
Visual Computing for Industry,
Biomedicine and Art

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9
https://doi.org/10.1186/s42492-018-0009-y

REVIEW Open Access

Towards additive manufacturing oriented
geometric modeling using implicit functions
Qingde Li1*, Qingqi Hong2, Quan Qi1, Xinhui Ma1, Xie Han3 and Jie Tian4

Abstract

Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive
manufacturing using computer-numerical-control cutting-machine tools. However, it is not an ideal solution for
additive manufacturing because to digitally print a surface-represented geometric object using a certain additive
manufacturing technology, the object has to be converted into a solid representation. However, converting a known
surface-based geometric representation into a printable representation is essentially a redesign process, and this is
especially the case, when its interior material structure needs to be considered. To specify a 3D geometric object that
is ready to be digitally manufactured, its representation has to be in a certain volumetric form. In this research, we
show how some of the difficulties experienced in additive manufacturing can be easily solved by using implicitly
represented geometric objects. Like surface-based geometric representation is subtractive manufacturing-friendly,
implicitly described geometric objects are additive manufacturing-friendly: implicit shapes are 3D printing ready. The
implicit geometric representation allows to combine a geometric shape, material colors, an interior material structure,
and other required attributes in one single description as a set of implicit functions, and no conversion is needed. In
addition, as implicit objects are typically specified procedurally, very little data is used in their specifications, which
makes them particularly useful for design and visualization with modern cloud-based mobile devices, which usually
do not have very big storage spaces. Finally, implicit modeling is a design procedure that is parallel
computing-friendly, as the design of a complex geometric object can be divided into a set of simple shape-designing
tasks, owing to the availability of shape-preserving implicit blending operations.

Keywords: Additive manufacturing, 3D printing-friendly CAD, Implicit function, Isosurface, Level-set, Function-based
shape modeling, Implicit modeling

Background
As envisioned in [1], the next industrial revolution will
be about the digitalization of the entire manufacturing
process, right from the initial conceptual design, to the
manufacturing of the required product in the final stage of
the process. Underpinned by artificial intelligence, cyber-
physical systems, the internet of things, and cloud com-
puting, this fast approaching revolution raises various
challenges to engineers and scientists. As the geometric
design is the first step in the process of additive manufac-
turing (AM), the development of an AM-friendly geomet-
ric modeling technique is one of themost important tasks.

*Correspondence: Q.Li@hull.ac.uk
1School of Engineering and Computer Science, University of Hull, Hull HU6
7RX, UK
Full list of author information is available at the end of the article

The geometric objects created by conventional computer-
aided design (CAD) techniques are mostly represented by
surfaces, which is an ideal solution for the visualization
and traditional subtractive manufacturing using computer
numerical control (CNC) cutting machine tools, where an
object is digitally manufactured by means of drilling, cut-
ting, and slicing. When the main operations of making
an object involve drilling, cutting, or slicing, the surface-
based representation is sufficient enough, as no interior
geometric structure or material properties need to be
known. However, the surface-based shape representation
is far from being sufficient for AM. This is because the
surface representation describes a geometric shape as an
infinitely thin boundary object, which does not provide
any information required in AM regarding the interior
structure of the object, which is to be additively manu-
factured. Though surface-based representation is suitable

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-018-0009-y&domain=pdf
mailto: Q.Li@hull.ac.uk
http://creativecommons.org/licenses/by/4.0/

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 2 of 16

for visualization and subtractive manufacturing, there is a
large difference between a surface model and the product
made from the surface representation. Thus, converting
a known surface-based geometric representation into a
printable representation is essentially a redesign process.
The design of a geometric model for visualization or

for subtractive manufacturing and the design for the AM
have completely different requirements: the former activ-
ity is mainly concerned mainly with the specification of
an object’s external surface details, while the latter one
must precisely specify both the external surface details
and the internal structure and material details. This is
because, when a geometric model is used as an opaque
object for visualization or for digital manufacturing based
on CNC cutting machine tools, there is no need to know
its internal structure, and only surface details are required.
However, with AM technologies, an object is progressively
built up layer-by-layer, with each layer being a thin-solid
slice of the object. To print a layer, for each point on the
plane corresponding to the layer, the machine must know
whether the given position belongs to the object and what
material should be used for printing the point. Obviously,
the surface-based geometric representation does notmeet
this requirement of AM. An ideal 3D printing ready rep-
resentation for a geometric object should be expressed
in a kind of a solid form, which, when printed slice-by-
slice, can directly provide clear instructions to the printing
machine about where to print. In many ways, solid mod-
eling offers a much better solution when compared with
the surface-only representation, as it can directly provide
the information about the areas to be printed for each
object slice.
Solid modeling can be implemented either explicitly as

a collection of voxels and tetrahedra, or as parametric
solids, or implicitly as a field function defined inR3. How-
ever, representing a solid object as a collection of 3D voxel
points or a set of tetrahedra can be expensive in terms
of the required storage space. More importantly, they are
not an exact representation. Irrespective of the number of
voxels or tetrahedra are used, they only provide an approx-
imate solution. Compared with discretely represented
solids, parametric solids can provide an exact representa-
tion to a solid geometry; however, it is generally difficult to
design complex material structures, especially when mul-
tiple material structures need to be designed. A natural
way to model a ready-to-print geometric object is to rep-
resent a geometric object as a 3D function F(x, y, z), which
can directly inform the printing machine whether a posi-
tion P(x, y, z) should be printed. Some recent research has
shown that implicit functions are particularly suitable for
modeling microporous structures [2–6]. However, despite
its great advantages in modeling geometric objects for the
AM, implicit modeling is only used in an ad hoc man-
ner as a supplemental technique. Today, surface-based

modeling is still being used as a predominant technique in
geometric design, even in the area of AM. In this paper,
we intend to show that implicit function-based geometric
modeling is in its nature AM-friendly and has an innate
advantage over the explicit methods, when the purpose
of modeling is to create a geometry for AM rather than
for visualization or for subtractive manufacturing using a
CNC machine tool. They can be used in general to model
any geometric object, much beyond their use in porous
structure modeling.
The goal of this study is to show that implicit mod-

eling can play an important role in AM and to pro-
mote research on the development of AM-oriented CAD
techniques. First, we address the pressing need for the
development of AM-oriented CAD techniques, which is
followed by a brief introduction to implicit modeling and
some detailed explanations to why implicit representa-
tion provides an ideal solution to the modeling of 3D
printing ready geometric objects. As will be seen later,
implicit modeling is not only a much more natural shape-
modeling technique, but more importantly, the models
represented by implicit functions are 3D printing ready.
In addition to the geometric information, implicit func-
tions can also be used to model complex material struc-
tures and material colors, which makes it an ideal 3D
object representation for the AM. In “Implicit modeling”
section, we will give a brief introduction to a few popularly
used implicit modeling techniques, including a recently
developed 2D area spline technique. Unlike mesh-based
geometric modeling, implicit modeling provides native
support to parallel design, which allows to divide a com-
plex geometric design task into a set of smaller and
simpler geometric design tasks, which can be processed
in parallel simultaneously, owing to the availability of
implicit shape-preserving blending operations. The intro-
duction to the shape-preserving operation is provided in
“Shape-preserving implicit blending operation” section.
In the last part of this paper, we present some key tech-
nical challenges related to the development of the AM-
oriented CAD technique. Though implicit modeling can
also potentially offer the possibility of integrating numeri-
cal analysis into implicit function-based CAD design tools
[7], the relevant discussions will not be considered in this
paper so as to make the paper more focused.

