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ABSTRACT 

A 2.5 wt. % Pd/ZnO catalytic coating deposited unto the  inner wall of a capillary reactor 

with a diameter of 0.53 and 1.6 mm was characterised by XRD, SEM, TEM and elemental analysis. 

The performance of catalytic reactors was studied in solvent-free hydrogenation of 2-methyl-3-

butyn-2-ol. No mass transfer limitations were  observed in the reactor with a diameter of 0.53 mm 

up to a catalyst loading of 1.0 kg(Pd) m-3. The activity and selectivity of the catalysts have been 

studied in a batch reactor to develop a kinetic model. This  model was combined with a reactor 

model to describe the obtained data in a wide range of reaction conditions. The model was applied 

to calculate the range of reaction conditions required to obtain a  production rate of liquid product 

of 10-50 kg a day in a single catalytic capillary reactor. 
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1. Introduction 

Process safety and small environmental footprint are one of the main challenges of chemical 

industry, and microreactors seem to be one of the most promising technologies. Small dimensions 

of microreactors provide large surface to volume ratio, orders of magnitude higher than that of 

conventional reactors, and result in high heat and mass transfer rates [1–4]. Quick mass transfer 

opens up new ways for improved product selectivity by avoiding mass and heat transfer limitations 

which eliminate hot spots that generally lead to over-reaction, catalyst deactivation and rise safety 

concerns. Another important benefit of microreactors lies in the ability to use high reaction 

temperature and pressure without compromising on the process safety. Even in the case of 

catastrophic reactor malfunction only very small amount of harmful substances will be released 

due to the low liquid hold up [5]. Because of intrinsic safety and excellent reaction control, 

microreactors can be utilised under reaction conditions that are prohibited for large-scale reactors. 

This opens new operational regimes and substantial process intensification capabilities [6–8]. An 

important societal advantage of safer microreactor processes is the synthesis on demand on a 

smaller scale at the place where products are needed, the approach which decreases concentration 

of industrial units and reduces transportation costs [7]. 

Microreactor technology  has been successfully used in a number of processes both in 

academia and in industry [9–12]. The advantages of microreactors have been clearly demonstrated 

for non-catalytic gas-liquid and liquid-liquid reactions that require precise control over reaction 

conditions, or involve dangerous chemicals such as corrosive fluorine or explosive diazo-

compounds [13–16]. However, considering that the vast majority of modern chemical processes 

utilise heterogeneous catalysts to replace stoichiometric reactions due to obvious economic and 

environmental advantages, the application of catalytic coatings in microreactors is 

disproportionately scarcely studied [17]. A few gas-phase heterogeneously catalysed reactions 

have been studied in various reactions such as Fisher-Tropsch synthesis, CO2 hydrogenation, 

water gas shift [18], preferential CO oxidation [19], and complete oxidation of organic compounds 

[20] demonstrating a 2-5 fold increase in reaction rates compared to conventional reactors [21–

24]. 

However, the class of heterogeneously-catalysed multiphase (liquid-liquid or gas-liquid) 

reactions received limited attention because of the difficulty to precisely control catalyst-substrate 

interactions. The reactions can be performed either using a (i) catalyst particles in a micro fixed 

bed configuration [2,25], (ii) magnetically-supported catalysts held at the reactor walls with 

magnetic field [26–29], (iii) introducing a slurry of solid catalyst particles into the reactant flow 

[30], (iv) catalytic wall coatings obtained via hydrothermal synthesis [31,32] or methods derived 
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from dipcoating, spincoating or washcoating [33–39]. Micro fixed bed reactors with a typical pellet 

size below 100 µm seem to offer a simple way of catalyst introduction and they are suitable for 

any catalyst. However, catalytic beds have a number of problems such as bed densification with 

time resulting in considerable pressure build-up which requires catalyst dilution with a hard inert 

material. Also, the removal of heat from the reaction zone to the external walls could create 

considerable radial gradients in the reactor in a highly exothermic reaction. Finally, liquid 

channelling may result in very wide residence time distribution and therefore poor product 

selectivity in consecutive reactions [40–42]. However, for a limited class of reactions that have no 

side products, packed-bed reactors can successfully be applied [5,40]. Magnetically-recoverable 

