1,981 research outputs found

    Intermolecular Interactions and Thermodynamic Properties of 3,6-Diamino-1,2,4,5-tetrazine-1,4-dioxide Dimers: A Density Functional Theoretical Study

    Get PDF
    Three fully optimized structures of 3,6-diamino-1,2,4,5-tetrazine-1,4-dioxide (LAX-112) dimers have been obtained with the density functional theory (DFT) method at the B3LYP/6-311++G level. Vibrational frequency calculations were carried out to ascertain that each structure is a minimum (no imaginary frequencies). The intermolecular interaction energy is calculated with the basis set superposition error (BSSE) correction and zero point energy (ZPE) correction. The greatest corrected binding energy among the three dimers is –42.38 kJ mol–1. The charge redistribution mainly occurs on the adjacent O(N)……H atoms between submolecules and the charge transfer between two subsystems is very small. Natural bond orbital (NBO) analysis was performed to reveal the origin of the interaction. Based on the vibrational analysis, the standard thermodynamic functions (heat capacities (cop), entropies (Som ) and enthalpies (Hom)) and the changes of thermodynamic properties from the monomer to dimer with the temperature ranging from 200.00 K to 800.00 K have been obtained using statistical thermodynamics. The results show that the strong hydrogen bonds dominantly contribute to the dimers, while the bonding energies are not only determined by the hydrogen bonding. The dimerization process of dimer II can occur spontaneously at room temperature.KEYWORDS 3,6-Diamino-1,2,4,5-tetrazine-1,4-dioxide (LAX-112), intermolecular interaction, density functional theory (DFT), natural bond orbital (NBO) analysis, thermodynamic properties

    Thermal Behaviour and Detonation Characterization of N-Benzoyl-3,3-dinitroazetidine

    Get PDF
    N-benzoyl-3,3-dinitroazetidine(BDNAZ) is a derivative of 3,3-dinitroazetidine (DNAZ). Its thermal behaviour was studied by DSC methods. The results show that there are one melting process and two exothermic decomposition processes. The kinetic parameters of the intense exothermic decomposition process were obtained from the analysis of the DSC curves. The apparent activation energy, pre-exponential factor and the mechanism function are 170.77 kJ mol–1, 1014.12 s–1 and f(α) = (1–a)–1/2, respectively. The specific heat capacity of BDNAZ was determined with a continuous Cp mode of a micro-calorimeter. The standard mole specific heat capacity ofBDNAZwas 286.31 J mol1 K–1 at 298.15 K. Using the relationship between Cp and T with the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion, tTIAD), the self-accelerating decomposition temperature (TSADT), thermal ignition temperature (TTIT), critical temperatures of thermal explosion (Tb) and period of validity (t0.9) were obtained to evaluate its thermal safety. The detonation velocity (D) and pressure (P) of BDNAZ were estimated by using the nitrogen equivalent equation according to the experimental density.KEYWORDS N-benzoyl-3,3-dinitroazetidine(BDNAZ), thermalbehaviour, non-isothermalkinetics, thermalsafety, detonation characterization

    Optimized system for plant regeneration of watermelon (Citrullus lanatus Thumb.)

    Get PDF
    The objective of this study was to establish an efficient and reproducible in vitro plant regeneration for Citrullus lanatus cv. Zaojia. To achieve optimal conditions for adventitious shoot induction, five explants (entire cotyledons, distal cotyledons, proximal cotyledons, cotyledonary node A and cotyledonary node B) were tested on MS medium supplemented with different concentrations and combinations of growth regulators (0 to 0.2 mg/L IAA and 1.0 to 5.0 mg/L BA), the results showed that entire cotyledons cultured in MS + BA (2.0mg/L) + IAA(0.2mg/L) achieved the highest regenerated rate (89.67%) and the optimal protocol screened in this experiment had 7.69 ± 0.10 shoots per explants. Adventitious shoots were able to elongate both on MS medium with 0.2 mg/L KT and 0.2 mg/L NAA; IBA 0.3mg/L was found to be effective in the production of root. Acclimatized plantlets transferred to pot resumed growth, and their stems and leaves elongated and expanded in one month.Key words: Watermelon (Citrullus lanatus Thumb.), optimized system, regeneration, cotyledon explants, cotyledonary node

