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Chapter

Catalytic Isomerization of Olefins
and Their Derivatives: A Brief
Overview
Wangjing Ma, Bonan Liu, Duanda Wang, Jun Zhao,

Lu Zhang and Lei Zhang

Abstract

Carbon–carbon double bond (CCDB) isomerization is a method for synthesizing
new organic compounds from olefins and their derivatives, which was based on
C=C migration along carbon chain and cis/trans transform, and it plays a vital role
in the fields of organic synthesis, synthesis of daily chemicals, raw oil’s development
and synthesis of natural products and so on. In this paper, advances of five types of
catalytic methods for CCDB of olefins and their derivatives since the 1960s were
discussed in detail; Based on his recent work, the author mainly introduces the
application and development of photocatalysis in CCDB of olefins and their
derivatives.

Keywords: olefins, carbon–carbon double bond, isomerization, photocatalyst

1. Introduction

Olefins, also known as alkenes, are examples of unsaturated hydrocarbons and
are made up of hydrogen and carbon atoms only and contain one or more pairs of
carbon–carbon double bonds (CCDB). One CCDB consists of one sigma bond and
one pi bond and is stronger than carbon–carbon single bond (611 kJ�mol�1 for C=C
vs. 347 kJ�mol�1 for C-C), shorter than carbon–carbon single bond (average bond
length: 0.134 nm for C=C vs. 0.154 nm for C-C). Depending on the position of the
CCDB, olefins can be divided into terminal olefins, that the double bond is located
at the terminal of a linear carbon chain (also called α-alkenes), and internal olefins,
that the double bond is taking place at the inner side of carbon chain. It was valuable
to study the effects of a CCDB’s migration along the carbon chain on the hydrocar-
bons’ activity and applications of a CCDB’s migration along the carbon chain in oil
drilling, surfactants, lubricants, fine chemicals, agrochemicals, pharmaceuticals,
and other fields.

The following discussion will focus mainly on the isomerization of olefin, or
migration of CCDB on linear alkenes. The functionalities of olefins, mainly for
industrial and pharmaceutical purposes, vary by the location of CCDB on the alkene
chains herein. Migration of CCDB is an important atom-economic reaction. New
high valuable alkenes can be obtained from some inexpensive ones using the
CCDB’s migration along the carbon chain or cis/trans isomerism, as shown in
Figure 1.
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It is difficult for alkenes to synthesize positional or geometrical isomer by the
conventional method, while relatively easier by isomerization [1]. In general, there
are five methods to realize the olefine isomerization: acid catalysis, basic catalysis,
molecular sieves, organometallic chain-walking catalysis, photocatalysis. These
catalysis function mechanism varies, has the characteristic respectively. In the rest
of the chapters, these five major categories of olefin isomerization methods will be
explained in detail.

2. Acidic catalysis

The terminal linear alkenes generally range of C4 through C20 were isomerized
to internal linear alkenes over a selective, strong acid catalyst to improve the
positive CCDB isomerization and not catalyze oligomerization, cracking, skeletal
isomerization, or alkylation. Firstly, the interaction of CCDB and acidic catalyst
creates dissociation proton and then active carbonium ions, then induces dissocia-
tion among ortho protons; eventually generating new ectopic CCDB mixed olefin
with certain cis/trans (Z/E) ratio in terms of thermodynamically stable.

Since the 1930s, Ipatieff et al. [2] studied isomerization of butene using various
catalysts such as phosphoric acid, perchloric acid, toluene-p-sulfonic acid and zinc
chloride solutions, shown in Figure 2. In the 1960s, F. Asinger and his co-workers
[3] catalyzed isomerization of α-undecene to form internal undecene with homo-
geneous catalyst like sulfuric acid, perchloric acid and other moderately strong acid,
respectively, shown in Figure 3.

Figure 1.
C=C isomerization of alkenes. R, or R’= -H, -OH, alkyl, alkenyl, phenyl, cycloalkyl, cycloalkenyl, -CHO,
-COOH, -COOR etc.

Figure 2.
C=C isomerization in butene.