catalysts offer a convenient way of catalyst introduction and separation, but their benefits are 

counterbalanced by more complex reactor design required [43–45]. A slurry of solid catalyst 

particles can be introduced into a liquid stream and provides good selectivity towards intermediate 

products which is comparable to that of an ideal stirred-tank reactor [30].  However, this approach 

requires an additional expensive step to separate catalysts from the reaction products. Also the 

reactant to catalyst ratio is much lower compared to other reactor types in order to provide good 

catalyst distribution and high conversion. Wall coated capillary reactors combine simplicity of 

operation and high throughput with excellent reaction control which lead to high selectivity 

towards intermediate products [33,34,46]. Their synthesis methods have been considerably 

improved over the last decade and very stable catalytic coatings were obtained for a range of 

industrial applications following a recently developed synthesis method [33].   

There exists a limited number of publications describing the upscaling of catalytic capillary 

microreactors [47,48]. While the numbering up approach looks very promising to increase the 

throughput, it might require 102-105 parallel channels to produce 1-100 ton of product per year. 

The exact number of microchannels depends on the maximum allowed pressure drop over the 

reactor and the channel length which is often limited by available microfabrication methods [49–

52]. Therefore the numbering up approach needs to be combined with scaling up of the reactor 

dimensions to bring the throughput to the industrial scale while avoiding mass or heat transfer 

limitations.  

The aim of the work was to study the feasibility of carrying out industrially-relevant 

semihydrogenation reactions in wall-coated capillary microreactors and investigate the feasibility 

of reactor upscaling in order to obtain the desired production capacity. In this study, selective 

hydrogenation (semihydrogenation) of 2-methyl-3-butyn-2-ol (MBY) over a Pd/ZnO catalyst was 

chosen as a model reaction representing a wide class of important gas-liquid reactions catalysed 

by a supported heterogeneous catalyst. The replacement of traditional batch reactors with slurry 

catalysts by catalytic capillary microreactors is expected to provide (i) substantial safety benefits 
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due to minimisation of explosive hydrogen utilisation and (ii) decreased labour costs due to quick 

process optimisation.  

2. Experimental 

2.1. Reactor preparation and characterisation 

Two groups of capillary reactors were used: (i) fused silica capillary microreactors with an 

internal diameter of 0.53 mm and a length of 1 m, and (ii) glass tubes millireactors with an internal 

diameter of 1.6 mm, and a length of 0.2 m. The reactors are further referred to as r0.53-xx, where 

0.53 is the internal diameter in mm and xx is the total Pd loading in kg m-3
(reactor). A 2.5 wt.% 

Pd/ZnO catalytic coating was deposited onto the inner reactor walls following the previously 

reported method [33]. The sol containing catalyst precursors was introduced into the capillary 

reactors and the solvent was evaporated by moving the capillary into the oven at 200 oC at the 

displacement speed of 0.3 mm s-1. The coating thickness was varied from 2 to 65 µm by adjusting 

the number of coatings cycles and the concentration of precursors in the initial sol. The surfactants 

were removed by heating the coated reactor in a vacuum oven (1 mbar residual pressure) at 200 oC 

overnight. After cooling to room temperature, the reactors were consecutively flushed with water 

and acetone (1 mL min-1, 10 min each) followed by drying in air. 

Many  coated reactors were cut and glued on a microscope stubs with epoxy. Then many  

(typically 6-9) cross-sections from every reactor were studied on a TM-1000 Hitachi scanning 

electron microscope (SEM) in a high-pressure mode to minimise charging without deposition of 

an additional conductive coating. Ttransmission electron microscopy (TEM) images of the 

coatings were obtained using a Jeol 2010 transmission electron microscope equipped with an 

energy-dispersive X-ray spectrometer (EDX, Oxford Instruments). The study was performed from 

5-8 different regions to obtain representative data. In this study, the coating from the reactors was 

removed, dispersed in ethanol under sonication and a few droplets of the dispersion were dropped 

on a carbon-coated copper grid.  

Powder X-ray diffraction, (XRD), measurements were performed using an Empyrean X-ray 

diffractometer equipped with monochromatic Kα-Cu X-ray source and a PIXcel linear detector. 

