1,708 research outputs found

    Toxoplasma gondii infection in farmed wild boars (Sus scrofa) in three cities of northeast China

    Get PDF
    The apicomplexan protozoan parasite Toxoplasma gondii is a widely distributed etiological agent of foodborne illness. This parasite can cause production losses in livestock and serious disease in humans through consumption of contaminated meat. Pig meat is the most likely source of human infection, and wild boars may play a role in the transmission of T. gondii by serving as a reservoir host. This study aimed to investigate the seroprevalence of antibodies to T. gondii among farmed wild boars in China. In an 11-month survey, a total of 882 serum samples were obtained from farmed wild boars from three cities (Jilin City, Siping City, and Baishan City) in Jilin province, Northeast China and were tested for antibodies specific for T. gondii. Using modified agglutination test and a cutoff titer of 1:25, the prevalence of T. gondii infection in the examined samples was 10.0% (88 of 882). The highest seroprevalence was observed in animals from Jilin city (15.3%, 43/281) and followed by Siping (11.4%, 30/263) and Baishan (4.4%, 15/338). Logistic regression analysis revealed a significant correlation between the investigated geographic region and T. gondii infection. In addition, prevalence was higher in females compared to males, and the highest prevalence was detected in piglets. These findings indicate that farmed wild boars may become a source of foodborne toxoplasmosis, posing a food safety threat to the public health in the investigated areas. Implementation of effective measures to control T. gondii infection in farmed wild boars in China may be warranted

    [μ-10,21-Dimethyl-3,6,14,17-tetra­aza­tricyclo­[17.3.1.18,12]tetra­cosa-1(23),8(24),9,11,19,21-hexa­ene-23,24-diolato-κ8 N 3,N 6,O 23,O 24:N 14,N 17,O 23,O 24]bis­[(nitrato-κ2 O,O′)nickel(II)]

    Get PDF
    In the title centrosymmetric dinuclear nickel complex, [Ni2(C22H30N4O2)(NO3)2], each of the two NiII atoms has a distorted octa­hedral geometry, defined by two N atoms and two O atoms from the macrocyclic ligand and two O atoms from a chelating nitrate anion. The two Ni atoms are bridged by two phenolate O atoms, forming a four-membered Ni2O2 ring

    Towards additive manufacturing oriented geometric modeling using implicit functions

    Get PDF
    Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive manufacturing using computer-numerical-control cutting-machine tools. However, it is not an ideal solution for additive manufacturing because to digitally print a surface-represented geometric object using a certain additive manufacturing technology, the object has to be converted into a solid representation. However, converting a known surface-based geometric representation into a printable representation is essentially a redesign process, and this is especially the case, when its interior material structure needs to be considered. To specify a 3D geometric object that is ready to be digitally manufactured, its representation has to be in a certain volumetric form. In this research, we show how some of the difficulties experienced in additive manufacturing can be easily solved by using implicitly represented geometric objects. Like surface-based geometric representation is subtractive manufacturing-friendly, implicitly described geometric objects are additive manufacturing-friendly: implicit shapes are 3D printing ready. The implicit geometric representation allows to combine a geometric shape, material colors, an interior material structure, and other required attributes in one single description as a set of implicit functions, and no conversion is needed. In addition, as implicit objects are typically specified procedurally, very little data is used in their specifications, which makes them particularly useful for design and visualization with modern cloud-based mobile devices, which usually do not have very big storage spaces. Finally, implicit modeling is a design procedure that is parallel computing-friendly, as the design of a complex geometric object can be divided into a set of simple shape-designing tasks, owing to the availability of shape-preserving implicit blending operations

    iTRAQ-based quantitative proteomics analysis identifies host pathways modulated during toxoplasma gondii infection in swine

    Get PDF
    Toxoplasma gondii is a leading cause of foodborne illness and consumption of undercooked pig meat is a major risk factor for acquiring toxoplasmosis, which causes a substantial burden on society. Here, we used isobaric tags for relative and absolute quantification (iTRAQ) labelling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify cellular proteins and pathways altered during T. gondii infection in pigs. We also used parallel reaction monitoring-based LC-MS/MS to verify the levels of protein expression of infected spleens and mesenteric lymph nodes (MLNs). At 6 days post-infection (dpi), 156, 391, 170, 292, and 200 differentially expressed proteins (DEPs) were detected in the brain, liver, lung, MLNs and spleen, respectively. At 18 dpi, 339, 351, 483, 388, and 303 DEPs were detected in the brain, liver, lung, MLNs and spleen, respectively. Although proteins involved in immune responses were upregulated in all infected tissues, protein expression signature in infected livers was dominated by downregulation of the metabolic processes. By weighted gene co-expression network analysis, we could further show that all proteins were clustered into 25 co-expression modules and that the pink module significantly correlated with the infection status. We also identified 163 potential anti-T. gondii proteins (PATPs) and provided evidence that two PATPs (HSP70.2 and PDIA3) can reduce T. gondii burden in porcine macrophages in vitro. This comprehensive proteomics analysis reveals new facets in the pathogenesis of T. gondii infection and identifies key proteins that may contribute to the pig’s defense against this infection

