16 research outputs found

    Potential Enterotoxicity of Phylogenetically Diverse Bacillus cereus Sensu Lato Soil Isolates from Different Geographical Locations

    Get PDF
    Bacillus cereus sensu lato comprises Gram-positive spore-forming bacteria producing toxins associated with foodborne diseases. Three pore-forming enterotoxins, nonhemolytic enterotoxin (Nhe), hemolysin BL (Hbl), and cytotoxin K (CytK), are considered the primary factors in B. cereus sensu lato diarrhea. The aim of this study was to determine the potential risk of enterotoxicity among soil B. cereus sensu lato isolates representing diverse phylogroups and originated from different geographic locations with various climates (Burkina Faso, Kenya, Argentina, Kazakhstan, and Poland). While nheA- and hblA-positive isolates were present among all B. cereus sensu lato populations and distributed across all phylogenetic groups, cytK-2-positive strains predominated in geographic regions with an arid hot climate (Africa) and clustered together on a phylogenetic tree mainly within mesophilic groups III and IV. The highest in vitro cytotoxicity to Caco-2 and HeLa cells was demonstrated by the strains clustered within phylogroups II and IV. Overall, our results suggest that B. cereus sensu lato pathogenicity is a comprehensive process conditioned by many intracellular factors and diverse environmental conditions.Izabela Święcicka - [email protected] Drewnowska - Department of Microbiology, Faculty of Biology, University of Bialystok, Bialystok, PolandNatalia Stefańska - Department of Microbiology, Faculty of Biology, University of Bialystok, Bialystok, PolandMagdalena Czerniecka - Department of Cytobiochemistry, Faculty of Biology, University of Bialystok, Bialystok, Poland; Laboratory of Tissue Culture, Faculty of Biology, University of Bialystok, Bialystok, PolandGrzegorz Zambrowski - Laboratory of Applied Microbiology, University of Bialystok, Bialystok, PolandIzabela Święcicka - Department of Microbiology, Faculty of Biology, University of Bialystok, Bialystok, Poland; Laboratory of Applied Microbiology, University of Bialystok, Bialystok, PolandMock M, Fouet A. 2001. Anthrax. Annu Rev Microbiol 55:647–671. https://doi.org/10.1146/annurev.micro.55.1.647Murawska E, Fiedoruk K, Swiecicka I. 2014. Modular genetic architecture of the toxigenic plasmid pIS56-63 harboring cry1Ab21 in Bacillus thuringiensis subsp. thuringiensis strain IS5056. Pol J Microbiol 63:147–156. https://doi.org/10.33073/pjm-2014-020.Stenfors Arnesen LP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32: 579 – 606. https://doi.org/10.1111/j.1574-6976.2008.00112.x.Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J. 2005. Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 43:4277– 4279. https://doi.org/10.1128/JCM.43.8.4277-4279.2005.Swiecicka I, Bideshi DK, Federici BA. 2008. Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasi-cuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni. Appl Environ Microbiol 74:923–930. https://doi.org/10.1128/AEM.01955-07.Guinebretiere M-H, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser M-L, Lamberet G, Fagerlund A, Granum PE, Lereclus D, De Vos P, Nguyen-The C, Sorokin A. 2013. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Micriobiol 63:31– 40. https://doi.org/10.1099/ijs.0.030627-0.Miller R, Beno SM, Kent DJ, Carroll LM, Martin NM, Boor KJ, Kovac J. 2016. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int J Syst Evol Microbiol 66:4744 – 4753. https://doi.org/10.1099/ijsem.0.001421.Jiménez G, Blanch AR, Tamames J, Rosselló-Mora R. 2013. Complete genome sequence of Bacillus toyonnsis BCT-7112T, the active ingredient of the feed additive preparation Toyocerin. Genome Announc 1:e01080-13. https://doi.org/10.1128/genomeA.01080-13.Lechner S, Mayr R, Francis KP, Prüss BM, Kaplan T, Wiessner-Gunkel E, Stewart GS, Scherer S. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Evol Microbiol 48:1373–1382. https://doi.org/10.1099/00207713-48-4-1373.Nakamura LK. 1998. Bacillus pseudomycoides sp. nov. Int J Syst Evol Microbiol 48:1031–1035. https://doi.org/10.1099/00207713-48-3-1031.Liu Y, Lai Q, Shao Z. 2018. Genome analysis-based reclassification of Bacillus weihenstephanensis as a later heterotypic synonym of Bacillus mycoides. Int J Syst Evol Microbiol 68:106 –112. https://doi.org/10.1099/ijsem.0.002466.Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, Budde BB. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl Environ Microbiol 72:5118 –5121.https://doi.org/10.1128/AEM.00170-06.Jung MY, Kim JS, Paek WK, Lim J, Lee H, Kim PI, Ma JY, Kim W, Chan YH. 2011. Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J Microbiol 49:1027–1032. https://doi.org/10.1007/s12275-011-1049-6.Jung MY, Paek WK, Park IS, Han JR, Sin Y, Paek J, Rhee MS, Kim H, Song HS, Chang YH. 2010. Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. J Microbiol 48:867– 871. https://doi.org/10.1007/s12275-010-0148-0.Cheng T, Lin P, Jin S, Wu Y, Fu B, Long R, Liu D, Guo Y, Peng L, Xia Q. 2014. Complete genome sequence of Bacillus bombysepticus, a pathogen leading to Bombyx mori Black Chest Septicemia. Genome Announc 2:e00312-14. https://doi.org/10.1128/genomeA.00312-14.Liu B, Liu GH, Hu GP, Sengonca C, Lin NQ, Tang JY, Tang WQ, Lin YZ. 2014. Bacillus bingmayongensis sp. nov., isolated from the pit soil of Emperor Qin’s terra-cotta warriors in China. Antonie Van Leeuwenhoek 105:995. https://doi.org/10.1007/s10482-014-0150-3.Liu Y, Du J, Lai Q, Zeng R, Ye D, Xu J, Shao Z. 2017. Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol 67:2499 –2508. https://doi.org/10.1099/ijsem.0.001821.Castiaux V, Laloux L, Schneider YJ, Mahillon J. 2016. Screening of cytotoxic B. cereus on differentiated Caco-2 cells and in co-culture with mucus-secreting (HT29-MTX) cells. Toxins 8:320. https://doi.org/10.3390/toxins8110320.Jessberger N, Krey VM, Rademacher C, Böhm ME, Mohr AK, Ehling-Schulz M, Scherer S, Märtlbauer E. 2015. From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front Microbiol 6:560. https://doi.org/10.3389/fmicb.2015.00560.Wijnands LM, Dufrenne JB, Rombouts FM, In ’t Veld PH, van Leusden FM. 2006. Prevalence of potentially pathogenic Bacillus cereus in food commodities in the Netherlands. J Food Prot 69:2587–2594. https://doi.org/10.4315/0362-028X-69.11.2587.Miller RA, Jian J, Beno SM, Wiedmann M, Kovac J. 2018. Intraclade variability in toxin production and cytotoxicity of Bacillus cereus group type strains and dairy-associated isolates. Appl Environ Microbiol 84:e02479-17. https://doi.org/10.1128/AEM.02479-17.Drewnowska JM, Swiecicka I. 2013. Eco-genetic structure of Bacillus cereus sensu lato populations from different environments in northeastern Poland. PLoS One 8:e80175. https://doi.org/10.1371/journal.pone.0080175.Bartoszewicz M, Czyz˙ewska U. 2017. Spores and vegetative cells of phenotypically and genetically diverse Bacillus cereus sensu lato are common bacteria in fresh water of northeastern Poland. Can J Microbiol 63:939 –950. https://doi.org/10.1139/cjm-2017-0337.Da Riol C, Dietrich R, Märtlbauer E, Jessberger N. 2018. Consumed foodstuffs have a crucial impact on the toxic activity of enteropathogenic Bacillus