Figure 3.
C=C isomerization in α-undecene.
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α-alkenes can be isomerized into mixed internal olefins isomers under appropriate
solvents systems, acidity, temperature, and other reaction conditions that enhance
catalysis. As a catalytic system, perchloric acid/anhydride can promote isomerization
of α-undecene under 100°C in a high conversion rate with few side reactions (mainly
oligomerization) [3]. Other Lewis acids such as boron (tri)fluoride (BF3), aluminum
chloride (AlCl3), and borofluoric acid (HBF4) were used to catalyze α-undecene to
lead to more α-undecene oligomerization in even less time. However, acidic catalysts
used inhomogeneous reactions like those mentioned above are hard to recycle and
high in attrition rate. Therefore, recent research mainly focuses on using solid acids
Al2O3, SiO2, WO3, Al2O3-SiO2, mesoporous Ti, Nb and Ta oxides, etc., on performing
the acidic olefin isomerizations, which are heterogeneous catalysts [4–8]. Their catal-
ysis efficiencies depend on their acidity in general. To increase the surface acidity and
catalytic activities of these heterogeneous catalysts, researchers covered them, alumi-
num oxides/salts or silicon/silica, by a various set of materials as follows: (1) proton
acids (sulfuric acid, phosphoric acid, hydrochloric acid, nitric acid, boric acid,
hydrofluoric acid); (2) Lewis type acids (AlCl3, SbF5, BF3, and P2O5); (3) ammonium
salts (NH4F). (4) Strong chlorinating agents (PCl3 and PCl5); (5) a strong Lewis acid
like CH3AlCl2; (6) molecular halogens (Cl2 and I2) [4].

AlCl3, as a Lewis acid, is a problematic catalyst for CCDB isomerization of
alkenes which forms more by-product, requires large dosage of catalysts and hard to
recycle. Acid sites in γ-Al2O3 as an amphoteric oxide can be used as catalytic center
to catalyze isomerization of α-molecule to promote CCDB’s migration and cis-trans
isomerism, while non-acidic sites in catalysts can promote other side reactions such
as alcohol dehydration; As a heterogeneous catalyst, SiO2-Al2O3-MgO promoted 1-
butene isomerized to both cis- and trans-2-butene with the isomerization taking
placing via π-complexes on the acidic sites of the catalysts, which are easy to be
separated from reaction system, thus gradually replacing the homogeneous catalysts
to be applied in olefin isomerization (Table 1).

Among metals oxide listed in Table 2, either sulfated mesoporous Nb oxides
(C12H2SO4 Meso Nb) or Ta oxides (C12H2SO4 Meso Ta) showed higher activities
and selectivity than sulfated mesoporous Ti oxides (C12H2SO4 Meso Ti), Amberlyst
15, HY zeolite and H-ZSM5 in CCDB isomerization of 1-hexene. The conversion rate
of 1-hexene to trans/cis 2-isomers reaches 95.89% when using C12H2SO4 meso Ta as
catalysts in 4 hrs was reported. And the ratio of trans/cis isomers reaches up to 3.7
after 6 hrs, shown in Figure 4. C12H2SO4 meso Ta showed both high activity and
selectivity, which can be attributed to its high BET surface area (292.19 m2�g�1),

Sample pH Acid amount (mmol�g�1)

C12Meso Ti +3.3 2.0

C12H2SO4 Meso Ti +0.8 4.7

C12Meso Nb �6.6 2.4

C12H2SO4 Meso Nb �8.2 31.7

C12Meso Ta �6.6 0.4

C12H2SO4 Meso Ta �8.2 19.8

HY Zeolite �6.6 1.5

H-ZSM5 �4.4 16.1

Amberlyst 15 N/A N/A

Table 1.
Acid strength and acid amount of solid acid catalysts (measured by Hammett indicators and n-butylamine
titration) [9].
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Material Xi (%) Si (%) TOF�103(s�1)

SAC-13 82 65 36

XZO 1251 51 55 27

XZO 1251a 98 �30 120

SAPO-11 74 83 2.3

ZSM-35 74 66 4.1

K2620 79 70 0.81

AM-15b 23 78 0.41

AM-35 74 76 0.75

AM-70 7.1 24 0.062

AM-XN1010 74 43 1.3

BCPR4 4.2 31 1.3

BCPR5 15 74 4.2

BCNA2 0 N/A 0
a185°C
b110°C
Xi: Conversion to internal alkene;
Si: Selectivity to internal alkene;
TOF: Turnover frequency based on the measured acid site densities are defined by Eqs. (1)–(3).