From explicit modeling to implicit modeling
The direct modeling of an object by an explicit use of
points, triangles, or parametric patches is referred to as
an explicit method, as one can directly “see” these objects.
However, in many ways, explicit surface modeling is not
a natural geometric modeling technique. In nature, most
objects have volumetric characteristics with highly com-
plex interior structures. In addition, natural objects have
an inherently continuous form with infinitely many fine

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 3 of 16

details. This is especially true for biological objects, such
as the human bone and vascular structures. As pointed
out in [8], natural objects are also often made of hybrid
materials and have a hierarchical structure. Another typi-
cal feature of natural objects is that they are formedmostly
as the result of a procedural process, such as the pro-
cess when a human body is progressively built up from a
single tiny cell. One of the most natural ways of model-
ing these objects is to emulate the actions or the process
through which nature has created these objects. Instead of
using points and triangles to specify these objects, inmany
ways, the process of describing natural shapes by using
real functions appears to be more natural and effective, as
an implicit function can better reflect the way in which
a natural object is being created rather than by using an
explicit geometric modeling technique.
Implicit modeling has been gaining popularity in recent

years in the modeling of visual effects, with the signif-
icant increase in the processing power of modern pro-
grammable computer graphics hardware. The currently
available graphic hardware is not only good at processing
explicitly represented geometric objects such as triangle
meshes and parametric spline patches, but it can also be
programmed and used as a general purpose computing
device [9–11]. It is now possible to model and visual-
ize relatively complex objects implicitly in real time and
without using any triangle meshes. In general, implicit
geometric models are represented by certain kinds of real
functions, expressed either in an explicit form or implicitly
as an iterative procedure. Granted, a required implicit

object can always be created by converting an explicit
model into an implicit form, for instance, by means of
the distance mapping and by using various implicit fitting
techniques. However, such kind of a conversion process
can be very time-consuming and computationally expen-
sive, especially when detailed internal geometric struc-
tures and material properties need to be considered in
the conversion process. This process is simple only when
a surface representation is to be converted into a solid.
As a matter of fact, converting a boundary-based geo-
metric model into a printable geometric representation is
in general a redesign process, if the object is not to be
printed directly as a solid. Figure 1 illustrates why this
is the case. In this example, a surface-represented sphere
just describes the boundary of the object. However, when
it is sent to a 3D printer to make the object, though it
may be quite straightforward to print it as a solid object,
more often it is printed as a hollow sphere to save the
printing substance and to improve printing efficiency. In
many situations, some supporting structures need to be
used inside the object to improve the physical strength
of the object. If the internal structure of an object is
obtained based on a certain material simulation process,
the internal supporting material structure can be quite
irregular.
Just as explicit geometries such as triangle meshes

are visualization-friendly, implicit geometric representa-
tions are by their nature 3D printing-friendly. To under-
stand what makes for a good AM-oriented geometric
modeling technique, one has to change their view from

Fig. 1 Some simple implicit models to demonstrate the fact that implicitly represented geometric objects are 3D printing ready. These examples
show that an implicitly modeled geometric object can not only provide an exterior appearance of an object, but more importantly, it can be
associated with a volumetric solid object to provide detailed descriptions about the object’s interior structure and material properties. a. Surface
representation. b. Solid representation. c. Solid boundary representation. d. Porous material structure. e Solid boundary with porous interior
materials. f. Thin solid surface with interior supporting structures

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 4 of 16

the perspective of visualization and subtractive manufac-
turing to that of the process of building a real object using
the AM technique. When an object is used as an input
into a 3D printing system, the systemmust know precisely
whether a printing material particle should be laid at a
given position. In AM, an object is printed layer-by-layer,
and the printing system must know which area of the cur-
rent printing slice is a part of the geometric model. Thus,
in terms of 3D printing, the geometric object should be
modeled as a solid rather than as a surface, and an ideal
representation of a geometric object can be described
mathematically as a mapping

F : R3 → {0, 1},

which can be considered as the characteristic function of a
3D point set. When F(x, y, z) = 1, the point P(x, y, z) is on
the object, and a tiny printing material particle should be
placed at the position. Though a binary-valued function
can represent a solid object properly, it lacks the flexibility
in terms of the geometric design. Instead of considering a
geometric object as a set of points, a general real function
F : Rn → R can be used to specify a geometric object. In
fact, any real function can be associated with a surface, a
level set of the function F(P) = 0, or a solid object defined
by the set of points {P : F(P) ≥ 0} or {P : F(P) ≤ 0}.
When an object is represented by a function F(x, y, z), the
slice corresponding to a level, say z = z0, is just a bivariate
function I(x, y) = F(x, y, z0), which can be used directly
as a precise instruction to an AM system to print out the
layer. For instance, if F(x, y, z) represents the geometry of a
digital human body, I(x, y) = F(x, y, z0) just represents the
slice of the human body corresponding to z = z0, similarly
to a slice of a 3Dmedical image. As amatter of fact, any 3D
volumetric medical image can be regarded as an implicit
function with a gridded discrete domain.
The idea of associating an implicit function with a solid

leads directly to one of the most popular implicit shape
modeling techniques, known as constructive solid geome-
try (CSG) [12]. With CSG, the construction of a relatively
complex geometric shape can be regarded as a process of
combining a set of simple primitive solid objects using set-
theoretic operations such as union, intersection, and com-
plement operations. However, the modeling of geometric
objects using general implicit functions is much more
flexible and powerful than solid modeling. For instance,
a non-negative function can be regarded as a kind of an
energy function, and a complex geometric shape can be
designed as a function corresponding to the total energy
generated by a collection of energy sources. Blinn’s pop-
ular blob technique [13] can be considered as a typical
example developed from this idea. This idea can be gener-
alized through a convolution converting a parametric or a
triangle mesh into an implicit object.

When themain application of a geometric model is used
for visualization and subtractive manufacturing, explicit
geometricmodelingmethods, such as trianglemeshes and
parametric geometric surfaces are preferred. However,
when a geometric object is modeled for AM, implic-
itly represented geometric objects are preferred, owing
to several distinct advantages of implicit geometric rep-
resentation over the explicit methods. First, an implicit
geometric form is directly defined in the physical space,
rather than in the parametric space, and consequently, it
can directly provide a 3D printer with precise informa-
tion about where to lay a printing substance particle. It
is a 3D printing ready representation, and no conversion
procedure is required. In general, an implicit function can
be viewed both as a surface and as a volumetric solid,
and it can describe not only the external appearance of an
object but also its interior geometric structure and mate-
rial properties. Second, implicit geometric modeling is a
lightweight geometric modeling technique. Unlike geo-
metric objects represented by data-intensive forms such
as trianglemeshes and point clouds, which often have data
of size of over several megabytes, implicitly represented
shapes do not in general involve the use of massive data
sets, and consequently, do not require a massive storage
space. Because of this, implicitly represented geometric
objects are also internet and cloud computing-friendly, as
it is extremely convenient to transport implicitly repre-
sented geometric objects across the internet without any
restrictions on the bandwidth of the data transformation
over the internet. Another impressive feature of implicit
geometric objects is that implicit techniques allow for
parallel design, owing to the fact that implicitly mod-
eled objects can be easily combined together [14–17],
which makes implicit modeling particularly suitable for
the shape design over a distributed or a CAD system with
parallel architecture. In addition, implicitly represented
geometric models have a collision-detection efficient rep-
resentation. A 3D object printing operation is in general
a process of interaction between a digitally represented
geometric object and the printing device, where collision-
detection operations have to be constantly performed to
test whether a move from the current printing position
to the next one is allowed. It is quite straightforward
and efficient to perform a collision-detection operation
between two objects, when one of them is presented
in the implicit form (say, the geometric model) and the
other one is in the explicit form (say, the position of 3D
printer head).
Before moving to the following sections for more

detailed descriptions of some implicit modeling tech-
niques, we illustrate some simple implicit objects in Fig. 1
and show why implicit geometric modeling is 3D print-
ing friendly. As it can be seen later, the 3D forms shown
in Fig. 1 can all be easily represented by a simple implicit

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 5 of 16

function, varying from a surface to a volumetric solid with
different interior material and supporting structures.