The scanning was performed in a stepwise mode within a 2θ range of 20-85o with a step length of 

0.0390o 2θ, and a step time of 60 min studying the coating removed from the capillaries on a zero 

background sample holder. 

After the reaction, the total catalyst loading in the capillaries was determined dissolving the 

coating by withdrawing 1 mL of aqua regia (1:3 volume mixture of concentrated HCl and HNO3, 

Sigma-Aldrich) at 0.4 mL min-1 through the capillaries. The resulting solution was collected in a 
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5 mL volumetric flask and diluted with deionised water. The solutions were studied using a Perkin 

Elmer Optima 5300DV emission inductively coupled plasma spectrometer. 

 

2.2. Capillary reactor testing 

The experimental setup consists of a continuous flow syringe pump fed with MBY (Sigma-

Aldrich, > 98 wt. %) without solvent, mass flow controllers and a pressure transducer connected 

via an X-joint to the capillary reactor (Figure 1). The reactor was placed into a thermostatic water 

bath at the temperature of 70.0 ±0.4 oC. The reactor outlet was connected to an automatic sample 

collector via an additional silica capillary (i.d. 250 µm) that provided a pressure drop of 0.20±0.03 

bar. The liquid samples were diluted 100:1 with hexane and analysed using a Varian 430 gas 

chromatograph equipped with a 30 m Stabiwax capillary column and a flame ionisation detector.  

 
Figure 1. Scheme of the capillary reactor setup. 

  

2.3. Reference catalyst synthesis 

A reference Pd/ZnO powder catalyst synthesised by a conventional polyol method [53]. was 

used for kinetic study in a batch reactor. s A powder of ZnO, 2 g, particle sizes < 20 μm (Alfa 

Aesar), was added to a solution of palladium acetate (>99 wt. %, Sigma-Aldrich) in 50 mL ethylene 

glycol (>99 wt. %, Sigma-Aldrich). The amount of palladium precursor was adjusted to obtain a 

2 wt. % Pd/ZnO catalyst. The dissolved air was displaced with a nitrogen flow of 100 mL min-1 

followed by reflux heating for 2 h. Then, the solution was centrifuged, washed with water (2x30 

mL), acetone (2x30 mL) and dried in nitrogen. The catalyst was characterised by N2 adsorption 

and TEM. The complete reduction of Pd was confirmed by elemental analysis data. 

2.4. Batch reactor testing 

Hydrogenation  in a batch reactor at atmospheric pressure was performed in a 10 mL two-

neck round bottom flask equipped with a water-cooled condenser, and a septum for gas 
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introduction and liquid withdrawal. The 2 wt. % Pd/ZnO reference catalyst (30.0 mg) was added 

to 4.0 mL of MBY without any additional solvent. The reaction mixture was stirred using a 

magnetic stirrer. The stirring rates were in the range of 600 – 1200 rpm. The reaction temperature 

was controlled with a water bath at 70.0±0.1 oC. The gases were introduced to the bottom of the 

reactor via a 250 μm id silica capillary and the flow rates were controlled by mass-flow controllers. 

The reactor was flushed with a flow of 20 mL min-1 of nitrogen (99.999 vol.%, BOC) for 10 min 

to remove air, then hydrogen was quickly introduced at a flow of 50 mL min-1 for 1 min to displace 

nitrogen. Afterwards, the reaction was performed feeding a hydrogen flow of 15 mL min-1 through 

the reaction mixture and withdrawing 20 uL of the reaction mixture regularly for off-line analysis. 

The absence of mass transfer limitations was confirmed by studying the reaction rate at various 

stirring speeds and catalyst amounts. The liquid samples were diluted 100:1 with heptane and 

analysed using a Shimadzu 2010 gas chromatograph equipped with a Stabiwax capillary column 

and a flame ionisation detector. 