Xi ¼ 1�mol
Terminal, Product

mol Terminal, Feedð Þ

� �

� 100%
�

(1)

Si ¼
moles Target, Productð Þ �moles Target, Feedð Þ

moles Targetþ Branched þ 2�Dimer, Productð Þ �moles Targetþ Branchedþ 2�Dimer, Feedð Þ

� 100%

(2)

TOF ¼
Xi %ð Þ

100%
�

mLC16

min

� �

�
0:783gC16

mLC16

� �

�
molC16

224gC16

� �

�
g catalyst

meq

� �

�
1

g catalyst

� �

�
1000 meq

mol

� �

�
1 min
60s

� �

(3)

The TOFs in Table 2 were determined from the calculated first-order rate constants, although in practice these
numbers are very similar to what is found using Eq. (3).

Table 2.
Isomerization of α-hexadecenes catalyzed by solid acid catalysts listed [10].

Figure 4.
C=C isomerization in α-hexene catalyzed by C12H2SO4 mesoporous Ta oxide.
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optimal pore size (18.2 Å), and increased concentration of active Brønsted acid sites
on the surface of the mesoporous channels [8].

Heteropoly acids (HPAs) are a unique type of materials that are active both in
oxidation–reduction and acid catalysis [9, 11, 12]. The polyoxometalates form
heteropoly anions with metal-oxygen octahedra and work as the basic structural
unit. The Keggin-type HPAs are the most important in catalysis: the Keggin
heteropoly anion has the empirical formula, XM12O40n

�, wherein X is a non-metal
heteroatom (e.g. P5+, Si4+ or B3+) and M is a metal addenda atom (e.g. MO, W, V,
Ce, Zr, Nb, Sb and Ti). Exemplary Keggin heteropoly acids in which X is phospho-
rus. 12-tungstophosphoric (H3PW12O40, TPA) is the most usual catalyst of choice
because of its high acidic strength and relatively high thermal stability. They are
strong Brønsted acid catalysts, and are stronger than conventional solid acids like
zeolites and mixed oxides.

HPAs can be used either directly as a bulk material or with the supports. The
supported form is preferable because of relatively higher surface area compared
with the bulk material (5–8 m2�g�1) and better accessibility of reactants to the active
sites, on the premise that carriers have little interaction with HPAs. Solid carriers,
including acidic (silica, acidic ion-exchange resin) and neutral solids carriers (active
carbon), have been reported that are suitable as HPA supports. The molecular
structure is shown in Figure 5.

Zhiping Du et al. [12] used HPAs supported by Al2O3 to catalysis on isomerization
of 1-hexene to 2-hexene, 3-hexene, and 1-octene to 2-octene, 3-octene, 4-octene, etc.
They investigated the influence of catalyst dosage, time, temperature, reactant
purity, activation conditions of the HPAs, and supporting materials on the isomeri-
zation efficiency of 1-hexene and 1-octene. Their study showed that HPAs could
promote olefin isomerization under a low temperature that CCDB migration and
cis-trans isomerization take the main place with little skeleton isomerization.

However, HPAs catalysts for CCDB isomerization of alkenes are not perfect and
do have it own problems. A typical issue is the thermal stability of HPAs wasn’t high
enough for conventional regeneration by the burning of coke at 500–550°C as
routinely used in the case of zeolites and aluminosilicates because susceptibility of
these types of catalysts to deactivation during organic isomerization reactions due
to the formation of carbonaceous deposits (coke) on the catalyst surface.

Cation exchange resin (CER) [13–20] is a type of solid catalysts in which its
catalytic mechanism is the same as homogeneous catalysts, while it does have active
sites like silica gel, Al2O3, and zeolite as carriers, brings to CER become a pseudo
homogeneous system. CER is used to catalyze gaseous short-chain alkene isomeri-
zation (C4�C7). For example, α-butene could be isomerized to form certain cis/
trans ratio 2-butene with yields up to 90% [10, 21–29]. In general, advantages of

Figure 5.
The structure of 12-tungstophosphoric acid.
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CER are: (1) it can be made in different shapes, structures and load capacities for
different application purposes; (2) active groups are usually located on the surface
of internal holes of CER, which is easy to contact with olefin molecular with faster
reaction rate and higher yields; (3) catalysts are pseudo homogeneous, which means
separation between catalysts, reactants and products are easier than homogeneous
catalysts, for instant, homogenous acid catalysts have to deacidify after the reaction;
so that bring to (4) catalyst may be reused for several times to avoid waste liquid’s
pollution to environment.