Implicit modeling
Implicit modeling using distance functions
The basic principle of implicit modeling can be illustrated
directly by using distance functions [18]. For instance,
a sphere can be described as a distance function to a
point. Similarly, an infinite cylinder can be described as a
distance function to a line, and a torus can be described
as a distance function to a circle. Several AM tech-
niques based on distance functions have been proposed.
In [19], the distance function was used for the bound-
ary voxel optimization. The implicit slicer proposed in
[20] is also fundamentally based on the distance func-
tion. It was also used by Liu et al. [21] for the design of
material composition functions. With the increasing pro-
cessing power of modern computer systems and the wide
recognition of the simplicity and capability of the distance
function-based modeling technique, distance functions
have recently been popularly used in a variety of appli-
cations. For instance, a popular technique known as the
Kinect Fusion developed by Newcombe et al. [22] used
for the reconstruction of a real-world 3D object from the
sensing data is essentially based on the distance function.
As the intersection between a ray and a distance function-
defined geometric object can be easily calculated by using
a numerical method known as ray marching, it has been
popularly used for geometric and material modeling in a
ray tracing system. For readers who want to know more
about the practical use of distance functions, please visit
http://www.shadertoy.com, which is a live online visual
effect editor in GLSL shader for generating various graph-
ical effects using mainly implicit functions.

Converting from the explicit representation to the implicit
representation
Though distance functions can directly provide the dis-
tance information from a given position to the objects
that they represent, only a small number of relatively sim-
ple objects can be modeled directly as distance functions.
As the most popular form of representation of a geomet-
ric object, triangle meshes are ubiquitous in the field of
computer graphics, 3D games, and CAD. Many complex
implicit geometries can be created by converting a triangle
mesh model into an implicit representation. One conver-
sion method is to apply the convolution operation to a
triangle mesh [23]. Suppose a 3D surface object is rep-
resented explicitly by a collection of parametric surface
patches, such as triangle meshes S�i(s, t), i = 1, 2, · · · ,N ,
(s, t) ∈ Di. Each point P(x(s, t), y(s, t), z(s, t)) on a sur-
face patch is a source of particle energy, and suppose that
each particle emits uniformly the same amount of energy
defined by a function K(r) ≥ 0, where r ∈ R represents

the distance from the surface point P to a point X(x, y, z)
in space. Then, the total energy field generated by the col-
lection of surface patches can be represented by a kind of
convolution shown below:

Fs(X) = (S�K)(X) =
N∑

i=1

∫

(s,t)∈Di
K

(‖S�i(s, t) − X‖) dsdt.

There are various ways to model the potential func-
tion K(r), but it is often assumed that it is non-negative
and decreasing with an increase in distance r. Ideally,
this function can be described by e−ar2 in order to make
it more physically meaningful. However, for a potential
function defined in this form, it is difficult to find a closed
form solution for the convolution defined above. Most
often, the following type of function is used [24, 25]:

K(r) = 1
(
1 + ar2

)2 .

The conversion of an explicit geometric representation
to an implicit function can also be achieved by a sampling-
fitting process. With this method, a collection of surface
points are first sampled from the given explicit form. A
certain implicit fitting technique can then be applied to
the sampled point cloud to implicitly approximate the
given surface [26, 27]. Figure 2 shows the implicitly recon-
structed Utah teapot spout by fitting a point cloud sam-
pled from the classic Utah teapot model using the fitting
method proposed in [26].

Procedural implicit modeling
Natural objects are in general a procedural result. Typ-
ical examples are the biological objects such as plants,
trees, and animals, which build up their geometric forms
in a process of cell repetition. The L-system is a power-
ful technique to model and simulate the process, but it is
not a 3D printing friendly representation. Themodeling of
these objects directly as a real function by simulating the
biological growth process in the form of an iterative pro-
cess seems more natural, especially when the modeling of
the internal biological material structures of these objects
needs to be taken into consideration.

Cell growth simulation
This method is based on the cell growth simulation fol-
lowing the idea of cell division, a process by which a
parent cell becomes two or more daughter cells. The pro-
cess can be modeled by starting from a single cell, which
can be initialized as a tiny sphere. This cell then gener-
ates new cells, which can be blended together with the
older generation of cells and become a relatively bigger
cell. In biology, cells behave like stars and planets, which
are constantly in motion. By simply combining rotation,
translation, and scaling into the simulation process, one
can easily model infinitely many different kinds of shapes

http://www.shadertoy.com

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 6 of 16

Fig. 2 Implicit Utah teapot spout obtained by fitting a point cloud sampled from the classic Utah teapot model. Left: the sampled point cloud;
Middle: The implicitly represented thin-solid teapot spout surface; Right: The implicitly represented thin-solid teapot spout with an interior porous
material structure

andmaterial structures (see Fig. 3). One distinctive advan-
tage of the geometries generated in this manner is that
they have an infinite level of details, which makes it very
suitable for modeling natural objects and biological tissue
structures.

Procedural non-linear transformations
The idea behind this technique originated from the
Mandelbrot set and the Julia set, which can be interpreted
as sequences of non-linear geometric transformations.
Indeed, for a complex number z = x + yi, z2 + C actually
represents a combination of rotation, scaling, and trans-
lation operations. This becomes obvious when we rewrite
z as z = reiθ , where r = √

x2 + y2, θ = arctan y
x . In fact,

z2 = eiθ × z actually corresponds to a rotation of the
point positioned at (x, y) by an angle θ around the coor-
dinate origin. The generalization of the 2D Mandelbrot
set or the Julia set to 3D is usually done with the quater-
nion q = xi + yj + zk + w, but it is difficult to generate
meaningful geometric objects by formulating the iterative
process by using the formula q1 = q20 + C, as a quater-
nion is in general a 4D object, which can only be visualized
in 3D slice-by-slice. Recently, some effort has been made
by following a geometric intuition, such as by using the
famous MandelBulb 3D fractal object defined by Daniel
White [28].
In general, this idea can be generalized in the following

way. For any point P(x, y, z), let P0 = (x, y, z) and

Pn+1 = (X (Pn),Y(Pn),Z(Pn)) + T , n = 0, · · · ,N .

where X (x, y, z),Y(x, y, z), andZ(x, y, z) are three implicit
functions and T is a fixed 3D translation. Apparently, vari-
ous fractal forms can be defined in this way. However, how
to define a proper transformation to generate a required
form is largely a trial and error process.