 

3. Results and Discussion 

3.1. Characterisation of the capillary reactors 

Figure 2 shows representative SEM images of catalytic coatings in the r0.53 reactors. No 

continuous ZnO layer was obtained at the catalyst loading corresponding to the Pd content below 

0.7 kg(Pd) mr
-3. These coatings consisted of separate particles of Pd/ZnO deposited onto the 

reactor walls (Figure 2 a,b). Statistical analysis of the coating in 5 capillary reactors with the Pd 

loading below 0.7 kg(Pd) mr
-3 shows that the dimensions of catalytic particles are independent of 

total Pd content and are about 2.3±2.0 µm (average value ± standard deviation). Likely, the 

formation of individual particles was caused by capillary forces of the evaporating solvent. At a 

higher catalyst content, however, the capillary was coated with a rather uniform catalytic layer 

with a thickness of 11.9±6.0 µm. The coating consisted of ZnO crystallite platelets which formed 

cavities with a characteristic size in the micrometer range (Figure 2c, d). 
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Figure 2. Cross sectional SEM photographs of the 0.53 mm i.d. capillary reactors wall-coated with 

Pd/ZnO, total Pd content is (a) 0.24, (b) 0.64, (c, d)  2.35 kg (Pd) m-3(reactor). 

 

SEM study of various r1.6 reactors showed that the coating was not uniform at the catalyst 

loading below 0.7 kg(Pd) mr
-3. The coating consisted of individual ZnO particles with a mean size 

of 6.7±5.2 µm. At a higher catalyst content, a uniform coating was obtained onto the reactor walls 

with the thickness increasing from 36±22 to 65±30 µm for the r1.6-1.0 and r1.6-1.8 reactors, 

respectively. A Pd loading in all the capillary reactors of 2.53±0.37 wt. % was determined by EDX 

analysis. This value is in a good agreement with the nominal Pd loading of 2.5 wt. %. This 

demonstrates that no Pd was lost during the coating and washing process. 
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Figure 3. Cross sectional SEM photographs of the 1.6 mm i.d. capillary reactors wall-coated with 

Pd/ZnO, total Pd content is (a) 0.17, (b) 1.03, (c) 1.23, (d) 1.76 kg (Pd) m-3(reactor). 

 

 The powder XRD pattern of the Pd/ZnO catalyst (Figure 4) showed that wurtzite was the 

only ZnO phase in the coatings. Its crystallite size was estimated using Scherrer’s formula to be 

about 30 nm. This is a typical size obtained in the developed sol-gel method after a calcination 

step at 200 oC as low calcination temperature prevents sintering of ZnO nanoparticles. A small Pd 

peak is present at 40o 2θ. 

 

Figure 4. Powder X-ray diffraction pattern of the Pd/ZnO catalytic coating extracted from a 
millireactor. 
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Figure 5 shows a characteristic TEM image of a coating detached from the r1.6-1.0 reactor. 

It can been seen in Figure 5 that the Pd particles with a mean size of 3.0±1.0 nm are evenly 

distributed through the ZnO framework. These particles are formed by several smaller 

nanoparticles about 1.3 nm in diameter. The morphology and dimensions of Pd nanoparticles were 

the same for r0.53 and r1.6 capillary reactors. 

 
Figure 5. A representative TEM microphotograph of the Pd/ZnO coating removed from the r1.6-1.0 

reactor. 

 

3.2. Semihydrogenation in capillary reactors 

Two series of capillary reactors, r0.53 and r1.6, were studied in solvent-free MBY 

hydrogenation. The conditions were selected to ensure that the conversion of MBY was below 

80 %, which allowed for determination of apparent reaction rates directly from MBY conversion 

as the reaction rate follows a pseudo-zero order kinetics [54,55]. The alkene selectivity above 

97.5 % was observed for all the reactors studied except for the r1.6-1.8 reactor. These data show 

that there were no internal diffusion limitations of MBY or liquid channelling that usually 

substantially decrease selectivity.  

It can be seen in Figure 6, that the MBY conversion in r0.53 reactors with different Pd 

loadings was linearly proportional to the catalyst loading up to a Pd content of 0.75 kg m-3 at a 

liquid flow rate of 10 µL min-1. This confirms the absence of mass transfer limitations. At a higher 

Pd loading of 2.4 kg m-3, the full MBY conversion was observed therefore the flow rates was 

increased to 40 µL min-1 to get kinetic data. At the higher flow rate, the MBY conversion increased 

linearly with catalyst loading up to a Pd content of 0.7 kg m-3. At a higher Pd loading of 2.4 kg m-