3. Basic catalysis

In base catalysis of olefin isomerization, α-alkenes or their derivatives (1) form
secondary (or tertiary) carbanions with the base anions (B�), then (2) rearrange
into more stable primary carbanions, which (3) react with base (BH) to form new
internal alkenes or their derivatives.

Forming cis-isomers is preferred in base-catalytic isomerization because the allyl
intermediate is generated by losing protons from the olefin, and cis-isomer is more
stable than trans-isomer.

The Shell Higher Olefin Process (SHOP) is a well-known and important base
catalytic method that the Royal Dutch Shell commercialized in 1977 to produce α-
olefins with controllable length from ethylene and subsequently to manufacture the
corresponding aldehydes and fatty alcohols for producing detergents and surfac-
tants [30]. The SHOP process incorporates the following reactions: oligomerization
(Figure 6) [30], double bond isomerization (Figure 7a), and metathesis
(Figure 7b) [30–32].

Some long chain alkenes isomerization, like isomerizing α-C34H68 to 11-C34H68,
is industrially accomplished by Na/K loaded Al2O3 catalyst, or MgO, under reaction
temperature at 80–140°C and pressure at 0.34–1.72 MPa [30–32]. The conversion
rate of α-C34H68 into 11-C34H68 is more than 90%. Then subjected to the metathesis
reaction, and in which catalysts comprising an alkali metal such as sodium, potas-
sium dispersed on a high surface area, mainly inert, solid supporter, such as Al2O3

were prepared at the temperature between 5 and 50°C and in the molecular-
oxygen-containing activating gas of oxygen-to-alkali ratio of 0.01–2 [31]. In the
other case, catalyst on CCDB isomerization were those that have little

Figure 6.
Oligomerization of ethylene by Ni catalysts under 80–120°C, and 1000-2000psig.

Figure 7.
SHOP process steps: a) alkene isomerization and b) metathesis.
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polymerization and cracking, and include supported bauxite, alumina supported
cobalt oxide or iron oxide or manganese oxide, and so on [32].

Under the conditions like that of isomerization, higher molecular like 11-C34H68

reacted with lower molecular like butadiene in metathesis reaction to produce
a mixture of olefins such as internal C13H26, and C25H50, which are for
chemical intermediates required by surfactants and detergents. The oligomerization
of ethylene by Ni catalysts in the SHOP process was showed in the follows as
Figure 8 [18].

The industrial manufacturing of co-monomer ethylidene norbornene (ENB) also
utilizes the alkene isomerization [33]. The reaction pathway is using Na-loaded-
Al2O3 catalyst to the vinyl norbornene, produced from a Diels-Alder reaction,
which deprotonated, rearranged, and reprotonated into the ENB (Figure 9).

Sumeet K. Sharma et al. [34] studied the selective double bond isomerization of
allyl phenyl ethers catalyzed by ruthenium metal complexes, achieve a conversion
rates of methyl chavicol (99.7%) with 95.4% selectivity of trans-anethole and euge-
nol (99.8%) with 95.6% selectivity of trans-isoeugenol in ethanol using
RuCl2(PPh3)3 catalyst. Ruthenium catalysts [35, 36] are relatively expensive,
although they present an extraordinary performance on catalysis efficiency, the
potential of massive production are very gloomy. On the other hand, inexpensive

Figure 8.
The oligomerization of ethylene by Ni catalysts of the SHOP process.

Figure 9.
Ethylidene norbornene formation by catalyzed isomerization of vinyl norbornene.
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transition metals catalysts usually have a poorer performance, but it is more likely
for industrial scale production after enhancing their efficiency.

Jiraporn Puriwat et al. [37] studied the gas-phase isomerization of 1-butene to 2-
butene on the MgO/Mg(OH)2 catalysts containing different basicity sites (i.e. weak,
medium, and strong basic sites). The isomerization reactions mainly occur on either
the strong or the medium-strength basic sites. In fact, the weak basic sites had little
impact on the isomerization activity. The crystalline MgO contained both weak and
strong basic sites, while the Mg (OH)2 phase exhibited only the medium strength
sites. In the lattice of crystalline MgO, strong basic sites are coming from the
presence of oxygen atoms. The medium strength basic sites in Mg (OH)2 risen from
the hydroxyl groups in the Mg (OH)2 structure.

