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Angle resolved photoemission spectroscopy
reveals spin charge separation in metallic
MoSe2 grain boundary
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Manh-Huong Phan1, Tilen Čadež4,5, José M.P. Carmelo4,5,6, Maria C. Asensio2,3 & Matthias Batzill1

Material line defects are one-dimensional structures but the search and proof of electron

behaviour consistent with the reduced dimension of such defects has been so far

unsuccessful. Here we show using angle resolved photoemission spectroscopy that

twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands.

The one-dimensional nature is evident from a charge density wave transition, whose

periodicity is given by kF/p, consistent with scanning tunnelling microscopy and angle

resolved photoemission measurements. Most importantly, we provide evidence for spin- and

charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that

the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly

follow the energy-momentum dependence calculated by a Hubbard model with suitable

finite-range interactions. Our results also imply that quantum wires and junctions can be

isolated in line defects of other transition metal dichalcogenides, which may enable quantum

transport measurements and devices.
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1D
electron systems (1DES) are sought for their potential

applications in novel quantum devices, as well as
for enabling fundamental scientific discoveries in

materials with reduced dimensions. Certainly, 1D electron
dynamics plays a central role in nanoscale materials physics,
from nanostructured semiconductors to (fractional) quantum
Hall edge states1,2. Furthermore, it is an essential component in
Majorana fermions3,4 and is discussed in relation to the high-Tc

superconductivity mechanism5. However, truly 1D quantum
systems that permit testing of theoretical models by probing
the full momentum-energy (k, o)-space are sparse and con-
sequently angle-resolved photoelectron spectroscopy (ARPES)
measurements have only been possible on quasi-1D materials
consisting of 2D- or 3D-crystals that exhibit strong 1D
anisotropy6–10.

Electrons confined in one-dimension (1D) behave fundamen-
tally different from the Fermi-liquid in higher dimensions11–13.
While there exist various quasi-1D materials that have strong 1D
anisotropies and thus exhibit 1D properties, strictly 1D metals,
that is, materials with only periodicity in 1D that may be isolated
as a single wire, have not yet been described as 1D quantum
liquids. Grain boundaries in 2D van der Waals materials are
essentially 1D and recent DFT simulations on twin grain
boundaries in MoS2 (ref. 14) and MoSe2 (ref. 15) have
indicated that those defects should exhibit a single band
intersecting the Fermi level. Therefore, such individual line
defects are exceptional candidates for truly 1D metals.

In the case of quasi-1D Mott-Hubbard insulators (MHI)16–19,
there is strong evidence for the occurrence of the so called
spin-charge separation17,18. Recently, strong evidence of another
type of separation in these quasi-1D compounds was found,
specifically a spin-orbiton separation with the orbiton carrying an
orbital excitation16.

The theoretical treatment of MHI is easier compared with that
of the physics of 1D metals. The ground state of a MHI has no
holons and no spinons and the dominant one-electron excited
states are populated by one holon and one spinon, as defined by
the Tomonaga Luttinger liquid (TLL) formalism12. For 1DES
metals the scenario is however more complex, as the holons are
present in both the ground and the excited states. Zero
spin-density ground states have no spinons. Consequently, the
experimental verification of key features of 1DES, especially the
spin-charge separation, remains still uncertain6,20–22.

The theoretical description of 1DES low-energy excitations in
terms of spinons and holons, based on the TLL formalism, has
been a corner stone of 1D electron low-energy dynamics12. The
rather effective approximation of the relation of energy versus
momentum in 1D fermions by a strictly linear dispersion relation,
makes the problem accessible and solvable, by calculating
analytically the valuable many-body low-energy dynamics of
the system. This drastic assumption has provided an effective tool
to describe low-energy properties of 1D quantum liquids in terms
of quantized linear collective sound modes, named spinons
(zero-charge spin excitations) and holons (spinless charge
excitations), respectively. However, this dramatic simplification
is only valid in the range of low-energy excitations, very close to
the Fermi level.

More recently, sophisticated theoretical tools have been
developed that are capable to extend this description to high-
energy excitations away from the Fermi-level13,23–28. Particularly,
the pseudofermion dynamical theory (PDT)24–27 allows to
compute one-particle spectral functions in terms of spinon and
holon features, in the full energy versus momentum space
((k, o)-plane). The exponents controlling the low- and high-
energy spectral-weight distribution are functions of momenta,
differing significantly from the predictions of the TLL if applied

to the high-energy regime23–27. To the best of our knowledge,
while other theoretical approaches, beyond the TLL limit, have
also been recently developed13,28, no direct photoemission
measurements of spin-charge separation in a pure metallic
1DES has been reported so far. Even more important, a
theoretical 1D approach with electron finite-range interactions
entirely consistent with the photoemission data in the full energy
versus momentum space has never been reported before11,12,29.