3 the reaction rate was affected by the onset of mass-transfer limitations. For the r1.6 reactors, 

similarly, the MBY conversion was proportional to the Pd loading in the whole range of Pd 

loadings studied.  
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Figure 6. MBY hydrogenation over a Pd/ZnO catalytic coating in (■,♦) r0.53 (0.53 mm i.d).  and (▲) r1.6 
(1.6 mm i.d.)capillary reactors. Liquid flow rate: (■,▲) 10 µL min-1 or (♦) 40 µL min-1, reaction temperature: 

70 C, H2 flow rate: 10 mL min-1 (STP), absolute reaction pressure 1.2 bar. 

 

The reactant conversion in a zero-order catalytic reaction is proportional to the amount of 

catalyst in the reactor, the fraction of the total reactor volume occupied by the liquid (which is 

determined by the liquid hold up) and inversely proportional to the liquid reactant flow rate. The 

zero-order reaction kinetics is described by Eq. 1: 

 )1( '
0

0
resMBYMBY kCC τ−=        (1), 

where τres is the liquid residence time ( L
V

cat
res F

V
ετ = ), Vcat is the catalyst volume, Lε is the 

liquid hold-up in the reactor, and Fv is the volumetric liquid flow rate, and '
0k  is the pseudo zero-

order reaction rate constant. Eq. 1 can be rearranged in terms of MBY conversion (XMBY):  

resMBY kX τ'
0=          (2) 

 Figure 7 shows the change in reactant concentration as a function of residence time. It can 

be seen that no mass transfer limitations were observed for the r0.53 up to the catalytic loading of 

1 kg(Pd) mr
-3. For the r1.6 reactors, the observed rates were lower than that in the r0.53 reactors 

suggesting the presence of mass transfer limitations.  

 

Figure 7. MBY conversion in r0.53 and r1.6 reactors. The conditions and notations are the same as those 
in Figure 6. 
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3.3. Semihydrogenation in a batch reactor 

The MBY semihydrogenation was performed using a 2 wt. % Pd/ZnO catalyst in a batch 

reactor. The reaction rate was independent on the stirring speed above 900 rpm confirming the 

absence of mass transfer limitations. The catalyst was non-porous with a specific surface area of 

4.1 m2 g-1. The Pd nanoparticles were 3.2 ±1.1 nm according to TEM data (not shown). The Pd 

dispersion in the model catalyst was the same as that in the catalytic coatings which allowed direct 

data comparison between the model catalyst and catalytic coatings.  

 The reaction kinetics was modelled to explain the difference in the performance between 

r0.53 and r 1.6 reactors. The MBY hydrogenation reaction scheme (Figure 8) consists of three 

main reactions: (i) MBY hydrogenation to MBE followed by (ii) MBE hydrogenation to MBA and 

(iii) a direct hydrogenation step of MBY to MBA.  

HO HO
2-methyl-3-butyn-2-ol

(MBY)
2-methyl-3-buten-2-ol

(MBE)

HO
2-methyl-2-butanol

(MBA)

k1
k2

 

Figure 8. Scheme of 2-methyl-3-butyn-2-ol hydrogenation reactions. 

 

The concentration profiles of the reactant and products in the MBY hydrogenation over the 2 

wt. % Pd/ZnO catalyst in the batch reactor are shown in Figure 9. The concentration profiles were 

modelled using the Langmuir-Hinshelwood kinetics with competitive adsorption of organic 

species and dissociated hydrogen on the catalyst surface with the rate equation 3-5 [54,55]. 

Considering vapour pressure of MBY of 0.27 bar at the reaction temperature, hydrogen pressure 

(PH2) in the system was taken as 0.73 bar. 

2
21

2
*
1

1 )( MBAMBYMBE

HMBY

CQCCQ
pCkr
++

=  (3) 

2
21

2
*
2

2 )( MBAMBYMBE

HMBE

CQCCQ
pCkr
++

=  (4) 

2
21

2
2

*
3

3 )( MBAMBYMBE

HMBY

CQCCQ
pCkr
++

=  (5) 

where CMBY, CMBE and CMBA are the concentrations of the organic species, k*
1-k*

3 are the apparent 

rate constants of the corresponding reaction steps, Q1=KMBE/KMBY, Q2=KMBA/KMBY are the ratios 

of adsorption constants.  
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The rate equations (Eqs. 3-5) were solved numerically in the Matlab software using a Runge-

Kutta method optimised for stiff systems of ordinary differential equations (ode23tb solver).  The 

regression analysis was performed using a non-linear weighted least squares routine using 

Levenberg-Marquardt with the statistical weights reciprocal to the experimental uncertainties. The 

error analysis of the kinetic parameters was performed using a Monte-Carlo method analysing 

results on 2000 data sets with the initial data normally distributed around the experimental results 

[56]. 