Some strong base, like KOH [38], can be used independently in DMSO or
alkoxide system, to catalyze position isomerism of propenyl C=C, to produce the
intermediate could be applied in the perfume, cosmetic, pharmaceutical, and mate-
rials chemistry, and also as intermediates in synthetic sequences for the construc-
tion of more complex products. KOH, or NaOH was also a catalyst on C=C
isomerization of allyl aromatics estragole and eugenol. Allyl aromatics estragole and
eugenol could further turn into the corresponding alkenyl aromatics trans-anethole
and trans-isoeugenol, respectively. Under certain conditions, 56% conversion was
achieved with modest E:Z in 12 hours. This methodology does have drawbacks
including the following as: the use of strong base in stoichiometric amounts, longer
reaction times, incomplete conversion of reactant, low selectivity for the trans-
isomer, high temperatures, caustic waste, and the likely need to separate the cis-
isomer [39, 40].

4. Molecular sieves

According to the carrying amount of acid sites or alkaline sites, the molecular
sieve can be divided into acid catalyst and base catalyst. Due to their unique struc-
tures and a broad prospect in industrial application, taking molecular sieves as an
option is unavoidable for studies on catalysis that would like to apply their founds
on an industrial scale. For the CCDB isomerization of alkenes, molecular sieves can
be further subdivided into zeolite and non-zeolite catalysts. Non-zeolite molecular
sieve are those formed by metal skeleton compound MOF, SAPO, etc. [41, 42].

Hu etc. al. [40] reported that mesoporous molecular sieve supported vanadium
catalysts such as V-MCM-41, V-SBA-15 and V-TUD-1 with different pore structures
and pore sizes were prepared via a post-synthesis grafting method using atomic
layer deposition, by means of which the isomerization of 1-heptene was employed
as a reaction probe to characterize the acid properties of these catalysts with mod-
erate acid strengths. The results were that conversion yield as high as 92% at 600 K
and isomer selectivity over 90% (mainly double bond shift products) over the V-
SBA-15 catalyst were achieved.

Gajda et al. [41–45] developed a series of non-zeolite molecular sieve (NZMS) in
succession in 1990s. The composition of synthetic molecular sieves, pore structure,
and active component distribution at molecular level is controllable. It successfully
catalysis CCDB isomerism of α-butene, α-pentene and other short-chain olefin, to
produce tertiary olefins, which can be used to make high octane ether compounds
required by reformed gasoline. The preferred NZMS were the silicoalumino-
phosphate molecular sieves described in the patent [42], which are disclosed as
microporous crystalline silicoaluminophosphates. They have a three-dimensional
microporous framework structure of PO2

+, AlO2
� and SiO2 tetrahedral units, and

whose empirical chemical composition on an anhydrous basis is:
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mR : SixAlyPz
� �

O2 (4)

wherein “R” represents at least one organic templating agent presented in the
intracrystalline pore system; “m” represents the moles of “R” present per mole of
(SixAlyPz)O2 and has a value of from 0.02 to 0.3; “x”, “y” and “z” represent the mole
fractions of silicon, aluminum, and phosphorus present in the oxide moiety. Gajda
et al. [46, 47] further developed a method to increase the proportion of isobutene
with less by-products, by using a catalyst comprising at least one NZMS, which
contains framework tetrahedral units (TO2) of aluminum (AlO2), phosphorus (PO2),
and at least one additional element (EL) as a framework tetrahedral unit (ELO2).

A NZMS made up by Ferroaluminophosphates are also presented in patent [48],
which has a three-dimensional microporous crystal framework structure of AlO2,
FeO2 and PO2 tetrahedral units, and whose empirical chemical composition on an
anhydrous basis is:

mR : FexAlyPz
� �

O2 (5)

Or the NZMS were crystalline microporous aluminophosphates in which the
substituent metal is one of a mixture of two or more divalent metals of the group
magnesium (Mg), manganese (Mn), zinc (Zn) and cobalt (Co), presented in patent
[49], whose empirical chemical composition on an anhydrous basis is:

mR : MxAlyPz
� �

O2 (6)

Or the NZMS were the MnAPSO molecular sieves [50] which have a framework
structure of MnO2, AlO2

�, PO2
+ and SiO2 tetrahedral units whose empirical chem-

ical composition on an anhydrous basis is:

mR : MnwAlxPySiz
� �

O2 (7)

Zeolite catalysts are aluminosilicate salts, depending on their pore structures and
adjustable acidities, they could be divided into X-, Y-, ZSM-5, β-type, etc. [51, 52].