    Physical mapping of a powdery mildew resistance related gene Hv-S/TPK by FISH with a TAC clone in wheat

    Get PDF
    Dissertação de mestrado integrado em Medicina (Hematologia), apresentado á Faculdade de Medicina da Universidade de Coimbra.A Policitemia Vera (PV) é uma doença clonal de etiologia desconhecida, na maior parte dos casos, que envolve a célula estaminal progenitora hematopoiética multipotencial. É uma neoplasia mieloproliferativa crónica (NMP) que se caracteriza pela expansão das três linhas celulares hematopoiéticas: eritróide, granulocítica e megacariocítica, com predomínio da primeira, de modo independente dos mecanismos normais de regulação da eritropoiese. Além disso, as células têm aspecto morfológico normal, a fibrose medular é pouco significativa e os níveis de eritropoietina (Epo) são habitualmente normais a baixos. Além da hipercelularidade medular com sobreprodução de uma ou de todas as linhas celulares, a doença cursa com hematopoiese extramedular, hiperviscosidade, propensão para complicações como trombose ou hemorragia e risco de desenvolvimento de mielofibrose ou transformação em leucemia aguda. A descrição relativamente recente da associação de uma mutação no gene JAK2, localizado no cromosoma 9p24, com as doenças mieloproliferativas clássicas negativas para BCR-ABL, como a PV, veio permitir avanços significativos na compreensão da patofisiologia deste grupo de doenças hematológicas. A mutação provoca uma alteração do aminoácido V (valina) para F (fenilalanina) na posição 617 (JAK2V617F). De acordo com os dados publicados, a frequência da detecção da mutação JAK2V617F em doentes com PV é de cerca de 95%. A proteína JAK2 é uma tirosina cinase citoplasmática, que se encontra associada ao domínio intracelular dos receptores de citocinas (como a Epo e trombopoietina - Tpo), e de factores de crescimento, essenciais para a função destes receptores. A mutação da JAK2 conduz à activação constitutiva dos receptores, independente da ligação à respectiva citocina e/ou hipersensibilidade a factores de crescimento, com consequente activação de múltiplas vias de sinalização intracelulares como a JAK/STAT (Janus Kinase/Signal Transductor and activator of transcription), a PI3K (fosfatidilinositol 3 cinase) e a MAPK (proteína cinase activadora de mitose), envolvidas na transformação e proliferação dos progenitores hematopoiéticos. Por outro lado, as células evidenciam alteração na diferenciação terminal e resistência à apoptose in vitro que poderá estar relacionada com o aumento da expressão da proteína anti-apoptótica Bcl-XL. Além dos avanços no diagnóstico, a detecção da mutação JAK2V617F tem contribuido para melhorar a classificação e a terapêutica dos doentes com PV. Deste modo, o conhecimento dos mecanismos moleculares envolvidos na PV tem levado os investigadores à descoberta de novos fármacos dirigidos ao defeito molecular, permitindo novas abordagem terapêuticas mais eficazes e provavelmente de menor toxicidade. Este trabalho procura fazer uma revisão sobre o actual conhecimento da caracterização molecular e clínica da PV e quais as suas implicações no diagnóstico e abordagem terapêutica desta NMP.Polycythemia Vera (PV) is a clonal disease of unknown etiology, which often involves the pluripotential hematopoietic stem cell. This disease integrates the family of chronic myeloproliferative neoplasm (MPN) and is characterized by the growth of the three hematopoietic celular lineages: granulocytic, megakaryocytic and erythroid, with predominance of the last one and regardless the normal mechanisms of erythropoiesis regulation. Moreover, cells have normal morphological aspect, bone marrow shows slight fibrosis and the levels of erythropoietin (Epo) usually vary from normal to low. Besides marrow hypercellularity with overproduction of one or all the celular lineages, the disease courses with extramedullary hematopoiesis, hyperviscosity, leading to complications such as thrombosis or bleeding and risk of transformation to myelofibrosis or acute leukemia. Recently it has been described the association between the mutation in the JAK2 gene, located on chromosome 9p24, with the classic myeloproliferative disorders BCR-ABL negative, such as PV, which has brought significant advances in the understanding of the pathophysiology of this group of hematologic malignancies. The mutation causes a change of amino acid V (valine) to F (phenylalanine) at position 617 (JAK2V617F). According to published data, the frequency of JAK2V617F mutation detected in patients with PV is about 95%. JAK2 protein is a cytoplasmic tyrosine kinase, which is associated to the intracelular domain of cytokine receptors, such as Epo and thrombopoietin (Tpo), and growth factors which are essential to the function of these receptors. JAK2 mutation leads to the constitutive receptors activation, independent of connection to their cytokine and / or hypersensitivity to growth factors, with consequent activation of multiple intracellular signaling pathways such as JAK / STAT (Janus Kinase / Signal transducer and transcription activator), the PI3K (phosphatidylinositol 3 kinase) and MAPK (Mitogen-activated protein), involved in the transformation and proliferation of hematopoietic progenitors. Moreover, the cells show changes in terminal differentiation and resistance to in vitro apoptosis which is possibly related to the increasing expression of anti-apoptotic protein Bcl-XL. In addition to the advances in diagnosis, detection of JAK2V617F mutation has contributed to the improvement of classification and treatment in patients with PV. Thus, knowledge of the molecular mechanisms involved in PV has led investigators to the discovery of new drugs targeting molecular defects, allowing new therapeutic approach more efficient and probably less toxic. The aim of this article is to review the current knowledge of clinical and molecular characterization of PV, and its implications on the diagnosis and therapeutic approach of this myeloproliferative disorder

