased the eating rate of pasta but not of cookies and reduced self-reported liking ratings for pasta at the end of the meal. When viewing food pictures during an fMRI scan, LDX reduced activity bilaterally in the thalamus. LDX enhanced sustained attention and reduced impulsive responding in a continuous performance task but had no effect on emotional bias or working memory. These results suggest the observed effects of LDX on food intake (and by implication the efficacy of LDX in treating BED) may be related to the actions of the drug to enhance satiety, reduce food-related reward responding when full and/or increase cognitive control. Novel pharmacotherapies for BED might be most effective if they have a broad spectrum of effects on appetite, reward and cognition.</p

    Real-time fMRI neurofeedback training to improve eating behavior by self-regulation of the dorsolateral prefrontal cortex: A randomized controlled trial in overweight and obese subjects

    Get PDF
    Obesity is associated with altered responses to food stimuli in prefrontal brain networks that mediate inhibitory control of ingestive behavior. In particular, activity of the dorsolateral prefrontal cortex (dlPFC) is reduced in obese compared to normal-weight subjects and has been linked to the success of weight-loss dietary interventions. In a randomized controlled trial in overweight/obese subjects, we investigated the effect on eating behavior of volitional up-regulation of dlPFC activity via real-time functional magnetic resonance imaging (fMRI) neurofeedback training.Thirty-eight overweight or obese subjects (BMI 25–40 kg/m2) took part in fMRI neurofeedback training with the aim of increasing activity of the left dlPFC (dlPFC group; n = 17) or of the visual cortex (VC/control group; n = 21). Participants were blinded to group assignment. The training session took place on a single day and included three training runs of six trials of up-regulation and passive viewing. Food appraisal and snack intake were assessed at screening, after training, and in a follow-up session four weeks later.Participants of both groups succeeded in up-regulating activity of the targeted brain area. However, participants of the control group also showed increased left dlPFC activity during up-regulation. Functional connectivity between dlPFC and ventromedial PFC, an area that processes food value, was generally increased during up-regulation compared to passive viewing. At follow-up compared to baseline, both groups rated pictures of high-, but not low-calorie foods as less palatable and chose them less frequently. Actual snack intake remained unchanged but palatability and choice ratings for chocolate cookies decreased after training.We demonstrate that one session of fMRI neurofeedback training enables individuals with increased body weight to up-regulate activity of the left dlPFC. Behavioral effects were observed in both groups, which might have been due to dlPFC co-activation in the control group and, in addition, unspecific training effects. Improved dlPFC-vmPFC functional connectivity furthermore suggested enhanced food intake-related control mechanisms. Neurofeedback training might support therapeutic strategies aiming at improved self-control in obesity, although the respective contributions of area-specific mechanisms and general regulation effects are in need of further investigation
    corecore