3 research outputs found

    Outcome of Second Primary Malignancies Developing in Multiple Myeloma Patients

    Get PDF
    Background: There is an increased risk of second primary malignancies (SMPs) in patients with multiple myeloma (MM). This multinational 'real-world' retrospective study analyzed the characteristics and outcomes of MM patients that developed SPMs.Results: 165 patients were analyzed: 62.4% males; 8.5% with a prior cancer; 113 with solid SPMs, mainly =stage 2; and 52 with hematological SPM (hemato-SPM), mainly MDS/AML. Patients with hemato-SPM were younger (p = 0.05) and more frequently had a prior AutoHCT (p = 0.012). The time to SPM was shorter in the older (>65 years) and more heavily pretreated patients. One hundred patients were actively treated at the time of SPM detection. Treatment was discontinued in 52, substituted with another anti-MM therapy in 15, and continued in 33 patients. Treatment discontinuation was predominant in the patients diagnosed with hemato-SPM (76%). The median OS following SPM detection was 8.5 months, and the main cause of death was SPM. A poor ECOG status predicted a shorter OS (PS 3 vs. 0, HR = 5.74, 2.32-14.21, p < 0.001), whereas a normal hemoglobin level (HR = 0.43, 0.19-0.95, p = 0.037) predicted longer OS.Conclusions: With the continuing improvement in OS, a higher proportion of MM patients might develop SPM. The OS following SPM diagnosis is poor; hence, frequent surveillance and early detection are imperative to improve outcomes

    Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

    No full text
    In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro) of thin films. Morphological changes of mouse fibroblasts (L929 cell line) after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts

    Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

    No full text
    In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro) of thin films. Morphological changes of mouse fibroblasts (L929 cell line) after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts
    corecore