    Kinase inhibit region of SOCS3 attenuates IL6-induced proliferation and astrocytic differentiation of neural stem cells via cross talk between signaling pathways

    Get PDF
    Aims: Efficiency of neural stem cells (NSCs) therapy for brain injury is restricted by astrogliosis around the damaged region, in which JAK2/STAT3 signaling plays a key role. The SOCS3 that can directly inhibit JAK/STAT3 pathway. Here, we investigated the effects of a fusion peptide that combined kinase inhibitory region (KIR) of SOCS3 and virus trans-activator of transcription (TAT) on biological behavior of cultured NSCs under inflammatory conditions. Methods: NSCs were isolated from embryonic brain of SD rats, TAT-KIR was synthesized, and penetration rate was evaluated by flow cytometry (FACS). CCK8, immunostaining, and FACS were used to detected of TAT-KIR on the proliferation of NSCs. The expressions of GFAP and β tubulin III positive cells induced by IL6 with/without TAT-KIR were examined by immunostaining and Western blotting to observe the NSCs differentiation, and the effect of TAT-KIR on signaling cross talk was observed by Western blotting. Results: Penetration rate of TAT-KIR into primary cultured NSCs was up to 94%. TAT-KIR did not affect the growth and viability of NSCs. It significantly reduced the NSCs proliferation that enhanced by IL-6 stimulation via blocking the cell cycle progression from the G0/G1 to S phase. In addition, TAT-KIR attenuated astrocytic differentiation and kept high level of neuronal differentiation derived from IL-6-induced NSCs. The fate of NSCs differentiation under inflammatory conditions was affected by TAT-KIR, which was associated with synchronous inhibition of STAT3 and AKT, while promoting JNK expression. Conclusion: TAT-KIR mimetic of SOCS3 could be a promising approach for brain repair via regulating the biological behaviors of exogenous NSCs

    Regulatory effect of puerarin on lipid profile in hypercholesterolemic rats

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells
    corecore