    Global Transcriptome Profiling of Multiple Porcine Organs Reveals Toxoplasma gondii-Induced Transcriptional Landscapes

    Get PDF
    © 2019 He, Ma, Wang, Zhang, Li, Zhai, Wang, Elsheikha and Zhu. We characterized the porcine tissue transcriptional landscapes that follow Toxoplasma gondii infection. RNAs were isolated from liver, spleen, cerebral cortex, lung, and mesenteric lymph nodes (MLNs) of T. gondii-infected and uninfected (control) pigs at days 6 and 18 postinfection, and were analyzed using next-generation sequencing (RNA-seq). T. gondii altered the expression of 178, 476, 199, 201, and 362 transcripts at 6 dpi and 217, 223, 347, 119, and 161 at 18 dpi in the infected brain, liver, lung, MLNs and spleen, respectively. The differentially expressed transcripts (DETs) were grouped into five expression patterns and 10 sub-clusters. Gene Ontology enrichment and pathway analysis revealed that immune-related genes dominated the overall transcriptomic signature and that metabolic processes, such as steroid biosynthesis, and metabolism of lipid and carboxylic acid, were downregulated in infected tissues. Co-expression network analysis identified transcriptional modules associated with host immune response to infection. These findings not only show how T. gondii infection alters porcine transcriptome in a tissue-specific manner, but also offer a gateway for testing new hypotheses regarding human response to T. gondii infection

    The Clinicopathological Significance and Correlative Signaling Pathways of an Autophagy-Related Gene, Ambra1, in Breast Cancer: a Study of 25 Microarray RNA-Seq Datasets and in-House Gene Silencing

    Get PDF
    Background/Aims: The activating molecule in Beclin1-regulated autophagy (Ambra1) has been observed to be over-expressed in several cancers, but the clinical contribution of Ambra1 in breast cancer (BC) remains unknown. Hence, in this study, we conducted a comprehensive investigation into the expression, biological role, and underlying functional mechanism of Ambra1 in BC. Methods: Microarray and RNA-seq datasets providing Ambra1 expression data were obtained from Gene Expression Omnibus (GEO), ArrayExpress, Oncomine, and The Cancer Genome Atlas (TCGA). Both standard mean deviation (SMD) and summary receiver operating characteristic methods were employed to assess Ambra1 expression in BC. We then silenced Ambra1 in MDA-MB-231 cells and performed in vitro experiments to explore the biological effects of Ambra1 on BC cells. Furthermore, differentially expressed genes (DEGs) after Ambra1 knock-down were profiled with a microarray and overlapped with the genes correlated with Ambra1 from Multi Experiment Matrix (MEM) and genes similar to Ambra1 from Gene Expression Profiling Interactive Analysis. These overlapping genes were collected for further bioinformatics analyses to investigate the underlying molecular mechanism of Ambra1 in BC. Results: A total of 25 microarray and RNA-seq datasets involving 2460 breast cancer samples were included. The pooled results demonstrated that Ambra1 was markedly up-regulated in BC tissues (SMD=0.39, 95% CI=0.15–0.63; P=0.002), and the Ambra1 level was also significantly related to the progression of BC, especially metastasis status (P=0.004). In vitro experiments suggested that the proliferation of MDA-MB-231 cells transfected with Ambra1 short hairpin RNA (sh-RNA 2450) showed a decreasing trend at 48 h compared with the control (CK) group. However, apoptosis was similar in cells transfected with Ambra1 sh-RNAs and in the CK cells. Furthermore, we performed a microarray-based comparison of genes after Ambra1 knock-down. The 828 DEGs from microarray analysis were intersected with 4266 Ambra1 co-expressed genes from MEM. Eventually, the overlapped 183 genes were found to be enriched in several well-known cancer-related pathways, including the MAPK signaling pathway, chronic myeloid leukemia pathway, and VEGF signaling pathway. Conclusion: These results indicate that the level of Ambra1 up-regulation is clearly related to tumorigenesis and progression of BC, probably via influencing several vital pathways. However, this hypothesis needs to be validated with more in-depth experiments in the future
    • …
    corecore