Here we present a description of the non-Fermi liquid
behaviour of a metallic 1DES with suitable finite-range
interactions over the entire (k, o)-plane that matches the
experimentally determined weights over spin- and charge-
excitation branches. This has been accomplished by carrying
out the first ARPES study of a 1DES hosted in an intrinsic line
defect of a material and by developing a new theory taking
electron finite-range interactions within an extended 1D Hubbard
model into account. The mirror twin boundaries in a monolayer
transition metal dichalcogenide30,31 are true 1D line defects. They
are robust to high temperatures and atmospheric conditions, thus
making them a promising material system, which is amendable
beyond ultra high vacuum investigations and useful for potential
device fabrication. Previously, the structural properties of these
line defects have been studied by (scanning) transmission electron
microscopy15,30–32 and by scanning tunnelling microscopy
(STM) and tunnelling spectroscopy33–35.

Results
Line defect characterization. Figure 1 shows STM results of the
mono- to bilayer MoSe2 grown on a MoS2 single crystal substrate.
Three equivalent directions for the MTBs are observed in the
hexagonal MoSe2 crystal. The high density of these aligned line
defects in MoSe2 (ref. 30) provides a measurable ARPES signal for
this 1DES and thus enables the o(k) characterization of this
line defect.

Peierls transition in MoSe2 grain boundary. For metallic 1D
structures, an instability to charge density wave (CDW) is
expected (see additional discussion in Supplementary Note 1),
which has been previously reported for MoSe2 grain boundaries
by low temperature STM studies35. The CDW in MTBs gives rise
to a tripling of the periodicity, as can be seen in the low
temperature-STM images shown in Fig. 2a,b. The CDW in 1D
metals is a consequence of electron-phonon coupling. The
real-space periodicity of the CDW is directly related to a
nesting of the Fermi wavevector, as schematically shown in
Fig. 2c. ARPES measurements of the Fermi-surface can thus
directly provide justification for the periodicity measured in STM,
which is shown below. In addition, the CDW transition is a
metal-insulator transition and thus changes in the sample
resistance occur at the CDW transition temperature. Figure 2d
shows a four-point measurement with macroscopic contacts on a
continuous mono- to bi-layer film (as shown in Fig. 1c). Clear
jumps in the resistance are observed for three different samples at
B235 K and B205 K, which are attributed to an incommensurate
and commensurate CDW transitions, respectively. The drop in
resistance at lower T is assigned to a depinning of the CDW from
defects and so-called CDW sliding. CDW sliding is a consequence
of the applied potential rather than a specific temperature.

To study a stable, gapless, 1DES, we determine the spectral
weight together with the energy dispersion in momentum space,
by performing ARPES measurements at room temperature, which
is well above the CDW transition temperature. This is done on
samples consisting predominantly of monolayer MoSe2 islands,
as shown in the Supplementary Fig. 1. Figure 3; Supplementary
Fig. 2 illustrate the Fermi surface of 1D metals, consisting of two
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parallel lines, separated by 2kF, in the absence of interchain
hopping. Because of the three equivalent real space directions of
the MTBs in our sample, super-positioning of three rotated 1DES
results in star-shaped constant energy surface in reciprocal space,
as shown in Fig. 3; Supplementary Note 1. In the three cases,
a perfect nesting is noticeable, namely one complete Fermi sheet
can be translated onto the other by a single wave vector ±2kF.

Even more important, by using high energy and momentum
resolution ARPES, the Fermi-wave vector could be precisely
determined, giving a value of kF¼ 0.30±0.02 Å� 1, which is
about 1/3 of the BZ-boundary at p=aMoSe2 . Hence a band filling of
n¼ 2/3 has been experimentally obtained. The Fermi-wavevector
also gives a direct prediction of the CDW periodicity of
p/kF¼ 10.5±0.7 Å, which is in good agreement with 3�aMoSe2

measured in STM (Fig. 2).

Spin charge separation. While the perfect nesting conditions in
1D metals predicts a CDW transition, its occurrence is no proof
for 1D electron dynamics. For obtaining evidence of 1D electron
dynamics, a detailed analysis of the spectral function and its
consistency with theoretically predicted dispersions need to be
demonstrated. The photoemission spectral function of the 1D
state is shown in Fig. 3e,f. Without any sophisticated analysis and
considering only the raw ARPES data, it is evident that the
experimental results are in complete disagreement with the single
dispersing band predicted by ground state DFT simulations15,35.
Effectively, our data cannot be fit with a single dispersion branch
(see also Supplementary Fig. 4 and Supplementary Note 2 for an
analysis of the raw data in terms of energy distribution curves
(EDC), momentum distribution curves (MDC) and lifetime.)