Implicit modeling using Li-Tian’s area splines
One challenging problem in implicit modeling is that it
lacks a technique similar to various explicit spline tech-
niques for modeling free-form implicit objects. While the
popular blob-based technique is very effective in themod-
eling of soft deformable objects, it is difficult to model
free-form implicit geometric objects. One way of mod-
eling free-form implicit objects has been the application
of the distance functions to a polygon or a polyhedron
specified by some control points. However, there are some
drawbacks to this method. One difficulty is the integration
in the distance function of both the flexibility of speci-
fying the smoothness of a required free-form shape and
the accuracy of the shape approximation to the control
polygon, which is one of the most important features of
parametric spline techniques. To achieve a high level of
smoothness around the vertices, when using the distance
function to a polygon, a relatively larger value of the dis-
tance function has to be used, which will subsequently
result in a poor approximation of the original geometric

Fig. 3Materials of fractal structures can be easily represented as certain procedural implicit functions

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 7 of 16

shape specified by the base polygon, as it can be seen in
the left two figures shown in Fig. 4.
Another way of constructing a free-form implicit shape

is to specify an object as a point cloud and construct an
implicit function from the given point set based on a cer-
tain surface approximation and interpolation technique
[26, 29–31]. However, most of these kinds of techniques
are in general computationally expensive and involve the
use of a massive 3D data set, which often leads to poor
performance, if the data set is very big. Recently, a kind
of an implicit free-form shape modeling technique has
been developed by Li & Tian [32], which can be used to
design implicit objects in a similar way to the conventional
parametric spline shapes (See Fig. 5).
The basic idea of the implicit spline is to sub-divide

a 2D region into a collection of polygons with different
potential functions defined on different regions. Similarly
to the control points-based parametric spline techniques,
implicit spline objects can be designed as a convex blend-
ing of a set of implicit potential field functions corre-
sponding to different regions. These locally defined field
functions behave similarly to the control points used in a
traditional spline technique and can be referred to as con-
trol implicit primitives. The main difference between our
2D implicit splines and an explicit spline technique is that
the shape defined by the 2D implicit spline technique cor-
responds to a solid area, whereas the shape defined by a
conventional spline is only a boundary.
The key challenge in our technique is how to con-

struct the basis functions corresponding to a given set
of 2D polygons with each individual polygon having an
arbitrary shape. Similar to conventional spline basis func-
tions, it is generally expected that the basis functions built
from the set of polygons are polynomial, non-negative,
and have the property of the partition of unity, if the
initial polygons form a partition of a 2D domain. Appar-
ently, polygon-based distance functions do not meet these
basic requirements. Our way of constructing the required
bivariate spline basis functions is to find a general solu-
tion to the following integral convolution, which is similar
to the construction of conventional B-spline basis func-
tions. Let � ⊂ R2 be a square of size 2δ × 2δ centered at
the coordinate origin with δ > 0. For an arbitrarily given

polygon � ⊂ R2, we define a sequence of functions in the
following way:

B(0)
�,δ(x, y)=χ�(x, y) =

{
1, (x, y) ∈ �;
0, (x, y) /∈ �. ,

B(n)
�,δ(x, y)=

1
4δ2

∫ ∫

R2
B(n−1)

�,δ (s, t)χ�(s−x, t−y)dsdt, 2cm(n>0).

The parameter δ in the integral serves as a solid polygon
vertex smoothing parameter, which specifies the extent
to which one wants to smooth a sharp vertex corner of
a polygon. With the properties of integration, it can be
seen clearly that each B(n)

�,δ(x, y) defined in this way has
the following two properties. First, B(n)

�,δ(x, y) is a piecewise
polynomial function. Second, B(n)

�,δ(x, y) is Cn−1 continu-
ous. Though this idea of constructing the required spline
basis functions is simple, without an explicit expression
of these convolutions, the numerical evaluation of these
functions can be very expensive. Fortunately, we have
found a way to express these convolutions explicitly in the
analytical form.
As it has been shown in [32], the function defined above

can be expressed explicitly as a linear combination of a
set of bivariate functions �

(n)
E,δ(x, y) associated with differ-

ent edges of polygonal � and the piecewise polynomial
smooth unit step functions Hn(x). For a polygonal edge
parallel to the 2D vector E(α,β),α,β > 0, �(n)

E,δ(x, y) can
be expressed as

�
(n)
E,δ(x, y)=

1
(4δ2)n

n∑

i=0

n∑

j=0
(−1)i+jCi

nC
j
nA(n)

E

×(x+(n−2i)δ, y−(n−2j)δ),

(1)

where

A(n)
E (x, y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, αy ≥ βx or y ≥ 0;

1
(2n)!αnβn (βx − αy)2n, αy < βx, y < 0, x≤0;

∑n
k=1

(−1)n+kαk

(n−k)!(n+k)!βk xn−kyn+k , αy < βx, y < 0, x>0;

(2)

Fig. 4 The left two figures show the areas defined by the distance function to the polygon boundary. The right figure shows the area defined by the
implicit spline functions built from the given polygon. As it can be seen from the figure, the solid area modeled by using the 2D implicit spline
technique behaves more like traditional parametric splines curves

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 8 of 16

Fig. 5 The shapes of these areas are defined by the C2-smooth implicit function B(3)
�,δ(x, y) corresponding to the level value of less than 0.5. The

underlying control polygon for constructing B(3)
�,δ(x, y) is specified using the same set of vertices P0,P1, · · · ,P8. All these shapes differ only by the δ

values, which are δ = 0.05, δ = 0.15, δ = 0.25, · · · , δ = 0.55, respectively

and the piecewise polynomial smooth unit step function
Hn(x) is defined recursively by

H0(x) =

⎧
⎪⎨

⎪⎩

0, x < 0;
1
2 , x = 0;
1, x > 0.

Hn(x) = 1
2

((
1+ x

n

)
Hn−1(x+1)+

(
1− x

n

)
Hn−1(x−1)

)
,n=1,2,3, · · · .

Note that when the value of the polygon smoothing
parameter δ is sufficiently small with respect to the size
of the polygon, we have B(n)

�,δ(x, y) = 1 for the most
part of the interior region of the given polygon. Thus,
when B(n)

�,δ(x, y) is used as a weight function combin-
ing a control implicit primitive function F(x, y), we have
B(n)

�,δ(x, y)F(x, y) = F(x, y), when B(n)
�,δ(x, y) = 1. When

associating F(x, y) with a 2D implicit geometry, the new
function B(n)

�,δ(x, y)F(x, y) will have exactly the same shape
as that defined by F(x, y), when the point P(x, y) is well
within the support of B(n)

�,δ(x, y), while the part of the
shape defined by F(x, y) that is well outside the support
of B(n)

�,δ(x, y) is removed as B(n)
�,δ(x, y)F(x, y) will be nearly

zero. Therefore, the function B(n)
�,δ(x, y) can be referred to

as a kind of a shape-preserving spline basis function.
It can be shown directly that bivariate functions

B(n)
�,δ(x, y), n = 0, 1, 2, · · · , have the following properties:

1. Nonnegativity: 0 ≤ B(n)
�,δ(x, y) ≤ 1.

2. Smoothness: B(n)
�,δ(x, y) has a Cn−1 continuity.

3. Piecewise Polynomial: B(n)
�,δ(x, y) is piecewise

polynomial.
4. Local Support: B(n)

�,δ(x, y) has a finite support if � is
finite.

5. Additivity: B(n)
�,δ(x, y) is additive. That is, if two

polygons �1 and �2 do not intersect or they only
intersect at their edges, then

B(n)
�1∪�2,δ(x, y) = B(n)

�1,δ(x, y) + B(n)
�2,δ(x, y).

6. Partition of unity: B(n)
�,δ(x, y) takes value in [0, 1] and if

⋃

k
�k = R2, area

⎛

⎝�i
⋂

i
=j
�j

⎞

⎠ = 0,

then
∑

k
B(n)

�k ,δ(x, y) = 1.

The solid areas shown in Fig. 5 show the filled con-
tour

{
(x, y) : B(3)

�,δ(x, y) ≤ 0.5
}
corresponding to different

δ values for the spline basis function built from the same
control polygon �. As it can be seen from the figure, the
shape of the control polygon can be approximated at a
varying level by using a single parameter δ: the smaller the
δ value, the more closely the filled contour of the spline
basis function approximates the control polygon.