 
Figure 9. Concentration profiles of solvent-free MBY hydrogenation in a batch reactor on the 2. % Pd/ZnO 

reference catalyst at 70 C and ambient H2 pressure. Curves present results of kinetic modelling. 

 

The obtained constants are listed in Table 1. The values of k2
* and k3

* are more than 100 

times lower than k1
* value which explains the very high MBE selectivity observed in Figure 9. 

The k3
* rate constant has wide confidence intervals and demonstrates that the experimental data 

can be accurately described considering only two consecutive reaction stages. This result is in line 

with the data reported for Pd and Pd-Bi catalysts [54,55]. The KMBE/KMBY and KMBA/KMBY ratios 

are below 0.1. This result agrees with previously published data reporting preferential adsorption 

of alkynes on Pd catalysts which is another factor contributing to the high alkene selectivity 

[57,58]. 

Table 1. Kinetic parameters for MBY hydrogenation obtained by regression analysis of experimental data 

Parameter Unit  value 68 % c.i. 95% c. i. 

k1
* mol L-1 s-1 g-1

Pd bar-1 2.71 ×101 (2.68 – 2.79) × 101 (2.59 – 2.90) ×101 

k2
* mol L-1 s-1 g-1

Pd bar-1 4.37 ×10-1 (3.74 – 6.33) × 10-1 (1.88 – 9.82 ×10-1 

k3
* mol L-1 s-1 g-1

Pd bar-2 1.73 ×10-1 (0.23 – 2.62) × 10-1 (0.00 – 4.02) ×10-1 

Q1 - 9.38 ×10-2 (8.68 – 11.2) × 10-2 (6.25 – 14.3) ×10-2 

Q2 - 1.71 ×10-2 (1.56 – 2.10) × 10-2 (1.08 – 2.71) ×10-2 

c.i. =confidence interval 
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3.4.  Semihydrogenation in a capillary reactor 

The kinetic parameters were applied to the capillary reactors and the corresponding parity 

plot is shown in Figure 10. There is a good agreement between the experimental data and model 

predictions for the r0.53 reactors, which confirms the absence of mass transfer limitations. The 

deviations in the area of low MBY conversions are likely caused by uncertainties in elemental 

analysis and variations in the dispersion of Pd nanoparticles. The experimental data obtained in 

the r0.53-2.4 reactor demonstrated substantial deviation from predicted values due to the presence 

of substantial mass transfer limitations in this reactor.  

 

Figure 10. Parity plot for MBY conversion in the microreactors for capillary 0.53 mm i.d. microreactors 
(r0.53) at liquid flow rates of (■) 10 µL min-1 and (♦) 40 µL min-1, and in 1.6 mm i.d. millireactors (r1.6) at 

liquid flow rate of (▲) 10 µL min-1. Dashed line corresponds to perfect agreement. 

 

For the r1.6 reactors, the picture was completely different as all the points show reaction rates 

much lower than that expected for the modelled conditions, i.e. without mass transfer limitations. 

The Weisz-Prater criterion was calculated to estimate internal mass transfer limitations of 

hydrogen and organic species (Eq. 6): 

effs

c
PW DC

hN
2ℜ

=−         (6) 

where ℜ  is the apparent reaction rate, ch  is the coating thickness, Cs is the concentration of the 

diffusing species with the effective diffusivity of Deff. Diffusivities of dissolved hydrogen and 

organic species of 7.0· 10-9 m2 s-1 and 2.0· 10-9 m2 s-1 were estimated according to Vannice [59]. 

A value of NW-P = 0.5 for hydrogen in the coating with a thickness of 6 µm, indicates the presence 

of internal diffusion limitations. For organic species, however, diffusion limitations were highly 

unlikely because their concentrations, 4 orders of magnitude higher than that of hydrogen, resulted 

in NW-P numbers below 10-3. Still, at the high MBY conversion and for thick catalytic coating 

observed in the r1.6-1.8 reactor, NW-P reached values ~1 suggesting pore limitations of MBE. 

