3 research outputs found

    Scale up study of capillary microreactors in solvent-free semihydrogenation of 2‐methyl‐3‐butyn‐2‐ol

    Get PDF
    A 2.5 wt.% Pd/ZnO catalytic coating has been deposited onto the inner wall of capillary reactors with a diameter of 0.53 and 1.6 mm. The coatings were characterised by XRD, SEM, TEM and elemental analysis. The performance of catalytic reactors was studied in solvent-free hydrogenation of 2-methyl-3-butyn-2-ol. No mass transfer limitations was observed in the reactor with a diameter of 0.53 mm up to a catalyst loading of 1.0 kg (Pd) m −3 . The activity and selectivity of the catalysts has been studied in a batch reactor to develop a kinetic model. The kinetic model was combined with the reactor model to describe the obtained data in a wide range of reaction conditions. The model was applied to calculate the range of reaction conditions to reach a production rate of liquid product of 10–50 kg a day in a single catalytic capillary reactor

    Scale up study of capillary microreactors in solvent-free semihydrogenation of 2‐methyl‐3‐butyn‐2‐ol

    No full text
    A 2.5 wt.% Pd/ZnO catalytic coating has been deposited onto the inner wall of capillary reactors with a diameter of 0.53 and 1.6 mm. The coatings were characterised by XRD, SEM, TEM and elemental analysis. The performance of catalytic reactors was studied in solvent-free hydrogenation of 2-methyl-3-butyn-2-ol. No mass transfer limitations was observed in the reactor with a diameter of 0.53 mm up to a catalyst loading of 1.0 kg(Pd) m−3. The activity and selectivity of the catalysts has been studied in a batch reactor to develop a kinetic model. The kinetic model was combined with the reactor model to describe the obtained data in a wide range of reaction conditions. The model was applied to calculate the range of reaction conditions to reach a production rate of liquid product of 10–50 kg a day in a single catalytic capillary reactor
    corecore