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 9 of 16

The design process of the free-form solid area spline is
similar to the design process of spline curves using a con-
ventional spline technique. In fact, to find B(n)

�,δ(x, y) for
a given polygon �, one needs only to specify the con-
trol points in the counter-clockwise order and to choose
a proper degree of smoothness of the required bivari-
ate function as well as the polygon smooth parameter δ.
Some more 2D implicit shape design examples are shown
in Fig. 6.
Figure 4 illustrates the difference between our 2D

implicit spline technique and the distance functions.
Distance functions have gained considerable attention
recently, given that they support the fast ray marching
of distance function-defined implicit objects. However,
distance functions are not good at modeling free-form
objects. Though the feature presented by our implicit
spline can be achieved by using a distance function
defined by a set of connected piecewise low-degree poly-
nomials, it is difficult to achieve a high level of smooth-
ness, such as C2-smoothness. As described above, when
a big polygon is subdivided into a set of smaller sub-
polygons, the implicit function built from the big polygon
is exactly the sum of all the basis functions constructed
from the set of smaller polygons. When the distance
function is used for a free-form solid area design, the
distance function corresponding to the big polygon is the
minimum of all distance functions of the sub-polygons,

and consequently, the property of the partition of unity is
not preserved.
With the proposed bivariate splines, a free-form implicit

function f (x, y) can be generated intuitively by lay-
ing out a sequence of control points or a sequence
of control implicit primitives, similarly to the way one
models a shape using, say, B-splines. Suppose Pk(x, y),
k = 0, 1, · · · ,m are the locally specified implicit func-
tions with their main features defined on polygons �k ,
k = 0, 1, · · · ,m, respectively. Then, these m + 1 implicit
functions can be combined as a weighted sum of them+1
implicit polygons and described in the following way:

F(x, y) =
m∑

k=0
Pk(x, y)B(n)

�k ,δ(x, y), (3)

where B(n)
�k ,δ(x, y) is the implicit spline basis function con-

structed from the polygon �k .
The representation of a binary implicit function as a

sum of weighted implicit spline basis functions can have
various applications. As described in [33], it can be used
directly to simplify the task of fitting a big 3D point
cloud captured by a modern depth camera. The shape-
preserving feature of the proposed implicit spline basis

Fig. 6 Free-form implicit 2D solid shapes designed based on some simple polygons. All the underlying implicit functions B(n)
�,δ(x, y) are C

2 continuous

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 10 of 16

functions allows to sub-divide the depth map captured
by a camera into smaller regions. A shape-fitting tech-
nique can then be used to fit each sub-dataset individually
and then combine them together. The shape-preserving
feature guarantees that the main features of each individ-
ually fitted shape are maintained, when they are combined
together, based on the equation shown in (3). This idea
can be very useful, as a complex surface-fitting task can be
divided into a set of simpler fitting tasks and implemented
directly in a parallel processing system.
The idea can also be applied to a complex implicit

geometric design. The shape-preserving feature of the
proposed spline basis functions allows us to simplify a
complex geometry design task into a process of design-
ing a set of simpler geometric components. The shape-
preserving feature of basis functions is becoming more
essential when parts of a designed 2D region are taken
directly from a slice of a real-world 3D object.
According to the way in which each individual implicit

spline basis function is defined, the free-form solid area
corresponding to a polygon is obtained by smoothing
each vertex of the polygon by using a uniform smooth
parameter value. In practice, one might want to apply
different vertices with different smoothing parameter val-
ues to enhance the flexibility and the capability of the
design technique. Since implicit shapes can be easily com-
bined together in a set of solids by using set operations,
this objective can be achieved easily by using implicit
function-blending operations. Another way to achieve this
design feature is to subdivide the given polygon into a
set of smaller polygons and specify different smoothing
parameter values for different sub-polygons. In this way,
different sets of implicit spline basis functions are created
by using different values of the smoothing parameter δ.
These implicit functions can then be combined, following
the idea illustrated in Eq. (3). The 2D implicit shape shown
in Fig. 7 is obtained in this way.

3D implicit geometric design using 2D implicit functions
In addition to the above-mentioned direct applications of
the area spline technique, 2D area splines can also be used
in a number of different ways to design 3D implicit shapes.
Just as a surface can be regarded as a family of curves, a
volumetric solid object can be regarded as a family of 2D
slices, or the volumetric region is swept by moving a 3D
solid object or a slice of a 3D object. This idea leads to a
number of ways in which the 3D implicit object design can
use 2D implicit functions.

Implicit shape of extrusion
The creation of explicit geometric surfaces by extruding
a parametric curve is a powerful and popular geometric
design technique. This idea can also be followedwhen cre-
ating 3D implicit objects by using 2D implicit functions

Fig. 7 A free-form 2D implicit area corresponding to a given polygon
can be obtained by smoothing different vertices differently by using
different smoothing parameter values

[16, 34]. One simple example is the implicit description
of a cylinder. As it is commonly known, a cylinder can be
described as a distance function to a line. However, it can
also be described as an extrusion of a solid disc along a
line. Suppose the line is defined implicitly as the intersec-
tion of two orthogonally oriented planes π1(x, y, z) = 0
and π2(x, y, z) = 0. Let C(x, y) = x2 + y2 be the binary
implicit function corresponding to the cross-section of a
cylinder. Then, the composite function

F(x, y, z) = C(π1(x, y, z),π2(x, y, z))

corresponds to the implicit function of the cylinder with
its central line defined by planes π1(x, y, z) = 0 and
π2(x, y, z) = 0.
This idea can be immediately generalized to the descrip-

tion of other more general geometric objects. Suppose an
extrusion path is represented implicitly by the intersection
of two distance surfaces F1(x, y, z) = 0 and F2(x, y, z) = 0,
such that they intersect orthogonally. Let the cross-
sectional profile curve be defined as an implicit function
C(x, y) = 0. Then, an extruded implicit object can be
directly described by

C(F1(x, y, z), F2(x, y, z)) = 0.

However, the specification of the extrusion path as the
orthogonal intersection of two distance function-defined
surfaces is a practically challenging task. This is because
the type of implicit surfaces that can be defined by dis-
tance functions is very limited. In addition, except for a
few simple implicit functions, it is very difficult in general
to check whether two given implicit surfaces are orthog-
onally intersected. To make the above implicit design
method more flexible, the two implicit functions for the
specification of the extrusion path can be replaced by two

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 11 of 16

general signed implicit functions. However, it should be
noted that the cross-sections of the extruded 3D implicit
shape may not necessarily be identical, when the two
implicit functions used to define the extrusion path are
not the distance functions or when they are not orthog-
onal along their intersection. A simple implicit object
generated by an extrusion is shown in Fig. 8a.
The idea of creating the 3D implicit geometry by extrud-

ing a solid 2D implicit profile can be directly implemented
by simulating the process, when a sculptor creates a piece
of sculpture. In this case, the volumetric region swept
by a sculpting knife can be modeled as an extrusion of
an implicit function along the path of the motion of the
sculpting knife, and the cut of an implicitly represented
sculpture can be represented directly as a result of an
implicit blending of the two implicit objects.