5. Organometallic “chain-walking”catalysts of transition metal

Depending on the element they used, transition metal catalysts can be classified
as noble metal catalysts or non-noble metal catalysts. Noble metals, by definition,
are metallic elements distributed in group VB, VIB, VIIB, and VIII. Typical exam-
ples are Pd, Ru, Rh, Ir, Os, etc. [38, 53–60]. Their complex compounds catalyze the
isomerization by converting the double bonds of the α-alkenes to the β and γ

positions, which is different from the acidic catalyst that catalyzes the isomerization
reaction by converting the double bonds of both α- and β-alkenes to internal posi-
tions further. It also promotes side reactions that include cracking, oligomerization,
skeletal isomerization, and alkylation.

Noble metal catalysts, however, are expensive and unrecyclable, which limited
their application in the industry. While some common metals like Fe, Cu, Zn, Co,
etc. [38, 61–64] are much cheaper and can promote C=C migration of α-linear
olefins to generate internal olefins in high efficiency, too, providing another option.
For example, CoCl2 and Grignard reagent can isomerize α-tetradecene to generate
(E)-2-, (Z)-2-, 3-tetradecene, and other isomers under 50 Celcius degree [38]. Also,
Fe and Co complex compounds can shift the position of the C=C on the allyl
benzene side chain, isomerized, and generated into various allyl benzene
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intermediate. These can be used as intermediate of perfume, antibiotics, insecti-
cides, anti-Leishmania drugs, antifungal, algae inhibitors, anti-inflammatory drugs,
antioxidants etc., which leads to a strong industrialized potential.

6. Photocatalysis

In 1983, the photocatalytic carbonylation synthesis reaction of aromatic haloge-
nated hydrocarbons was realized, leads the dawn of the application of
photocatalysis in organic synthesis. In the few decades, photocatalytic ring-opening
polymerization and photocatalytic epoxidation of olefins have been reported, which
makes photocatalytic organic synthesis has become an important branch in the field
of photocatalysis. Comparing to the thermal catalysis, photocatalysis reactions are
relatively environmental friendly, requiring more mild reaction conditions, differ-
ent selectivity of isomers’ structures. These advantages provide some special merits
that brings more options when chooses the reaction routes for both academic
studies and industrial manufacturings.

Cirjak and his co-workers [65] used metal clusters (C5R5)aFebMc(CO)dLe as the
photocatalyst to catalysis isomerism of olefin, in which the catalyst’s absorption
wavelength covers up to 220 nm with a low yield. Except for catalysis on CCDB
position migration isomerism of alkenes, some photocatalysts such as Pd@TiO2,
could shift the allylic C=C position of the allyl aromatics along allyl chain to form
isomers [66]. [HFeM(CO)8L

�] or Fe(CO)5 can be used as photocatalyst in THF to
catalyze 1-allylbenzene at room temperature under illumination conditions, isom-
erized into 2-allylbenzene [67]. Under mild conditions, the reaction productivity is
over 98%, and the E/Z ratio in product is 10:1 which is a decent selectivity.

Recent years, Ma et al. [68] discovered a series of solid heteropoly acids and their
supported zeolite sieves as photocatalyst to catalysis on CCDB isomerization of
alkenes. A small amount of catalysts shows a strong catalytic activity on C=C
isomerization of linear chain α-olefin (C5-C20) into internal olefins under visible
light, in which the conversion rate can be up to 80% in 1 hour, and presents a high
isomer selectivity (either E or Z). It was perfectly avoiding the complicated separa-
tion of E&Z isomers which is important for some purposes, like pharmaceutically,
which do require isomer selectivity. Under ultraviolet irradiation, the catalysts to
oleic acid (CH3(CH2)7CHCH(CH2)7COOH, cis), priority to generate 3-trans-, 6-
trans-, 11-trans-octadecenic acid and so on, with the conversion rate being up to
80% in 1 hour. The catalytic system also can catalyze a series of phenylpropyl
compounds to make CCDB isomerization under ultraviolet irradiation, mild tem-
perature and ordinary pressure to produce certain location isomer, which were
widely used in production of high value chemical products applied in the field of
medicine, biology and materials science, as shown in Figure 10.

