1,160 research outputs found

    A Humble Opinion on the Architectural Construction of University Learning Organizations

    Get PDF
    AbstractIt is an important researching task for the higher education to change the traditional and purely rationalistic management ideas in the universities, to activate and strengthen the development energy. From the angle of changing the organizational model this paper researches the basic strategy of constructing university learning organizations; in another word: The organizational structure should be networking, and be oblater, opener and lexibler; and gives the architectural model of the learning organizations in the universities

    Deep recurrent spiking neural networks capture both static and dynamic representations of the visual cortex under movie stimuli

    Full text link
    In the real world, visual stimuli received by the biological visual system are predominantly dynamic rather than static. A better understanding of how the visual cortex represents movie stimuli could provide deeper insight into the information processing mechanisms of the visual system. Although some progress has been made in modeling neural responses to natural movies with deep neural networks, the visual representations of static and dynamic information under such time-series visual stimuli remain to be further explored. In this work, considering abundant recurrent connections in the mouse visual system, we design a recurrent module based on the hierarchy of the mouse cortex and add it into Deep Spiking Neural Networks, which have been demonstrated to be a more compelling computational model for the visual cortex. Using Time-Series Representational Similarity Analysis, we measure the representational similarity between networks and mouse cortical regions under natural movie stimuli. Subsequently, we conduct a comparison of the representational similarity across recurrent/feedforward networks and image/video training tasks. Trained on the video action recognition task, recurrent SNN achieves the highest representational similarity and significantly outperforms feedforward SNN trained on the same task by 15% and the recurrent SNN trained on the image classification task by 8%. We investigate how static and dynamic representations of SNNs influence the similarity, as a way to explain the importance of these two forms of representations in biological neural coding. Taken together, our work is the first to apply deep recurrent SNNs to model the mouse visual cortex under movie stimuli and we establish that these networks are competent to capture both static and dynamic representations and make contributions to understanding the movie information processing mechanisms of the visual cortex

    Deep Spiking Neural Networks with High Representation Similarity Model Visual Pathways of Macaque and Mouse

    Full text link
    Deep artificial neural networks (ANNs) play a major role in modeling the visual pathways of primate and rodent. However, they highly simplify the computational properties of neurons compared to their biological counterparts. Instead, Spiking Neural Networks (SNNs) are more biologically plausible models since spiking neurons encode information with time sequences of spikes, just like biological neurons do. However, there is a lack of studies on visual pathways with deep SNNs models. In this study, we model the visual cortex with deep SNNs for the first time, and also with a wide range of state-of-the-art deep CNNs and ViTs for comparison. Using three similarity metrics, we conduct neural representation similarity experiments on three neural datasets collected from two species under three types of stimuli. Based on extensive similarity analyses, we further investigate the functional hierarchy and mechanisms across species. Almost all similarity scores of SNNs are higher than their counterparts of CNNs with an average of 6.6%. Depths of the layers with the highest similarity scores exhibit little differences across mouse cortical regions, but vary significantly across macaque regions, suggesting that the visual processing structure of mice is more regionally homogeneous than that of macaques. Besides, the multi-branch structures observed in some top mouse brain-like neural networks provide computational evidence of parallel processing streams in mice, and the different performance in fitting macaque neural representations under different stimuli exhibits the functional specialization of information processing in macaques. Taken together, our study demonstrates that SNNs could serve as promising candidates to better model and explain the functional hierarchy and mechanisms of the visual system.Comment: Accepted by Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI-23

    A Generic Framework for Constraint-Driven Data Selection in Mobile Crowd Photographing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Mobile crowd photographing (MCP) is an emerging area of interest for researchers as the built-in cameras of mobile devices are becoming one of the commonly used visual logging approaches in our daily lives. In order to meet diverse MCP application requirements and constraints of sensing targets, a multifacet task model should be defined for a generic MCP data collection framework. Furthermore, MCP collects pictures in a distributed way in which a large number of contributors upload pictures whenever and wherever it is suitable. This inevitably leads to evolving picture streams. This paper investigates the multiconstraint-driven data selection problem in MCP picture aggregation and proposes a pyramid-tree (PTree) model which can efficiently select an optimal subset from the evolving picture streams based on varied coverage needs of MCP tasks. By utilizing the PTree model in a generic MCP data collection framework, which is called CrowdPic, we test and evaluate the effectiveness, efficiency, and flexibility of the proposed framework through crowdsourcing-based and simulation-based experiments. Both the theoretical analysis and simulation results indicate that the PTree-based framework can effectively select a subset with high utility coverage and low redundancy ratio from the streaming data. The overall framework is also proved flexible and applicable to a wide range of MCP task scenarios

    Flow Injection Chemiluminescent Immunoassay for Carcinoembryonic Antigen Using Boronic Immunoaffinity Column