Implicit shape of revolution
The creation of a geometric object by rotating a given
2D profile is also very popular in geometric design. This
idea can also be introduced in the creation of the implicit
geometry of revolution. In fact, the implicit revolution
can be considered as a special case of implicit extrusion,
where the extrusion path is defined by an implicit cylin-
der and a plane. Suppose the revolving profile of a 2D

implicit object is represented by a function F(x, y). Then,
the implicit geometry of revolution generated by rotating
the implicitly represented profile about the y-axis can be
described by F

(
r − √

x2 + z2, y
)

= 0, and the implicit
geometry of revolution generated by rotating the implic-
itly represented profile about the x-axis can be described
by F

(
x, r − √

y2 + z2
))

= 0. Fig. 8b shows an example of
an implicit geometry of revolution obtained by rotating an
implicit spline about the z-axis.

Implicit shape as a set of control profile functions
The design and reconstruction of 3D shapes based on
planar cross-sections has long being recognized as an
effective way of the shape-modeling technique [35–38].
This technique is especially useful in the reconstruction of
human organs, such as lungs, heart, and vascular systems
[39, 40].
Just as 3D parametric spline surfaces can be considered

as a blending of a set of cross-sectional profile curves, any
free-form implicit shape can be designed as a blending of a
set of 2D implicit shapes, which serve as local control pro-
files, with each of these 2D implicit functions specifying a
cross-sectional profile of a required solid shape. One sim-
ple and direct method is to specify a required solid shape

Fig. 8 3D implicit object design using the 2D implicit functions: a. Implicit geometric object of extrusion. b. Implicit geometric object of revolution.
c. Implicit geometric object design based on a stack of parallel 2D implicit slices defined by bivariate functions. d. Implicit geometric object design
based on silhouette profiles

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 12 of 16

as a set of slices along a coordinate axis, say, the z-axis, and
to represent the overall geometric shape of the object by
using a certain spline technique. That is, we can describe
a required implicit 3D object in the following form:

F(x, y, z) =
m∑

k=0
Sk(x, y)Bk(z) = 0, (4)

where {Bk(z)}mk=0 are a certain type of spline basis func-
tions. Shapes presented in Fig. 8c are generated in this
manner using C2-smooth spline basis functions and by
using the Bezier spline basis functions.

Silhouette based implicit modeling
Area splines are also useful for the implementation of 2D
drawing-based modeling. Silhouette profiles are an effec-
tive feature in the modeling of 3D objects [41]. Figure 8d
demonstrates how an implicit object can be designed in
this way. This 3D object design method is not only natu-
ral in terms of the human vision but is also very effective.
However, when modeling a relatively complex object, a
large number of profiles is required, which can be quite
computationally expensive. A much more effective design
method is, when a view is specified, to specify not only the
silhouette profile of a required shape but also the depth
information, which can be described also as a 2D implicit
function depth = D(x, y) in the view space. Figure 9 illus-
trates how it works, by combining both the silhouette
profile and the depth information, where the silhouette
profile is described by using Li-Tian’s implicit spline tech-
nique. A set of these view-space-specific implicit forms
can be transformed into the world space and combined
together to form a complete description of a required geo-
metric object by using a certain shape-preserving implicit
blending operation, which will be addressed in “Shape-
preserving implicit blending operation” section.

Volumetric material structural modeling
The implicit geometric modeling method is also very flex-
ible and effective in the modeling of real-world volumetric
forms, varying from fabric objects design to biological tis-
sues and human vascular and neural systems. Due to the
high diversity of natural forms, it is impossible to show
case by case how each of them can be described by using
an implicit function. Here, we illustrate the potential and
the flexibility of implicit modeling by using two simple
examples.
As shown in Figs. 10 and 11, the external look of an

object and its internalmaterial structure can both bemod-
eled implicitly and combined together as a blending of real
functions.
Figure 12 shows how a highly complex neural system

and a cluster of micro blood vessels can be described
implicitly by simply using a few 2D implicit functions. The
two 3D implicit objects (Fig. 12b and c) are all modeled
by combining a few 2D distance functions, each of which
corresponds to the distance to a given set of 2D positions
(Fig. 12a).

Shape-preserving implicit blending operation
One of the most significant features of implicit mod-
eling is that different individually modeled shapes can
be combined easily by using some very simple implicit
shape-blending functions. In general, any binary function
O(x, y) can be used to combine two implicit functions.
Let F1(X), F2(X) be the implicit functions correspond-
ing to the shapes A,B. Then, the compound function
O(F1(X), F2(X)) defines a new implicit function, whose
corresponding geometric shape can be regarded as the
combination of the shape A and the shape B. For instance,
when an implicitly defined geometric shape is regarded
as a solid, the binary functions O(x, y) corresponding to
point-set theoretical operations like union, intersection,
and subtraction operations can be defined directly by

Fig. 9 2D area splines are also useful in drawing-based 3D interactive modeling. This figure illustrates how to quickly create 3D models by using a
2D silhouette profile and depth functions

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 13 of 16

Fig. 10 a. Implicitly represented solid teapot spout. b. The external geometric appearance of the teapot spout and its internal material structure is
combined directly as a blending of implicit functions

using max(x, y) or min(x, y). However, geometric shapes
obtained from such simple binary operations are in gen-
eral not smooth at the joint. To achieve smooth blending
at the joint of two implicit shapes, a certain smooth blend-
ing operation has to be used. Some basic requirements to
define a “good” blending operation have been proposed
in [42, 43]. Even though in general there are no com-
monly accepted criteria about exactly whether a blending
operation is “good”, it is generally agreed on that a good
blending operation should not only be able to generate
smooth implicit shapes, but can also be performed in a
controllable way. To be more specific, we expect a blend-
ing operation to possess a kind of a shape-preserving
property. To smoothly combine two implicit shapes, some
local deformation of the original shapes is inevitable, but
we want the local deformation to apply only to the regions
close to where the two geometric shapes intersect. The
shape-preserving feature of an implicit blending operation
is of essential importance. This is because, with the avail-
ability of shape-preserving blending operations, a comp-
licated task of designing a relatively complex geometric
object can be sub-divided into a set of simple geomet-
ric object-design tasks. So far, several smooth shape-
preserving blending operations have been proposed. In

[42], smooth-blending range-controllable operations were
defined by using a scalar function. In [43], the R-function
was used to achieve the blending features. Smooth shape-
preserving Boolean operators were also introduced in the
work of Barthe et al. [44]. The major limitation of all these
blending operations is that they only have the C1 or the
G1 continuity and lack simplicity in their geometric rep-
resentations. Comparatively, the piecewise polynomial-
blending operations (PPBO) proposed in [15] have several
advantages. PPBO are not only shape-preserving, but they
can also be defined directly to have any required degree
of smoothness. In addition, they are defined as piecewise
polynomials and have a simple form in their mathematical
expressions. A brief survey of various blending operations
can be found in [45], though there is a lack of a sufficient
review of shape-preserving blending operations. Owing to
the importance of the shape-preserving feature of a blend-
ing operation in implicit modeling, here we give a brief
introduction to PPBO.

Definition 1 Let |x| : R → R be the conventional abso-
lution function. That is, |x| = x when x ≥ 0 and |x| = −x
when x < 0. Then we introduce the following generalized
absolute functions:

Fig. 11 The volumetric nature of biological tissue structures can be represented directly as the blending of an implicitly represented solid shape
and its interior tissue structures

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 14 of 16

Fig. 12 Implicit geometric modeling of the biological neural system (b) and the vascular cluster (c) using some 2D distance functions (a)

|x|0 = |x|;
|x|n = 1

2(n + 1)
((n−x)|1−x|n−1+(n + x)|1 + x|n−1).

n = 1, 2, 3, · · ·
(5)

|x|n is called the degree n of the absolute function.

