16 research outputs found

    Naphthalene-functionalized resorcinarene as selective, fluorescent self-quenching sensor for kynurenic acid†

    Get PDF
    Kynurenic acid is a by-product of tryptophan metabolism in humans, with abnormal levels indicative of disease. There is a need for water-soluble receptors that selectively bind kynurenic acid, allowing for detection and quantification. We report here the high-affinity binding of kynurenic acid in aqueous media to a resorcinarene salt receptor decorated with four flexible naphthalene groups at the upper rim. Experimental results from 1H NMR, isothermal titration calorimetry, and electronic absorption and fluorescence spectroscopies all support high-affinity binding and selectivity for kynurenic acid over tryptophan. The measured binding constant (K = 1.46 ± 0.21 × 105 M−1) is one order of magnitude larger than that observed with other resorcinarene receptors. The present host–guest system can be employed for sensory recognition of kynurenic acid. Computational studies reveal the key role of a series of cooperative attractive intra- and inter-molecular interactions contributing to an optimal binding process in this system

    Derivation of the Supermolecular Interaction Energy from the Monomer Densities in the Density Functional Theory

    Full text link
    The density functional theory (DFT) interaction energy of a dimer is rigorously derived from the monomer densities. To this end, the supermolecular energy bifunctional is formulated in terms of mutually orthogonal sets of orbitals of the constituent monomers. The orthogonality condition is preserved in the solution of the Kohn-Sham equations through the Pauli blockade method. Numerical implementation of the method provides interaction energies which agree with those obtained from standard supermolecular calculations within less than 0.1% error for three example functionals: Slater-Dirac, PBE0 and B3LYP, and for two model van der Waals dimers: Ne2 and (C2H4)2, and two model H-bond complexes: (HF)2 and (NH3)2.Comment: 6 pages, 1 figure, REVTeX

    Density Functional Theory Approach to Noncovalent Interactions via Interacting Monomer Densities

    Full text link
    A recently proposed "DFT+dispersion" treatment (Rajchel et al., Phys. Rev. Lett., 2010, 104, 163001) is described in detail and illustrated by more examples. The formalism derives the dispersion-free density functional theory (DFT) interaction energy and combines it with the dispersion energy from separate DFT calculations. It consists in the self-consistent polarization of DFT monomers restrained by the exclusion principle via the Pauli blockade technique. Within the monomers a complete exchange-correlation potential should be used, but between them only the exact exchange operates. The applications to wide range of molecular complexes from rare-gas dimers to H-bonds to pi-electron interactions show good agreement with benchmark values.Comment: 9 pages, 5 figures, 2 tables, REVTeX

    Accurate Evaluation of SCF and MP2 Components of Interaction Energies. Complexes of HF, OH2 and NH3 with Li+

    No full text
    High-quality Gaussian basis sets of the well-tempered type, containing three sets of polarization functions on all atoms, are used to investigate the interaction of Li+ with HF, OH2, and NH3. These sets reproduce the SCF and MP2 energies of the various monomers very well and, moreover, accurately treat the multipole moments and polarizabilities of the monomers. When applied to the complexes, the sets are essentially free of primary and secondary basis set superposition error at the SCF level; MP2 extension effects are also completely negligible while basis set superposition effects are small but non-negligible. Analysis of the correlation corrections to the molecular properties, coupled with comparison of the interaction of the bases with a point charge, provides a straightforward explanation of correlation contributions to the interaction energy. Recommendations are provided to guide selection of basis sets for molecular interactions so as to avoid distortion of the various components

    Heat Shock Proteins HSPA1 and HSP90AA1 Are Upregulated in Colorectal Polyps and Can Be Targeted in Cancer Cells by Anti-Inflammatory Oxicams with Arylpiperazine Pharmacophore and Benzoyl Moiety Substitutions at Thiazine Ring

    No full text
    Heat shock proteins HSPA1/Hsp70α and HSP90AA1/Hsp90α are crucial for cancer growth but their expression pattern in colorectal polyps or whether they can be modulated by oxicams is unknown. We quantified (RTqPCR) HSPA1 and HSP90AA1 expression in 50 polyp-normal pairs in relation to polyp malignancy potential and examined the effect of piroxicam, meloxicam and five novel analogues on HSPA1 and HSP90AA1 expression (mRNA/protein) in colorectal adenocarcinoma lines. HSPA1 and HSP90AA1 were upregulated in polyps by 3- and 2.9-fold. Expression ratios were higher in polyps with higher dysplasia grade and dominant villous growth pattern, mostly a result of diminished gene expression in normal tissue. Classic oxicams had negligible/non-significant effect on HSP expression. Their most effective analogue inhibited HSPA1 protein and gene by 2.5-fold and 5.7-fold in Caco-2 and by 11.5-fold and 6.8-fold in HCT116 and HSPA1 protein in HT-29 by 1.9-fold. It downregulated HSP90AA1 protein and gene by 1.9-fold and 3.7-fold in Caco-2 and by 2-fold and 5.0-fold in HCT116. HSPA1 and HSP90AA1 are upregulated in colorectal polyps reflecting their potential for malignancy. HSPA1 in cancer cells and, to lesser degree, HSP90AA1 can be reduced by oxicam analogues with thiazine ring substituted via propylene linker by arylpiperazine pharmacophore with fluorine substituents and by benzoyl moiety
    corecore