Indeed, low MBE selectivity of 91 % for the r1.6-1.8 reactor indicates that pore diffusion 
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limitations were observed for both organic and hydrogen species. The observed linearity with Pd 

content in Figure 7 is likely caused by comparable intrinsic reaction and mass transfer rates under 

the studied conditions. Furthermore, pore diffusion limitations cannot be removed at a higher 

hydrogen pressure because the increase in the concentration of dissolved hydrogen will be 

compensated by the increased reaction rates resulting in the same Weisz-Prater numbers.  

The pore limitations agree with the modelling performed by Warnier, who showed that pore 

diffusion limitations are observed faster than external transfer in a gas-liquid slug flow [60]. 

Considering the boundary value for the Weisz-Prater number of 0.3, the thickness of the catalytic 

layer where no hydrogen diffusion limitations are expected is 5 µm. This thickness is in excellent 

agreement with the experimental results, which show that mass transfer was observed for all the 

reactors with the thicker catalytic coating (Figure 6).  

Considering good agreement of the kinetic model with experiment and the absence of mass 

transfer limitations for the reactors coated with 5 µm catalyst, the model was used to estimate 

maximum hydrogenation throughput for a range of capillary reactors of various lengths and 

diameters. Pressure drop in the reactors was estimated using Lockhart-Martinelli correlation 

[61,62] neglecting consumption of hydrogen in the reaction. The results presented in Table 2 show 

that at a reaction pressure of 50 bar, the throughput of about 1.5 kg day-1 can be reached in a 5 m 

reactor with a diameter of 0.5 mm operated at a pressure drop of 7 bar. Such a substantial pressure 

drop can be decreased by increasing the reactor diameter, allowing for longer reactors and higher 

throughputs reaching up to 28 kg day-1. Further increase in diameter allows for even higher 

throughput, but the onset of external mass transfer limitations is expected under such conditions 

[60]. The throughput can further be increased via numbering up and increasing the operating 

pressure.  

 

Table 2. Estimations of the maximum throughput and pressure drop in capillary reactors coated with 5 
µm of 2.5% Pd/ZnO if no external mass transfer limitations apply. 

did, mm Lreactor, m PH2, bar Δpdrop, bar m, kg day-1 

0.5 5 1 0.5 0.03 

0.5 5 50 7 1.5 

1.5 5 50 0.8 4.7 

1.5 30 50 10 28 

2.5 30 50 2.2 47 
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4. Conclusions 

Two series of capillary reactors with the internal diameters of 0.53 and 1.6 mm were wall–coated 

with Pd/ZnO and tested in solvent-free hydrogenation of a vitamin A precursor, 2-methyl-3-butyn-

2-ol (MBY). Selectivity towards alkene was above 97.5 % in all the reactors studies, demonstrating 

feasibility of semihydrogenation in capillary reactors with minimal by-product formation. 

Correlation of the observed MBY conversion with the total Pd content in the reactors indicated 

that no mass transfer limitations were observed for the microreactors 0.53 mm i.d. up to about 1 

kg(Pd) m(reactor)
-3. Kinetic modelling of solvent-free MBY hydrogenation was performed in a batch 

reactor and the model was applied to the reactions in capillary reactors, confirming that mass 

transfer limitations were observed for the microreactor with the Pd loading of 2.4 kg(Pd) m-3 and 

all the millireactors 1.6 mm id. Calculation of the Weisz-Prater number demonstrated that internal 

diffusion of hydrogen was the limiting phenomena, so maximum thickness of the coating that 

creates negligible hydrogen pore diffusion is 5 µm. The kinetic model was used to estimate 

maximum throughput of a range of capillary reactors wall coated with a 5 µm layer of 2.5 wt. % 

Pd/ZnO catalyst considering that no external mass transfer limitations apply. The estimations 

showed that throughput of about 10-50 kg day-1 of liquid product can be achieved in a single 

reactor at the reaction pressure of 50 bar, while further increase is expected by numbering up and 

process intensification using higher temperature and pressure, microwave or radiofrequency 

heating. 
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