This type of multifunctional catalyst combined four catalysis: photocatalysis,
acid catalysis, molecular sieve catalysis and transition metal catalyzers which syn-
ergistically worked to promote C=C double bond migration of olefins and its deriv-
atives. The main problems are as following: narrow catalysis absorption wavelength
range, which was mainly in ultraviolet and near ultraviolet regions, low utilization
of solar energy; the recombination rate of photo-generated carriers and hole is high,
which results in lower quantum efficiency. Thus, we need to modify the structure
and component of catalysts at present, such as the control of catalyst’s crystal
structure and defects, adjusting the energy band location and surface photosensiti-
zation etc.

However, photocatalysis on olefin’s isomerization is not well-known enough
which has to clarify the photocatalytic reaction mechanism, especially photo
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generated carrier separation, transfer and interface shift process, that are essential
to further improve the catalytic efficiencies. On another hand, future works may
take advantages from some well-studied photocatalysis fields like nanomaterials,
semiconductor physics, and photocatalysis organic reaction, to produce novel
photocatalytic materials with high efficiency and high catalytic activity.

7. Conclusions

In this paper we summarized olefin isomerization catalysis in five categories,
acidic, basic, molecular sieve, transitionmetal catalysis, and photocatalysis, and
under each category, we present some typical catalysts that have been studied. The
five categroies differentiates most available catalysis systems by their reaction
mechanisms, and they also reflect somehow their properties, like acidic catalysis
usually have issuses on products selectivity and catalysts recycling. The Table 3
followed presents all catalysis systems mentioned before, what they are, which
category they belong to, applicable reactants and desire products, with their
purposes and features, pro and cons, and references of the works.

Figure 10.
CCDB isomerization of straight chain alkenes (1), oleic acid (2) and Allyl benzene (3).
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Method Catalysis System Olefin and

Derivatives

System Features References

Acidic
Catalysis

H2SO4, HNO3, HCl, H3PO4,
p-H3C-C6H4-SO3H,
C6H5-SO3H

Linear
α-olefins
(C4-C20)

Brønsted Acid, homogeneous
catalysis, high reaction rate,
conversion rate, selectivity;
Poor to recycle, corrosive

[3]

BF3, HBF4, Tetramethylene
sulfone

Lewis Acid, high reaction rate
and conversion rate; may causes
polymerization of olefins; highly
toxic, inflammable, poor to
recycle, corrosive

[3]

AlCl3 Mild reaction rate, conversion
rate, and selectivity,
inexpensive; may causes
polymerization of olefins; heavy
dosage, poor to recycle

[3]

Sulfided ion exchange resin Gas-phase reaction, isomerizing
both cis- and trans-β olefins;
incapable of long liner olefin
isomerization

[5–8, 11,
25–29]

Cation exchange resin,
perfluorinated ion
exchange resin

Robustness to deactivate,
longevity; slow reaction rate,
side reactions

[10, 13–18]

Al2O3, SiO2, WO3, ZrO2,
TiO2, Nb2O5, Ta2O5, and
heteropoly acids

Linear
α-olefins
(C4-C7)

Lewis Acid, slow reaction rate,
conversion rate, poor selectivity,
heterogeneous catalysis.
Heteropoly acids

[21–24]

Basic
Catalyst

Na/K-Al2O3, MgO α-C33H66 The Shell Higher Olefin Process
(SHOP) industrial catalyst,
reaction isomerized 11-C33H66,
conversion rate>90%

[30]

γ-Al2O3-NaOH-Na,
γ-Al2O3-Na2CO3-Na

Linear
α-olefins

Good reaction rate, conversion
rate, and selectivity; high
temperature required

[30]

Na-Al2O3, Potassium tert-
butoxide, Ti-Zeigler
(X3TiH)

Vinyl
Norbornene

Ethylene C=C positional
transfer, industrial catalyst in
use

[35]

Strong base like KOH;
KOH/DMSO; other
hydroxides/alcohol-salt
system

Propenyl
aromatic
compounds

Promote internal movement of
C=C on propylene to form allyl
compound; wild applied in
perfume and food industry; long
reaction time, low conversion
rate, hard to purify

[38]

Molecula
Sieve
Catalysis

0.83Na2O-1.00Al2O3–

2.48SiO2

α-olefins
(C6�C25)

>70% conversion rate in short
time under room temperature;
low side reaction; longevity
catalyst lifetime

[39]

Mesoporous molecular
sieve like MCM-41,
SBA-15, and TUD-1

92% conversion rate and 90%
selectivity using V-SBA-15 to
catalysis α-octene isomerization
under 600 K

[40]

Non-zeolite molecular
sieve(MZMS); MOF-mR:
(SixAlyPz)O2

1-butene Synthesis isobutene and
2-butene under 200�600°C

[41]
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Method Catalysis System Olefin and

Derivatives

System Features References

Non-zeolite molecular
sieve(MZMS); MOF-mR:
(SixAlyPz)O2

MZMS mR: (MxAlyPz)O2,
M=Co, Fe, Zn, Ca, Mn, etc.

