62 research outputs found

    Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway

    Get PDF
    Molecular mechanisms associated with tumor metastasis remain poorly understood. Here we report that acquired expression of periostin by colon cancer cells greatly promoted metastatic development of colon tumors. Periostin is overexpressed in more than 80% of human colon cancers examined with highest expression in metastatic tumors. Periostin expression dramatically enhanced metastatic growth of colon cancer by both preventing stress-induced apoptosis in the cancer cells and augmenting endothelial cell survival to promote angiogenesis. At the molecular level, periostin activated the Akt/PKB signaling pathway through the alpha(v)beta(3) integrins to increase cellular survival. These data demonstrated that the survival-promoting function is crucial for periostin to promote tumor metastasis of colon cancer

    Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary

    Get PDF
    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/p, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.The USF group acknowledges support from the National Science Foundation (DMR-1204924). V.K., R.D. and M.-H. P. acknowledges support from the Army Research Office (W911NF-15-1-0626) and thank Prof. Hari Srikanth for resistance measurements in his laboratory. M.C.A., J.A. and C.C. thank enlightening exchanges with Gabriel Kotliar and Zhi-Xun Shen. The Synchrotron SOLEIL is supported by the Centre National de la Recherche Scientifique (CNRS) and the Commissariat a` l’Energie Atomique et aux Energies Alternatives (CEA), France. T.Cˇ. and J.M.P.C. thank Eduardo Castro, Hai-Qing Lin and Pedro D. Sacramento for illuminating discussions. The theory group acknowledges the support from NSAF U1530401 and computational resources from CSRC (Beijing), the Portuguese FCT through the Grant UID/FIS/04650/2013 and the NSFC Grant 11650110443.info:eu-repo/semantics/publishedVersio

    On the topological surface states of the intrinsic magnetic topological insulator Mn-Bi-Te family

    Full text link
    We review recent progress in the electronic structure study of intrinsic magnetic topological insulators (MnBi2_2Te4_4)(Bi2_2Te3_3)n_n (n=0,1,2,3n=0,1,2,3) family. Specifically, we focus on the ubiquitously (nearly) gapless behavior of the topological surface state Dirac cone observed by photoemission spectroscopy, even though a large Dirac gap is expected because of surface ferromagnetic order. The dichotomy between experiment and theory concerning this gap behavior is perhaps the most critical and puzzling question in this frontier. We discuss various proposals accounting for the lack of magnetic effect on the topological surface state Dirac cone, which are mainly categorized into two pictures, magnetic reconfiguration, and topological surface state redistribution. Band engineering towards opening a magnetic gap of topological surface states provides great opportunities to realize quantized topological transport and axion electrodynamics at higher temperatures

    Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2_2Te4_4

    Full text link
    The recent discovered antiferromagnetic topological insulators in Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle-resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2_2Te4_4 exists between the bulk band gap. Such unexpected surface state remains unchanged across the bulk N\'eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab\textit{ab}-initio\textit{initio} calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results reveal that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases such as topological crystalline insulator and time-reversal-preserved topological insulator, by tuning the magnetic configurations.Comment: 9 pages, 4 figures. To appear in Phys. Rev. X. See Version 1 for the supplementary fil

    Dichotomy of Electronic Structure and Superconductivity between Single-Layer and Double-Layer FeSe/SrTiO3 Films

    Get PDF
    The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much attention. Initial work also found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer FeSe/SrTiO3 film shows an insulating behavior. Such a dramatic difference between the single-layer and double-layer FeSe/SrTiO3 films is surprising and the underlying origin remains unclear. Here we report our comparative study between the single-layer and double-layer FeSe/SrTiO3 films by performing a systematic angle-resolved photoemission study on the samples annealed in vacuum. We find that, like the single-layer FeSe/SrTiO3 film, the as-prepared double-layer FeSe/SrTiO3 film is insulating and possibly magnetic, thus establishing a universal existence of the magnetic phase in the FeSe/SrTiO3 films. In particular, the double-layer FeSe/SrTiO3 film shows a quite different doping behavior from the single-layer film in that it is hard to get doped and remains in the insulating state under an extensive annealing condition. The difference originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the origin of superconductivity and the doping mechanism in the FeSe/SrTiO3 films. The property disparity between the single-layer and double-layer FeSe/SrTiO3 films may facilitate to fabricate electronic devices by making superconducting and insulating components on the same substrate under the same condition.Comment: 19 pages, 4 figure

    Distinct Topological Surface States on the Two Terminations of MnBi4_4Te7_7

    Full text link
    The recent discovered intrinsic magnetic topological insulator MnBi2Te4 have been met with unusual success in hosting emergent phenomena such as the quantum anomalous Hall effect and the axion insulator states. However, the surface-bulk correspondence of the Mn-Bi-Te family, composed by the superlattice-like MnBi2Te4/(Bi2Te3)n (n = 0, 1, 2, 3 ...) layered structure, remains intriguing but elusive. Here, by using scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) techniques, we unambiguously assign the two distinct surface states of MnBi4Te7 (n = 1) to the quintuple-layer (QL) Bi2Te3 termination and the septuple-layer (SL) MnBi2Te4 termination, respectively. A comparison of the experimental observations with theoretical calculations reveals the diverging topological behaviors, especially the hybridization effect between magnetic and nonmagnetic layers, on the two terminations: a gap on the QL termination originating from the topological surface states of the QL hybridizing with the bands of the beneath SL, and a gapless Dirac-cone band structure on the SL termination with time-reversal symmetry. The quasi-particle interference patterns further confirm the topological nature of the surface states for both terminations, continuing far above the Fermi energy. The QL termination carries a spin-helical Dirac state with hexagonal warping, while at the SL termination, a strongly canted helical state from the surface lies between a pair of Rashba-split states from its neighboring layer. Our work elucidates an unprecedented hybridization effect between the building blocks of the topological surface states, and also reveals the termination-dependent time-reversal symmetry breaking in a magnetic topological insulator, rendering an ideal platform to realize the half-integer quantum Hall effect and relevant quantum phenomena.Comment: 22 Pages, 4 Figure
    • …
    corecore