8 research outputs found

    Catalytic Isomerization of Olefins and Their Derivatives: A Brief Overview

    Get PDF
    Carbon–carbon double bond (CCDB) isomerization is a method for synthesizing new organic compounds from olefins and their derivatives, which was based on C=C migration along carbon chain and cis/trans transform, and it plays a vital role in the fields of organic synthesis, synthesis of daily chemicals, raw oil’s development and synthesis of natural products and so on. In this paper, advances of five types of catalytic methods for CCDB of olefins and their derivatives since the 1960s were discussed in detail; Based on his recent work, the author mainly introduces the application and development of photocatalysis in CCDB of olefins and their derivatives

    Empirical Approximation for the Stochastic Fundamental Diagram of Traffic Flow on Signalized Intersection

    No full text
    The wide scattering nature of the fundamental diagram (FD) with observed flow-density data may be associated with the dynamical traffic flow process, especially on signalized intersection. To describe the uncertainty of FD, in this work we established stochastic fundamental diagram (SFD) which is defined by the distributions of shockwave speed. Our approach is based on a two-level stochastic process of the traffic flow system in terms of the dynamics of traffic density and state mode associated with signal phases which is named switching linear dynamical systems (SLDS). Then, variational Bayesian learning method is adopted to compute the distributions of SFD parameter to approximate the experimental distributions of shockwave calculated by the observed flow-density data. Given traffic flow data from the NGSIM program, the verification result demonstrated that the SFD can be more helpful to capture the main features of the observed widely scattering of the flow-density data compared with FD. With the shockwave speed sampled from the SFD, the SLDS could describe the dynamic characteristics of traffic flow and be applied to the maximum likelihood estimation of traffic density or flow rate. Because it is simple and automatically calculated, the SFD provides an alternative description for fundamental diagram and its uncertainty in the traffic flow

    A Study into the γ-Al2O3 Binder Influence on Nano-H-ZSM-5 via Scaled-Up Laboratory Methanol-to-Hydrocarbon Reaction

    No full text
    Development of a laboratory selected zeolite into an industrial zeolite-based catalyst faces many challenges due to the scaling-up of reaction which requires many upgrades of the as-prepared catalyst such as an enhanced physical strength. To meet this requirement zeolite powders are normally mixed with various binders and then shaped into bulky bodies. Despite the fact there are a lot of reports on the positive features brought by the shaping treatment, there is still a great need to further explore the zeolite properties after the binder introduction. In this case, a lot of studies have been continuously conducted, however, many results were limited due to the usage of much smaller laboratory samples rather than a real factory plant, and more importantly, the maximal/minimal proportion of zeolites in the shaped catalyst. In this research, our shaped catalysts are based on nano-H-ZSM-5 zeolites and alumina (γ–Al2O3) binder while keeping the zeolite content to a maximum. H-ZSM-5 samples and Al-H-ZSM-5 samples are compared in the designed methanol-to-hydrocarbons reaction. With a reduced weight-hourly-space-velocity (WHSV = 1.5 h−1) and a higher reaction pressure (6 bar) favorable for aromatization, together with the tailored instruments for catalyst volume scale-up (20 g samples are tested each time), our tests focus on the early period catalytic performance (during the first 5 h). Unlike a normal laboratory test, the results from the scaled-up experiments provide important guidance for a potential industrial application. The role of the γ–Al2O3 introduced, not only as binder, but also performing as co-catalyst, on tailoring the early time product distribution, and the corresponding coke deposition is systematically investigated and discussed in details. Notably, the Si/Al ratio of H-ZSM-5 still has a decisive influence on the reaction performance of the Al-H-ZSM-5 samples

    Surface Nitridation of Aluminum Nanoparticles by Off-Line Operation and Its Kinetics Analysis

    No full text
    To improve combustion efficiency and anti-oxidation property of aluminum nanoparticles (ANs), surface nitridation of ANs was performed in a pipe furnace under the protection of nitrogen gas in a glove-operation hermetic box via an off-line nitridation process. The product was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. A core-shell nanostructure with an aluminum nitride (AlN) coating on the ANs core was observed. The empirical kinetic triplets (Ea, A, and f(α)) for the nitridation of ANs, for the first time, were calculated and analyzed using five types of iso-conversional methods and a differentiation method. The effects of the kinetics of the reaction were investigated by simultaneous differential scanning calorimetry–thermogravimetry (DSC-TG) and thermal analysis using linear programmed temperature at different heating rates

    Understanding the Antifouling Mechanism of Zwitterionic Monomer-Grafted Polyvinylidene Difluoride Membranes: A Comparative Experimental and Molecular Dynamics Simulation Study