cereus. Front Microbiol 9:1946. https://doi.org/10.3389/fmicb.2018.01946.Tewari A, Abdullah S. 2015. Bacillus cereus food poisoning: international and Indian perspective. J Food Sci Technol 52:2500 –2511. https://doi.org/10.1007/s13197-014-1344-4.Kroten´ MA, Bartoszewicz M, S´wie˛cicka I. 2010. Cereulide and valinomycin, two import ant natural dodecadepsipeptides with ionophoretic activities. Pol J Microbiol 59:3–10. https://doi.org/10.33073/pjm-2010-001.European Food Safety Authority, European Centre for Disease Prevention and Control. 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks 2017. EFSA J 16:e05500.Lund T, De Buyser ML, Granum PE. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 38:254 –261. https://doi.org/10.1046/j.1365-2958.2000.02147.xFagerlund A, Ween O, Lund T, Hardy SP, Granum PE. 2004. Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150:2689 –2697. https://doi.org/10.1099/mic.0.26975-0Gohar M, Faegri K, Perchat S, Ravnum S, Økstad OA, Gominet M, Kolstø AB, Lereclus D. 2008. The PlcR virulence regulon of Bacillus cereus. PLoS One 3:e2793. https://doi.org/10.1371/journal.pone.0002793Grenha R, Slamti L, Nicaise M, Refes Y, Lereclus D, Nessler S. 2013. Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR. Proc Natl Acad Sci U S A 110:1047–1052. https://doi.org/10.1073/pnas.1213770110.Böhm ME, Huptas C, Krey VM, Scherer S. 2015. Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl,cytK and nhe. BMC Evol Biol 15:246. https://doi.org/10.1186/s12862-015-0529-4.Kaminska PS, Yernazarova A, Murawska E, Swiecicki J, Fiedoruk K, Bideshi DK, Swiecicka I. 2014. Comparative analysis of quantitative reverse transcription real-time PCR and commercial enzyme immunoassays for detection of enterotoxigenic Bacillus thuringiensis isolates. FEMS Microbiol Lett 357:34 –39. https://doi.org/10.1111/1574-6968.12503.Swiecicka I, Bartoszewicz M, Kasulyte-Creasey D, Drewnowska JM, Murawska E, Yernazarova A, Lukaszuk E, Mahillon J. 2013. Diversity of thermal ecotypes and potential pathotypes of Bacillus thuringiensis soil isolates. FEMS Microbiol Ecol 85:262–272. https://doi.org/10.1111/1574-6941.12116.Cohan FM. 2017. Transmission in the origins of bacterial diversity, from ecotypes to phyla. Microbiol Spectr 5:MTBP-0014-2016. https://doi.org/10.1128/microbiolspec.MTBP-0014-2016Guinebretière MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, Svensson B, Sanchis V, Nguyen-The C, Heyndrickx M,De Vos P. 2008. Ecological diversification in the Bacillus cereus group.Environ Microbiol 10:851– 865. https://doi.org/10.1111/j.1462-2920.2007.01495.xFiedoruk K, Drewnowska JM, Daniluk T, Leszczynska K, Iwaniuk P, Swiecicka I. 2017. Ribosomal background of the Bacillus cereus group thermotypes. SciRep 7:46430. https://doi.org/10.1038/srep46430.Guinebretière MH, Velge P, Couvert O, Carlin F, Debuyser ML, Nguyen-The C. 2010. Ability to Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (group I to VII) rather than species affiliation. J Clin Microbiol 48:3388 –3391. https://doi.org/10.1128/JCM.00921-10.Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007.Slamti L, Lereclus D. 2005. Specificity and polymorphism of the PlcRPapR quorum-sensing system in the Bacillus cereus group. J Bacteriol 187:1182–1187. https://doi.org/10.1128/JB.187.3.1182-1187.2005.Kaminska PS, Yernazarova A, Drewnowska JM, Zambrowski G, Swiecicka I. 2015. The worldwide distribution of genetically and phylogenetically diverse Bacillus cereus isolates harbouring Bacillus anthracis-like plasmids. Environ Microbiol Rep 7:738 –745. https://doi.org/10.1111/1758-2229.12305.Hendriksen NB, Hansen BM, Johansen JE. 2006. Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam. Antonie Van Leeuwenhoek 89:239 –249. https://doi.org/10.1007/s10482-005-9025-y.Collier FA, Elliot SL, Ellis RJ. 2005. Spatial variation in Bacillus thuringiensis/cereus populations within the phyllosphere of broad-leaved dock (Rumex obtusifolius) and surrounding habitats. FEMS Microbiol Ecol 54:417–425.https://doi.org/10.1016/j.femsec.2005.05.005.Shah N, DuPont HL, Ramsey DJ. 2009. Global etiology of travelers’diarrhea: systematic review from 1973 to the present. Am J Trop Med Hyg 80:609 – 614. https://doi.org/10.4269/ajtmh.2009.80.609.Cohan FM, Perry EB. 2007. A systematic for discovering the fundamental units of bacterial diversity. Curr Biol 17:R373–R386. https://doi.org/10.1016/j.cub.2007.03.032.Slamti L, Lemy C, Henry C, Guillot A, Huillet E, Lereclus D. 2016. CodY regulates the activity of the virulence quorum-sensor PlcR by controlling the import of the signaling peptide PapR in Bacillus thuringiensis. Front Microbiol 6:1501. https://doi.org/10.3389/fmicb.2015.01501.Fagerlund A, Lindbäck T, Granum PE. 2010. Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol 10:304. https://doi.org/10.1186/1471-2180-10-304.Castiaux V, Liu X, Delbrassinne L, Mahillon J. 2015. Is cytotoxin K from Bacillus cereus a bona fide enterotoxin? Int J Food Microbiol 211:79 – 85. https://doi.org/10.1016/j.ijfoodmicro.2015.06.020.Jessberger N, Rademacher C, Krey VM, Dietrich R, Mohr AK, Böhm ME, Scherer S, Ehling-Schulz M, Märtlbauer E. 2017. Simulating intestinal growth conditions enhances toxin production of entheropathogenic Bacillus cereus. Front Microbiol 8:627. https://doi.org/10.3389/fmicb.2017.00627.Bartoszewicz M, Bideshi D, Kraszewska A, Modzelewska E, Swiecicka I. 2009. Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic properties characteristic of Bacillus weihenstephanensis. J Appl Microbiol 106:1967–1975. https://doi.org/10.1111/j.1365-2672.2009.04166.x.Guinebretière MH, Fagerlund A, Granum PE, Nguyen-The C. 2006. Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. FEMS Microbiol Lett 259:74 – 80. https://doi.org/10.1111/j.1574-6968.2006.00247.x.Prüß BM, Dietrich R, Nibler B, MäRtlbauer E, Scherer S, 1999. The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl Environ Microbiol 65:5436 –5442. https://doi.org/10.1128/AEM.65.12.5436-5442.1999.Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870 –1874. https://doi.org/10.1093/molbev/msw054.Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA. 2012. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13:87. https://doi.org/10.1186/1471-2105-13-87.Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518 –1530. https://doi.org/10.1128/JB.186.5.1518-1530.2004.Drewnowska JM, Fiodor A, Barboza-Corona JE, Swiecicka I. 4 March 2020. Chitinolytic activity of phylogenetically diverse Bacillus cereus sensu lato from natural environments. Syst Appl Microbiol https://doi.org/10.1016/j.syapm.2020.126075.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389 –3402. https://doi.org/10.1093/nar/25.17.3389.Reiter L, Kolstø A-B, Piehler AP. 2011. Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle. J Microbiol Methods 86:210 –217. https://doi.org/10.1016/j.mimet.2011.05.006.Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45.Plumb JA, Milroy R, Kaye SB. 1989. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazoliumbased assay. Cancer Res 49:4435– 4440.Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystem Technology (RAST). Nucleic Acids Res 42:D206 –D214. https://doi.org/10.1093/nar/gkt1226.861111