It can be shown that |x|n has the following properties:
(1) |x|n ≥ |x|, and |x|n = |x| when |x| ≥ n;
(2) |x|n is Cn-continuous;
(2) |x|n is a piecewise polynomial function.

From this definition, we can immediately write out the
C2−smooth absolute function as

|x|2 =
{ |x|, |x| > 2;

x2
2

(
1 − 1

6 |x|
) + 2

3 , |x| ≤ 2;

The recursive definition of the degree n of the smooth
absolute function shown in Definition 1 is actually
obtained in the following way as the function convolution,

|x|n = 1
2

∫ x+1

x−1
|t|n−1dt =

∫ ∞

−∞
g(x − t)|t|n−1dt, (6)

where

g(t) =
{ 1

2 , t ∈[−1, 1] ;
0, otherewise.

An interesting thing about the integration (6) is that not
only it can be evaluated in a recursive way, but it can also
be written explicitly in the following form:

|x|n = 1
(n+1)! 2n

n−1∑

k=0
(−1)kCk

n−1Gn(x + n − 2k −1), n = 1, 2, 3, · · ·

where the function Gn(x) is defined as

Gn(x)=(x+1)n|x+1|−(x − 1)n|x−1|, n=1, 2, 3, · · · (7)

For example, with the Eq. 7, we can also write out the C2−
smooth absolute function |x|2 immediately as

x|2 = 1
24

(
(x + 2)2|x + 2| − 2x2|x| + (x − 2)2|x − 2|)

The degree n of the smooth absolution function |x|n intro-
duced above has a smoothing range over the interval
[−n, n], as |x|n = |x| when |x| > n. Smooth absolu-
tion functions with an arbitrary smoothing range [−δ, δ]
(δ > 0) can be easily introduced by using |x|n in the
following way:

|x|n,δ = δ

n

∣∣∣
nx
δ

∣∣∣
n
. (8)

Figure 13 demonstrates why shape-preserving implicit
blending is useful. As it can be seen from the figures,
with the availability of shape-preserving blending, any
complex geometric shape can be designed implicitly part-
by-part and individually as simple geometric primitives,

Fig. 13 Shape-preserving smooth blending allows to sub-divide a relatively complex object into simpler components, each of which can be
designed individually. These individually designed components can then be combined together smoothly by using a smooth shape-preserving
implicit function-blending operation

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 15 of 16

since these independently designed objects can be com-
bined together without changing their original geome-
tries, except for the regions close to the joints of these
shapes. The shape-preserving blending becomes even
more essential when parts of the objects are reconstructed
from a real object, such as the shapes obtained from a
certain reverse-engineering technique (Fig. 14).

Conclusion
With the increasing availability of 3D printers, there is a
pressing need to develop 3D printing-oriented geometric
modeling techniques. Most conventional CAD techniques
are developed based on the need of visualization and tra-
ditional subtractive manufacturing, rather than that of the
AM, and the geometric objects generated by these tech-
niques are mainly boundary-based and cannot be sent to
an AM system for direct printing. The conversion of a
surface-represented geometry into a printable represen-
tation is in general a complex procedure, and most often
a redesign process. In this paper, we have explained and
shown why implicit modeling is an ideal geometric object
representation for the AM. However, compared with
surface-based modeling, much less attention has been
paid to implicit geometric modeling. Though there are
increasingly more applications of implicit modeling, many
open and challenging theoretical and technical issues and
problems remain to be solved, which requires a collec-
tive effort from mathematicians, computer scientists, AM
engineers, and researchers.
It should be noted that while implicit modeling is

AM-friendly, it is not a convenient form of subtractive

Fig. 14 Implicit shape designed by blending an implicit geometry
with a real world object reconstructed by using an implicit fitting
technique

manufacturing, where the boundary of a slice needs to be
calculated, which is not a simple task when the internal
support structure is relatively complicated [46].
As a conclusion, we put forward some key technical

challenges concerning the development of the AM-
friendly CAD techniques that urgently need to be over-
come.

• Developing new AM-oriented CAD tools. The lack of
3D printing ready models is one of the many factors
that hugely limits the use of 3D printers. Most
existing CAD tools are subtractive manufacturing-
oriented, which does not in general fit the use for
creation of 3D printing-friendly models. New
AM-oriented tools that can represent both shape and
material properties are urgently needed [47].

• Application and person-specific customized implicit
modeling. One typical type of objects that is most
suitable to be produced by AM techniques is the
application-specific or person-specific customized
objects. These bespoke geometric objects are often
reconstructed from real objects, from the scanned
data, or from a set of pre-specified constraints. This
kind of a modeling task is essential, for instance, in
creation of geometric models for reconstruction of
human organs or in plastic surgeries.

• Developing implicit shape and material libraries. One
reason why implicit modeling is much less popular
than the explicit modeling method is the sparse
availability of ready-to-use implicit models. The
development of a library containing a rich set of
implicit models will definitely boost the use of the
implicit modeling technique.

• Material structure optimized implicit design. The
high cost of printing materials is often considered as
one of the top challenges faced by AM. In implicit
modeling, more research is required to develop
material structure optimization techniques to
minimize the use of the printing material.

Acknowledgement
This research is partly supported by the National Natural Science Foundation
of China (Grant No. 61502402 and 61379080) and the Natural Science
Foundation of Fujian Province of China (Grant No. 2015J05129).

Authors’ contributions
QL drafted manuscript and conducted some experiments. QH and QQ
involved in practical implementation and experiments of some algorithms
presented in the article. XM, XH and JT conducted background review and
analysis and provided critical revision of the article. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Li et al. Visual Computing for Industry, Biomedicine and Art (2018) 1:9 Page 16 of 16

Author details
1School of Engineering and Computer Science, University of Hull, Hull HU6
7RX, UK. 2Software School, Xiamen University, Xiamen, China. 3School of
Computer Science and Control Engineering, North University of China,
Taiyuan, China. 4Intelligent Bioinformatics Systems Division, Institute of
Automation, The Chinese Academy of Sciences, Beijing, China.

Received: 12 December 2017 Accepted: 16 March 2018

References
1. Schwab K. The fourth industrial revolution: World Economic Forum

Geneva; 2016. https://www.weforum.org/about/contact.
2. Pasko A, Fryazinov O, Vilbrandt T, Fayolle PA, Adzhiev V. Procedural

function-based modelling of volumetric microstructures. Graph Model.
2011;73(5):165–81.

3. Yoo DJ. Porous scaffold design using the distance field and triply periodic
minimal surface models. Biomaterials. 2011;32(31):7741–54.

4. Yoo D. Heterogeneous minimal surface porous scaffold design using the
distance field and radial basis functions. Med Eng Phys. 2012;34(5):625–39.

5. Strano G, Hao L, Everson RM, Evans KE. A new approach to the design
and optimisation of support structures in additive manufacturing. Int J
Adv Manuf Technol. 2013;66(9-12):1247–54.

6. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, et al. Topological
design and additive manufacturing of porous metals for bone scaffolds
and orthopaedic implants: a review. Biomaterials. 2016;83:127–41.

7. Fries TP, Omerović S. Higher-order accurate integration of implicit
geometries. Int J Numer Methods Eng. 2016;106(5):323–71.

8. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural
materials. Nat Mater. 2015;14(1):23–36.

9. Purcell TJ, Buck I, Mark WR, Hanrahan P. Ray tracing on programmable
graphics hardware. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses. New
York: ACM; 2005. p. 268.

10. Loop C, Blinn J. Real-time GPU rendering of piecewise algebraic surfaces.
In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers. New York: ACM; 2006.
p. 664–670.