Using data analysis that applies a curvature procedure to raw
data36, as commonly used in ARPES, the experimental band
dispersions in the full energy versus momentum space show
two clear bands that exhibit quite different dispersions. We
provisionally associate, which our theoretical results confirms
below, the upper and lower dispersion with the spinon and the

holon branch, respectively. Manifestly, the spin mode follows
the low-energy part of the 1D parabola, whereas the charge
mode propagates faster than the spin mode. The extracted
experimental velocity values are vh¼ 4.96� 105 ms� 1 and
vs¼ 4.37� 105 ms� 1, revealing a ratio vh/vs of the order of
E0.88. Notice that these states lie entirely within the band gap of
the MoSe2 monolayer, whose VBM is located at 1.0 eV below the
Fermi-level, see Supplementary Fig. 3.

DFT simulations cannot predict the electron removal spectrum
of the 1D electron dynamics. Thus the single dispersing band
obtained in previous DFT simulations for this system is not
expected to be consistent with the experiment. However, the
single-band DFT results indicate that the electron dynamics
behaviour can be suitably described by a single band Hubbard
model and associated PDT. The PDT is a method that has
been originally used to derive the spectral function of the 1D
Hubbard model in the vicinity of high-energy branch-line
singularities24–27. It converges with TLL for low energies37. As
reported below, here we use a renormalized PDT (RPDT) because
the conventional 1D Hubbard does not include finite-range
interactions.

Low energy properties and TLL electron interaction strength.
Critical for calculating the spectral functions with RPDT is the
knowledge of the electron interaction strength, which needs to be
determined experimentally. Since very close to the Fermi level, in
the low-energy excitations limit, the RPDT converges to the TLL
theory, we have evaluated the photoemission weight in the
vicinity of the Fermi-level in accordance to TLL theory. A decisive
low-energy property of 1D metals is, according to that theory12,38,
the suppression of the DOS at the Fermi-level, whose power law
exponent is dependent on the electron interaction range and
strength. Figure 4 shows the angle integrated photoemission
intensity, which is proportional to the occupied DOS, as a
function of energy for the 1DES. It is compared with the
photoemission from a gold sample under the same conditions.

x

2.0

(nm)

(nm)
1.5

1.0
1.0

0.5 0.5

0.0 0.0

8.3 Å

23 nm

Se

Mo

Se

Mo

z

y

y

a b

dc

Figure 1 | Defect structure of mirror twin grain boundaries (MTBs) in monolayer MoSe2. (a) Ball-and-stick model of a MTB, indicating that the grain

boundary is Se deficient. (b) Arrangements of the three equivalent MTB directions gives rise to a cross-hatched grain boundary network. (c) Large-scale

(150� 110 nm2) STM image of 1–2 monolayers of MoSe2 grown by MBE on MoS2. The MTBs appear as bright lines forming a dense network of aligned line

defects. In higher resolution images shown in (d) the defect lines appear as two parallel lines. Imaging at room temperature allows resolving atomic

corrugation along these lines that are attributed to atom positions in the Se-rows adjacent to the defect line, as the overlay of the model illustrates.
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Figure 2 | Charge density wave (CDW) transition in MTBs. (a) STM images of a single MTB at low temperatures (120 K) exhibit three times the

periodicity than the atomic corrugation imaged at room temperature. In (b) a larger scale low-T STM image and the corresponding cross-section along the

indicated MTB is shown that measured the periodicity of the CDW as B1.0 nm. The schematic in (c) illustrates the relationship between CDW period and

nesting vector q¼ 2kF. Also the opening of a band gap at kF is illustrated. Temperature dependent resistance measurements, shown in (d), indicate two