    Struktura genetyczna środowiskowych izolatów Bacillus cereus sensu lato z północno-wschodniej Polski

    No full text
    Rozdziały (3 załączniki) w postaci publikacji naukowych w czasopismach FEMS Microbiology Ecology (Appendix 1) oraz PLOS ONE (Appendix 2 oraz Appendix 3).Przedstawiciele B. cereus s.l. występują powszechnie w środowisku naturalnym i wywierają ogromny wpływ na zdrowie człowieka, przemysł spożywczy oraz rolnictwo. Te tlenowe laseczki z jednej strony produkują toksyny szkodliwe dla ludzi i zwierząt, ale znane są również z syntezy wtórnych metabolitów degradujących niebezpieczne związki chemiczne lub wspomagających wzrost roślin. Powyższe właściwości były intensywnie badane w odniesieniu do szczepów o szczególnym znaczeniu gospodarczym i medycznym. Tymczasem pokrewieństwo filogenetyczne i podłoże ekologicznej dywersyfikacji szczepów izolowanych z gleby nie jest dostatecznie poznane. Analizowałam strukturę genetyczną 297 szczepów B. cereus s.l. wyizolowanych z gleby (i) Narwiańskiego PN, (ii) Białowieskiego PN, (iii) Biebrzańskiego PN oraz (iv) gospodarstwa rolnego w Jasienówce. Zidentyfikowałam homogeniczną grupę bakterii (i) zdolną do wzrostu w niskiej temperaturze (ekotyp psychrotolerancyjny) oraz (ii) syntetyzującą ciemno-brązowy barwnik (ekotyp melaninowy). Analizy MLST wskazują na istnienie specyficznych genotypów wśród naturalnych populacji B. cereus s.l. Ponadto wykazałam istnienie trzech grup filogenetycznych, obejmujących zmienną liczbę B. cereus, B. thuringiensis i B. mycoides. Jednakże analizy typów sekwencyjnych i kompleksów klonalnych wskazują, iż środowiskowe izolaty B. cereus s.l. nie reprezentują jednego gatunku. Szczegółowe badania genetyczne, fenotypowe oraz biochemiczne środowiskowych szczepów B. cereus s.l., rzuciły nowe światło na ewolucję oraz ekologiczną adaptację tych bakterii.B. cereus s.l. are widespread in natural environments and have a significant impact on human health, food industry, and agriculture. On one hand, members of this group synthetize various toxins harmful to humans, herbivores and invertebrates. On the other hand, they are also known as producers of various secondary metabolites whereby they degrade pollutants and promote the growth of plants and animals. These aspects have been intensively studied especially with regard to the B. cereus group members with the highest impact on human health and economy. Meanwhile, the phylogenetic relationships and the basis of ecological diversification of soil B. cereus s.l. remains largely undescribed. I investigated the genetic structure of 297 B. cereus s. l. soil isolates from diverse habitats in Northeastern Poland, such as (i) the Narew NP, (ii) the Białowieża NP, (iii) Biebrza NP, and (iv) agricultural land in Jasienowka. I identified homogenous groups of bacteria able to (i) growth in low temperature (psychrotolerant ecotype) and (ii) synthesis a dark pigment (melanotype). The MLST analysis indicates the existence of specific genotypes within the natural B. cereus s.l. populations. Phylogenetic studies revealed three major clades, in which B. cereus, B. thuringiensis and B. mycoides were intermixed. However, analysis of sequence types and clonal complexes indicate that environmental B. cereus s.l. do not represent one species. Detailed genetic, phenotypic and biochemical analyses of the environmental B. cereus s.l. strains shed new light on the evolution and ecological adaptation of these bacteria to specific soil habitats differing in scope of human activity.Wydział Biologiczno-Chemiczny. Instytut Biologii