    No full text
    The antifouling process of the membrane is very vital for the highly efficient treatment of industrial wastewater, especially high salinity wastewater containing oil and other pollutants. In the present work, the dynamical antifouling mechanism is explored via molecular dynamics simulations, while the corresponding experiments about surface properties of the zwitterionic monomer-grafted polyvinylidene difluoride membrane are designed to verify the simulated mechanism. Water can form a stable hydration layer at the grafted membrane surface, where all the simulated radial distribution function of water/membrane, hydrogen bond number, water diffusivity, and experimental oil contact angles are stable. However, the water flux across the membrane will increase first and then decrease as the grafting ratio increases, which not only depends on the reduced pore size of the zwitterionic monomer-grafted membrane but also results from water diffusion. Furthermore, the dynamical fouling processes of pollutants (taking sodium alginate as an example) on the grafted membrane in water and brine solution are investigated, where both the high grafting ratio and electrolyte CaCl2 can enhance the fouling energy barrier of the pollutant. The results show that both the enhanced hydrophilic property and the electrostatic repulsion can affect the antifouling capability of the grafted membrane. Finally, the ternary synergistic antifouling mechanisms among the zwitterionic membrane, electrolyte, and pollutant sodium alginates are discussed, which could be helpful for the rational design and preparation of new and highly efficient zwitterionic antifouling membranes

    Wettability of a Polymethylmethacrylate Surface by Extended Anionic Surfactants: Effect of Branched Chains

    No full text
    The adsorption behaviors of extended anionic surfactants linear sodium dodecyl(polyoxyisopropene)4 sulfate (L-C12PO4S), branched sodium dodecyl(polyoxyisopropene)4 sulfate (G-C12PO4S), and branched sodium hexadecyl(polyoxyisopropene)4 sulfate (G-C16PO4S) on polymethylmethacrylate (PMMA) surface have been studied. The effect of branched alkyl chain on the wettability of the PMMA surface has been explored. To obtain the adsorption parameters such as the adhesional tension and PMMA-solution interfacial tension, the surface tension and contact angles were measured. The experimental results demonstrate that the special properties of polyoxypropene (PO) groups improve the polar interactions and allow the extended surfactant molecules to gradually adsorb on the PMMA surface by polar heads. Therefore, the hydrophobic chains will point to water and the solid surface is modified to be hydrophobic. Besides, the adsorption amounts of the three extended anionic surfactants at the PMMA–liquid interface are all about 1/3 of those at the air–liquid interface before the critical micelle concentration (CMC). However, these extended surfactants will transform their original adsorption behavior after CMC. The surfactant molecules will interact with the PMMA surface with the hydrophilic heads towards water and are prone to form aggregations at the PMMA–liquid interface. Therefore, the PMMA surface will be more hydrophilic after CMC. In the three surfactants, the branched G-C16PO4S with two long alkyl chains exhibits the strongest hydrophobic modification capacity. The linear L-C12PO4S is more likely to densely adsorb at the PMMA–liquid interface than the branched surfactants, thus L-C12PO4S possesses the strongest hydrophilic modification ability and shows smaller contact angles on PMMA surface at high concentrations

    Wettability of a Polymethylmethacrylate Surface by Extended Anionic Surfactants: Effect of Branched Chains

    No full text
    The adsorption behaviors of extended anionic surfactants linear sodium dodecyl(polyoxyisopropene)4 sulfate (L-C12PO4S), branched sodium dodecyl(polyoxyisopropene)4 sulfate (G-C12PO4S), and branched sodium hexadecyl(polyoxyisopropene)4 sulfate (G-C16PO4S) on polymethylmethacrylate (PMMA) surface have been studied. The effect of branched alkyl chain on the wettability of the PMMA surface has been explored. To obtain the adsorption parameters such as the adhesional tension and PMMA-solution interfacial tension, the surface tension and contact angles were measured. The experimental results demonstrate that the special properties of polyoxypropene (PO) groups improve the polar interactions and allow the extended surfactant molecules to gradually adsorb on the PMMA surface by polar heads. Therefore, the hydrophobic chains will point to water and the solid surface is modified to be hydrophobic. Besides, the adsorption amounts of the three extended anionic surfactants at the PMMA–liquid interface are all about 1/3 of those at the air–liquid interface before the critical micelle concentration (CMC). However, these extended surfactants will transform their original adsorption behavior after CMC. The surfactant molecules will interact with the PMMA surface with the hydrophilic heads towards water and are prone to form aggregations at the PMMA–liquid interface. Therefore, the PMMA surface will be more hydrophilic after CMC. In the three surfactants, the branched G-C16PO4S with two long alkyl chains exhibits the strongest hydrophobic modification capacity. The linear L-C12PO4S is more likely to densely adsorb at the PMMA–liquid interface than the branched surfactants, thus L-C12PO4S possesses the strongest hydrophilic modification ability and shows smaller contact angles on PMMA surface at high concentrations
    corecore