26 research outputs found

    Individuals Following Anterior Cruciate Ligament Reconstruction Respond Differently To Limb Loading Instruction: A Clustering Analysis

    Get PDF
    Individuals following anterior cruciate ligament reconstruction (ACLr) demonstrate altered loading strategies such as shifting mechanical demand away from the surgical knee. Previous work found that individuals can restore limb loading symmetry with instruction to equalize weight distribution between limbs during a squat task. However, when looking at individual responses to these instructions, it appear that not all individual responded similarly. PURPOSE: To use k-means clustering to describe the variation in response to instruction to equalize weight between limbs in individuals 3-4 months post-ACLr. METHODS: We performed a secondary analysis of a dataset including two groups: individuals 110.4 days (18.4 days) post-anterior cruciate ligament reconstruction (ACLr; n = 20) and healthy matched controls (CTRL; n = 19). Kinematic and kinetic data were collected (3D motion capture system, force platforms) while participants performed squats in natural (no instruction; N) and instructed (instructed to evenly distribute their weight between limbs; IN) conditions. Limb and knee loading symmetry were calculated as the ratio of vertical ground reaction force and knee extensor moment impulse, respectively, between surgical (Sx):matched and non-surgical (non-Sx):matched limbs (ACLr:control). K-means clustering created three clusters based on natural and instructed LLS and KLS and the between condition difference of LLS and KLS. RESULTS: Three clusters were defined describing various responses to limb loading instruction: 1) non-responders, 2) symmetrical responders, and 3) overloading responders. A random forest algorithm was used to find the most influential variables and identified natural KLS to be the most important variable in clustering. CONCLUSION: Only 20% of participants in our sample of individuals following ACLr improved knee loading to be symmetrical when given instruction to equalize weight between limbs. This instruction may not be effective in restoring knee loading in the post-ACLr population

    MicroRNA-Integrated and Network-Embedded Gene Selection with Diffusion Distance

    Get PDF
    Gene network information has been used to improve gene selection in microarray-based studies by selecting marker genes based both on their expression and the coordinate expression of genes within their gene network under a given condition. Here we propose a new network-embedded gene selection model. In this model, we first address the limitations of microarray data. Microarray data, although widely used for gene selection, measures only mRNA abundance, which does not always reflect the ultimate gene phenotype, since it does not account for post-transcriptional effects. To overcome this important (critical in certain cases) but ignored-in-almost-all-existing-studies limitation, we design a new strategy to integrate together microarray data with the information of microRNA, the major post-transcriptional regulatory factor. We also handle the challenges led by gene collaboration mechanism. To incorporate the biological facts that genes without direct interactions may work closely due to signal transduction and that two genes may be functionally connected through multi paths, we adopt the concept of diffusion distance. This concept permits us to simulate biological signal propagation and therefore to estimate the collaboration probability for all gene pairs, directly or indirectly-connected, according to multi paths connecting them. We demonstrate, using type 2 diabetes (DM2) as an example, that the proposed strategies can enhance the identification of functional gene partners, which is the key issue in a network-embedded gene selection model. More importantly, we show that our gene selection model outperforms related ones. Genes selected by our model 1) have improved classification capability; 2) agree with biological evidence of DM2-association; and 3) are involved in many well-known DM2-associated pathways

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    Presentation

    No full text

    Protocol

    No full text

    BKN 553 Final Project Team Mobile MoCap

    No full text

    Analysis Scripts

    No full text

    Data

    No full text
    corecore