    Detection and Removal of Priority Substances and Emerging Pollutants from Stormwater: Case Study of the Kołobrzeska Collector, Gdańsk, Poland

    No full text
    Progressive urban development affects environmental balance and disrupts the hydrologic cycle, in which rainfall plays a significant role. Since rainwater is considered a valuable resource of the environment, many technical solutions are implemented that enable effective rainwater management. On the other hand, stormwater runoff from urban areas contains numerous (also toxic) substances, and therefore should be properly treated. In this study, a multistage constructed wetland (MCW) pilot installation was used to remove selected groups of priority substances and emerging pollutants from rainwater discharged from the urbanized catchment of the Kołobrzeska stormwater collector in Gdańsk, Poland. The obtained results show that rainwater runoff was characterized by a variable concentrations of heavy metals (Zn, Cd, Cu, Ni, Pb, Hg), polycyclic aromatic hydrocarbons (benzo(a)pyrene, benzo(b)fluoranthene, phenanthrene, fluoranthene and pyrene) and microplastics. Depending on the hydraulic load of the bed, the reduction efficiency for heavy metals ranged from 26.19 to 100%, and for microplastics from 77.16 to 100%, whereas for polycyclic aromatic hydrocarbons it was consistently high, and equaled 100%

    Detection and Removal of Priority Substances and Emerging Pollutants from Stormwater: Case Study of the Kołobrzeska Collector, Gdańsk, Poland

    No full text
    Progressive urban development affects environmental balance and disrupts the hydrologic cycle, in which rainfall plays a significant role. Since rainwater is considered a valuable resource of the environment, many technical solutions are implemented that enable effective rainwater management. On the other hand, stormwater runoff from urban areas contains numerous (also toxic) substances, and therefore should be properly treated. In this study, a multistage constructed wetland (MCW) pilot installation was used to remove selected groups of priority substances and emerging pollutants from rainwater discharged from the urbanized catchment of the Kołobrzeska stormwater collector in Gdańsk, Poland. The obtained results show that rainwater runoff was characterized by a variable concentrations of heavy metals (Zn, Cd, Cu, Ni, Pb, Hg), polycyclic aromatic hydrocarbons (benzo(a)pyrene, benzo(b)fluoranthene, phenanthrene, fluoranthene and pyrene) and microplastics. Depending on the hydraulic load of the bed, the reduction efficiency for heavy metals ranged from 26.19 to 100%, and for microplastics from 77.16 to 100%, whereas for polycyclic aromatic hydrocarbons it was consistently high, and equaled 100%

    Notes on selenium in mushrooms data determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and hydride generation atomic absorption spectroscopy (HG-AAS) techniques

    No full text
    This manuscript discusses the credibility of the selenium in mushroom data generated using inductively coupled plasma atomic emission spectroscopy (ICP-AES) compared to that from hydride generation atomic absorption spectroscopy (HG-AAS). Selenium (Se) was determined by two methods: one was the widely applied and well validated hydride generation atomic absorption spectroscopy (HG-AAS) that was a reference method, while the validity of using the ICP-AES was tested. We found that Se determination in fungal and plant materials by ICP-AES gives inaccurate and imprecise results. Hence, reports of rather high concentrations of Se determined by ICP-AES for mushrooms that do not accumulate Se or that have not emerged at selenoferous areas should be treated with caution, because such data could be highly biased

    Piloting technologies for microplastics removal from urban waters : FanpLESStic-sea project report

    Get PDF
    The FanpLESStic-sea – “Initiatives to remove microplastics before they enter the sea” project funded by the EU Interreg Baltic Sea Region programme aimed at decreasing microplastic (MP) sources and removing MPs before they enter the Baltic Sea. As part of the project, novel and innovative removal technologies and methods for MPs in urban waters were developed and tested in four pilot systems by three project partners: a common reed filter for treatment of urban snow meltwaters and stormwaters by Natural Resources Institute Finland (Luke), an urban snow melting and filtering unit by Clewat Ltd. and Luke, a constructed wetland system for wastewater effluent by Gdansk Water Utilities, Poland, and a constructed wetland system for stormwater treatment by Gdansk Water. The results obtained from the four MP removal pilots were very promising. The filter consisting of harvested and bundled common reed is cost-effective and locally adaptable. However, due the insufficient time available for maturation of the reed filter, its performance in MP removal remained uncertain. Novel snow melting and filtering technology developed by Clewat Ltd. solves the problem of dumping urban snow untreated into the sea in a sustainable way. In this project, the efficiency of the snow treatment unit in MP removal was optimized concerning the mesh size for the finer filter used. The constructed wetland systems piloted showed MP removal efficiencies up to 90% from urban stormwaters and wastewater treatment plant effluent. In addition to retention of MPs present in various urban waters, high removal rates were demonstrated for total suspended solids, nutrients and various pollutants. However, additional longer-time pilot experiments are needed to optimize the performance of the systems, especially for those based on vegetation and biofilm formation. Environmental impact and techno-economic feasibility assessments were also performed for the piloted technologies
    corecore