    Get PDF
    A flow injection chemiluminescence immunoassay for rapid and sensitive detection of carcinoembryonic antigen (CEA) by using a phenylboronic acid-based immunoaffinity column as a glycoprotein collector was proposed in this paper. The column was prepared by coupling of 3-aminophenylboronic acid on the glass beads through a γ-glycidoxypropyltrimethoxysilane (GPMS) linkage. Based on an indirect competitive immunoreaction, the mixture of CEA sample and enzyme conjugated CEA antibody (HRP-anti-CEA) was incubated in advance, followed by direct injection to the column to capture free HRP-labeled CEA antibody in the column. The trapped HRP-labeled antibody was detected by flow inject chemiluminescence in the presence of luminol and hydrogen peroxide. The decreased chemiluminescent signal was proportional to the concentration of CEA in the range of 3.0–30.0 ng/mL with a correlation coefficient of 0.998. The column showed an acceptable reproducibility and stability and is potentially used for practical clinical detection of the serum CEA level

    Parameter-Saving Adversarial Training: Reinforcing Multi-Perturbation Robustness via Hypernetworks

    Full text link
    Adversarial training serves as one of the most popular and effective methods to defend against adversarial perturbations. However, most defense mechanisms only consider a single type of perturbation while various attack methods might be adopted to perform stronger adversarial attacks against the deployed model in real-world scenarios, e.g., 2\ell_2 or \ell_\infty. Defending against various attacks can be a challenging problem since multi-perturbation adversarial training and its variants only achieve suboptimal robustness trade-offs, due to the theoretical limit to multi-perturbation robustness for a single model. Besides, it is impractical to deploy large models in some storage-efficient scenarios. To settle down these drawbacks, in this paper we propose a novel multi-perturbation adversarial training framework, parameter-saving adversarial training (PSAT), to reinforce multi-perturbation robustness with an advantageous side effect of saving parameters, which leverages hypernetworks to train specialized models against a single perturbation and aggregate these specialized models to defend against multiple perturbations. Eventually, we extensively evaluate and compare our proposed method with state-of-the-art single/multi-perturbation robust methods against various latest attack methods on different datasets, showing the robustness superiority and parameter efficiency of our proposed method, e.g., for the CIFAR-10 dataset with ResNet-50 as the backbone, PSAT saves approximately 80\% of parameters with achieving the state-of-the-art robustness trade-off accuracy.Comment: 9 pages, 2 figure

    Canonical explicit B\"{a}cklund transformations with spectrality for constrained flows of soliton hierarchies

    Full text link
    It is shown that explicit B\"{a}cklund transformations (BTs) for the high-order constrained flows of soliton hierarchy can be constructed via their Darboux transformations and Lax representation, and these BTs are canonical transformations including B\"{a}cklund parameter η\eta and possess a spectrality property with respect to η\eta and the 'conjugated' variable μ\mu for which the pair (η,μ)(\eta, \mu) lies on the spectral curve. As model we present the canonical explicit BTs with the spectrality for high-order constrained flows of the Kaup-Newell hierarchy and the KdV hierarchy.Comment: 21 pages, Latex, to be published in "PHYSICA A

    Recent Advances in Visible-Light Driven Photocatalysis

    Get PDF
    Semiconductor photocatalysis has been considered a potentially promising approach for renewable energy and environmental remediation with abundant solar light. However, the currently available semiconductor materials are generally limited by either the harvesting of solar energy or insufficient charge separation ability. To overcome the serious drawbacks of narrow light-response range and low efficiency in most photocatalysts, many strategies have been developed in the past decades. This article reviews the recent advancements of visible-light-driven photocatalysts and attempts to provide a comprehensive update of some strategies to improve the efficiency, such as doping, coupling with graphene, precipitating with metal particles, crystal growth design, and heterostructuring. A brief introduction to photocatalysts is given first, followed by an explanation of the basic rules and mechanisms of photocatalysts. This chapter focuses on recent progress in exploring new strategies to design TiO2-based photocatalysts that aim to extend the light absorption of TiO2 from UV wavelengths into the visible region. Subsequently, some strategies are also used to endow visible-light-driven Ag3PO4 with high activity in photocatalytic reactions. Next, a novel approach, using long afterglow phosphor, has been used to associate a fluorescence-emitting support to continue the photocatalytic reaction after turning off the light. The last section proposes some challenges to design high efficiency of photocatalytic systems

    Study on TCM Syndrome Identification Modes of Coronary Heart Disease Based on Data Mining

    Get PDF
    Coronary heart disease (CHD) is one of the most important types of heart disease because of its high incidence and high mortality. TCM has played an important role in the treatment of CHD. Syndrome differentiation based on information from traditional four diagnostic methods has met challenges and questions with the rapid development and wide application of system biology. In this paper, methods of complex network and CHAID decision tree were applied to identify the TCM core syndromes of patients with CHD, and to establish TCM syndrome identification modes of CHD based on biological parameters. At the same time, external validation modes were also constructed to confirm the identification modes
    corecore