1-butene
2-butene

Synthesis isobutene and
2-butene under 200�600°C
Synthesis 1-butene and
isobutene, could be further used
to obtain ether for reformulated
gasoline

[43]

NZMS 1-butene
1-pentene

Isomerizing into isobutene, few
side products.

[44–49]

NZMS SAPO-11 1-hexene Reinforce positional
isomerism instead of cis-trans
isomerism

[50]

Zeolite molecular sieve: X,
Y, ZSM-5, etc.

Isomerizing 1-hexene into 2- and
3-hexene

[51, 52]

Transition
Metal
Catalysis

Pd black/PdCl2 Linear α-
olefins,
ketenes

A industrialized catalyst to
isomerizing α-olefin into stable,
internal form. Expensive, toxic,
complicate for further
processing

[53]

Ru3(CO)12,
Ru3(CO)11((2-pentenyl)
PPh2), [Ru
(CO)2(MeCO2)2]n, [Ru
(CO)4(μ-MeCO2)
(CH3CN)2], [Ru2(CO)4(μ-
MeCO2)2(μ-dppm)2PF6]

Linear α-
olefins

Could isomerize 1-pentene into
2-petene in benzene solution at
80°C

[34–38]

Os3(CO)12, Co2(CO)8,
Mo(CO)6

Could isomerize 1-pentene into
2-petene in benzene solution at
80°C

CoCl2, Grignard reagents
with ligands

Fe(CO)n(n=5,9,12… ) Vinylene
olefin

Forms di-substituted internal
olefin under 150�350°C with a
minor amount of tri-substituted
internal olefin

[61]

Fe3(CO)12 3-ethyl-1-
pentene

Forms 3-ethyl-2-pentene at
25°C, 12 hrs

[62]

RhCl3H2O/Methanol/
Ethanol; RhCl3/OH�;[Rh
(OH)-(COD)]2

Propenyl
aromatic
compounds

A very original application study
of using Rhodium in C=C
migration

[34, 61, 62]

Ir(H)2X-(PtBu2Ph)2, X=F,
Cl, Br, I, OH or OCH2CF3,
polymer carriered irdium
catalysis system; R-
[(PPh2)2Ir-
(H)2THF2]

+PF6
�

Propenyl C=C migration,
intermediates of
propenylbenzene with different
subsitituded functional group
are essential materials for
perfume, antibiotics, pesticides,
etc.

[54, 55]

RhCl33H2O/Ethanol,
RhCl33H2O/PF6-Methanol;
RuCl2(PPh3)2, carried by
sol–gel method

[56–58]

Na2Fe(CO)4/CuCl or
BrCH2CH2Br

[63]

HCo(CO)4 [64]
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Method Catalysis System Olefin and

Derivatives

System Features References

Photo
Catalysis

Metal Cluster Compound Internal
Olefin
(C4�C20)

(CnRn)aFebMc(CO)dLe,
M=Mo, Ru, Rh, Sc, Ti, Cr, Mn,
Co, Ni, Cu, Zn. L=V group
ligands.
Hihg er

[65]

Pd@TiO2 Linear α-
olefins

Day light, selective isomerism
into E isomer.

[66]

Fe(CO)5 Room temperature, day light,
isomerizing 1-propenylbenzene
into 2-propenylbenzene, good
selectivity

[67]

[HFeM(CO)8L
�](M=Cr,

Mo; L = CO)
Room temperature, day light,
THF solution system,
isomerizing 1-propenylbenzene
into 2-propenylbenzene,
conversion rate >98%, E/Z ratio
= 10:1

Supported heteropolyacid
catalyst

Linear α-
olefins

Room temperature and
pressure, visible light, fully
conversion into internal olefin

[68]

Supported heteropolyacid
catalyst

Oleic acid Room temperature and
pressure, visible light, fully
conversion into Ω-3, Ω-6

Table 3.
Catalytic system for olefin isomerization.
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