11. Tatarchuk N, Shopf J, DeCoro C. Real-Time Isosurface Extraction Using
the GPU Programmable Geometry Pipeline. In: SIGGRAPH ’07: ACM
SIGGRAPH 2007 courses. New York: ACM; 2007. p. 122–137.

12. Ricci A. A constructive geometry for computer graphics. Comput J.
1973;16(3):157–60.

13. Blinn JF. A Generalization of Algebraic Surface Drawing. ACM Trans Graph.
1982;1(3):235–56.

14. Pasko GI, Pasko AA, Kunii TL. Bounded Blending for Function-Based
Shape Modeling. IEEE Comput Graph Appl. 2005;25(2):36–45.

15. Li Q. Smooth Piecewise Polynomial Blending Operations for Implicit
Shapes. Comput Graph Forum. 2007;26(2):157–71.

16. Barthe L, Dodgson NA, Sabin MA, Wyvill B, Gaildrat V. Two-dimentional
Potential Fields for Advanced Implicit Modeling Operators. Comput
Graph Forum. 2003;22(1):23–33.

17. Hsu PC, Lee C. The scale method for Blending Operations in
Functionally-Based Constructive Geometry. Comput Graph Forum.
2002;22(2):143–58.

18. Payne BA, Toga AW. Distance Field Manipulation of Surface Models. IEEE
Comput Graph Appl. 1992;12(1):65–71.

19. Hildebrand K, Bickel B, Alexa M. Orthogonal slicing for additive
manufacturing. Comput Graph. 2013;37(6):669–75.

20. Steuben JC, Iliopoulos AP, Michopoulos JG. Implicit slicing for functionally
tailored additive manufacturing. Comput Aided Des. 2016;77:107–19.

21. Liu H, Maekawa T, Patrikalakis N, Sachs E, Cho W. Methods for
feature-based design of heterogeneous solids. Comput Aided Des.
2004;36(12):1141–59.

22. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, et al.
KinectFusion: Real-time dense surface mapping and tracking. In: Mixed
and augmented reality (ISMAR), 2011 10th IEEE international symposium
on. IEEE; 2011. p. 127–136.

23. Bloomenthal J, Shoemake K. Convolution surfaces. In: ACM SIGGRAPH
Computer Graphics. vol. 25. New York: ACM; 1991. p. 251–256.

24. McCormack J, Sherstyuk A. Creating and rendering convolution surfaces.
In: Computer Graphics Forum. vol. 17. New York: Wiley Online Library;
1998. p. 113–120.

25. Jin X, Tai CL, Feng J, Peng Q. Convolution surfaces for line skeletons with
polynomial weight distributions. J Graph Tools. 2001;6(3):17–28.

26. Li Q, Wills D, Phillips R, Viant WJ, Griffiths JG, Ward J. Implicit Fitting
Using Radial Basis Functions with Ellipsoid Constraint. Comput Graph
Forum. 2004;23(1):55–70.

27. Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel HP. Multi-level partition of
unity implicits. In: ACM Transactions on Graphics (TOG). vol. 22. New York:
ACM; 2003. p. 463–470.

28. White D. The unravelling of the real 3D Mandelbulb. 2009. http://www.
skytopia.com/project/fractal/mandelbulb.html. Accessed 9 Oct 2017.

29. Turk G, O’Brien JF. Shape transformation using variational implicit
functions. In: SIGGRAPH ’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques. New York: ACM
Press/Addison-Wesley Publishing Co.; 1999. p. 335–342.

30. Turk G, O’brien JF. Modelling with implicit surfaces that interpolate. ACM
Trans Graph. 2002;21(4):855–73.

31. Shen C, O’Brien JF, Shewchuk JR. Interpolating and approximating
implicit surfaces from polygon soup. In: SIGGRAPH ’05: ACM SIGGRAPH
2005 Courses. New York: ACM; 2005. p. 204.

32. Li Q, Tian J. 2D piecewise algebraic splines for implicit modeling. ACM
Trans Graph (TOG). 2009;28(2):13.

33. Li Q, Griffiths JG, Ward J. Constructive implicit fitting. Comput Aided
Geom Des. 2006;23(1):17–44.

34. Schmidt R, Wyvill B. Generalized sweep templates for implicit modeling.
In: GRAPHITE ’05: Proceedings of the 3rd international conference on
Computer graphics and interactive techniques in Australasia and South
East Asia. New York: ACM; 2005. p. 187–196.

35. Boissonnat JD. Shape reconstruction from planar cross sections. Comput
Vision Graph Image Process. 1988;44(1):1–29.

36. Bajaj CL, Coyle EJ, Lin KN. Arbitrary topology shape reconstruction from
planar cross sections. Graph Models Image Process. 1996;58(6):524–43.

37. Liu L, Bajaj C, Deasy J, Low DA, Ju T. Surface Reconstruction From
Non-parallel Curve Networks. In: Computer Graphics Forum. vol. 27. Wiley;
2008. p. 155–163.

38. Zou M, Holloway M, Carr N, Ju T. Topology-constrained surface
reconstruction from cross-sections. ACM Trans Graph (TOG). 2015;34(4):
128.

39. Maggiano IS, Maggiano CM, Clement JG, Thomas CDL, Carter Y, Cooper
DM. Three-dimensional reconstruction of Haversian systems in human
cortical bone using synchrotron radiation-based micro-CT: morphology
and quantification of brnching and transverse connections across age.
Journal of anatomy. 2016;228(5):719–32.

40. HongQ, Li Q, Tian J. Implicit reconstruction of vasculatures using bivariate
piecewise algebraic splines. IEEE Trans Med Imaging. 2012;31(3):543–53.

41. Entem E, Barthe L, Cani MP, Cordier F, Van de Panne M. Modeling 3D
animals from a side-view sketch. Comput Graph. 2015;46:221–30.

42. Hsu PC, Lee C. Field functions for blending range controls on soft objects.
In: Computer Graphics Forum. vol. 22. Wiley; 2003. p. 233–242.

43. Pasko GI, Pasko AA, Kunii TL. Bounded blending for function-based
shape modeling. IEEE Comput Graph Appl. 2005;25(2):36–45.

44. Barthe L, Dodgson NA, Sabin MA, Wyvill B, Gaildrat V. Two-dimensional
Potential Fields for Advanced Implicit Modeling Operators. In: Computer
Graphics Forum. vol. 22. Wiley; 2003. p. 23–33.

45. Bernhardt A, Barthe L, Cani MP, Wyvill B. Implicit blending revisited. In:
Computer Graphics Forum. vol. 29. Wiley; 2010. p. 367–375.

46. Huang P, Wang CC, Chen Y. Intersection-free and topologically faithful
slicing of implicit solid. J Comput Inf Sci Eng. 2013;13(2):021009.

47. Council NR, et al. 3D printing in space. Washington D.C: National
Academies Press; 2014.

https://www.weforum.org/about/contact
http://www.skytopia.com/project/fractal/mandelbulb.html
http://www.skytopia.com/project/fractal/mandelbulb.html

	Abstract
	Keywords

	Background
	From explicit modeling to implicit modeling
	Implicit modeling
	Implicit modeling using distance functions
	Converting from the explicit representation to the implicit representation
	Procedural implicit modeling
	Cell growth simulation
	Procedural non-linear transformations

	Implicit modeling using Li-Tian's area splines
	3D implicit geometric design using 2D implicit functions
	Implicit shape of extrusion
	Implicit shape of revolution
	Implicit shape as a set of control profile functions
	Silhouette based implicit modeling

	Volumetric material structural modeling

	Shape-preserving implicit blending operation
	Conclusion
	Acknowledgement
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