CDW transitions. The transitions at 235 and 205 K correspond to incommensurate and commensurate CDW transitions, respectively. Depending on the

applied bias voltage we also observe a drop in resistance below the CDW transition temperatures, which is attributed to CDW-sliding. The inset shows the

control measurement on a bare MoS2 substrate and shows no transitions.
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Figure 3 | ARPES measurement of k-space resolved electronic structure of MTBs. In (a) the band structure of a 1D metal is schematically illustrated. The

parabolic band disperses in the kx direction, which is the momentum vector along the 1D defect. The lack of periodicity in the ky direction causes the

replication of the parabola forming a parabolic through and thus the Fermi-surface consists of two parallel lines. In the case of the three equivalent

directions of MTBs that are rotated by 120� with respect to each other, three Fermi-surfaces overlap to form the Fermi-surface illustrated in (b). The

experimental measurement of the Fermi-surface close to the center of the second BZ using left and right circular polarized light is shown in (d). By using

linear polarized light photoemission from a specific MTB-orientation can be emphasized as shown in (c). The Band dispersion E(k) is shown in (e) and

(f) for the momentum slice indicated in (c). This momentum slice was chosen because it lies outside of bands for the other two MTB orientations.
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The suppression of the DOS for the 1D defects compared with Au
is apparent in Fig. 4a.

According to the TLL scheme, the suppression of DOS follows
a power law dependence whose exponent is determined by the
electron interaction strength and range in the 1D system. An
exponent of B0.8 is extracted from a log-plot shown in Fig. 4b.
A refined fitting for the exponent a that takes the temperature
into account39 reveals that the data are best reproduced for a
between 0.75 and 0.80 (Fig. 4c). The charge TLL parameter Kc,
which provides information on the range of the electron
interaction29, is related to a by a¼ (1�Kc)2/4Kc. Hence Kc has
values between 0.20 and 0.21.

Comparison of experiment to the theoretical model. Within
the 1D Hubbard model with on-site repulsion U and hopping
integral t, the charge TLL parameter Kc and related exponent a
values should belong to the ranges KcA[1/2, 1] and aA[0, 1/8],
respectively. However, our experimental values are in the ranges
KcA[0.20, 0.21] and aA[0.75, 0.80], which is an unmistakable
signature of electron finite-range interactions and therefore our
system cannot be studied in the context of the conventional
1D Hubbard model29. Consequently, we have developed a new
theoretical scheme that successfully includes such interactions. As
justified below in the Methods section, the corresponding RPDT
specifically relies on the spectral function near the branch lines
of the non-integrable 1D Hubbard model with finite-range
interactions being obtained from that of the integrable 1D
Hubbard model PDT24–27 on suitably renormalising its spectra
and phase shifts.

The renormalization using the PDT approach has two steps.
The first refers to the U value, which loses its onsite-only
character and is obtained upon matching the experimental band
spectra with those obtained within the 1D Hubbard model for
n¼ 2/3, leading to U¼ 0.8t. Indeed, the ratio Wh/Ws of the
observed c band (holon) and s band (spinon) energy bandwidths
Wh¼ ec(2kF)� ec(0) and Ws¼ es(kF)� es(0), respectively, is
achieved for that model at U/t¼ 0.8. (The energy dispersions
ec(q) for qA[�p, p] and es(q0) for q0A[� kF, kF] and the related
g¼ c, c0, s exponents ~zgðkÞ considered in the following are defined
in more detail in the Methods section.) This renormalization fixes
the effective U value yet does not affect t. The corresponding
c and c0 (holon) and s (spinon) branch lines spectra
oc(k)¼ ec(|k|þ kF) for kA[� kF, kF], oc0(k)¼ ec(|k|� kF) for

A(� 3kF, 3kF) and os(k)¼ es(k) for kA[� kF, kF] are plotted in
Fig. 5d–f; Supplementary Fig. 5. An important difference relative
to the n¼ 1 Mott-Hubbard insulating phase is that for the present
n¼ 2/3 metallic phase the energy bandwidth Wc¼ ec(p)� ec(2kF)
does not vanish. That the renormalization does not affect t stems
from a symmetry that implies that the full c band energy
bandwidth is independent of both U and n and reads Whþ
Wc¼ 4t. Hence Wh¼ 4t for the Mott-Hubbard insulator whereas
Who4t for the metal. Combining both the value of the ratio Wh/
Wc for the 1D Hubbard model at U/t¼ 0.8 and n¼ 2/3 and the
exact relation WhþWc¼ 4t with analysis of Fig. 5d–f, one
uniquely finds tE0.58 eV. The parameter a is here denoted by a0

for the 1D Hubbard model. It reads a0 ¼ ð2� x2
cÞ=ð8x2

cÞ 2
½0; 1=8� with a0¼ 0 for U/t-0 and a0¼ 1/8 for U/t-N where
xc ¼

ffiffiffiffiffiffiffiffi
2Kc
p

is a superposition of pseudofermion phase shifts.
(see Methods.)

The second step of the renormalization corresponds to
changing the xc and phase shift values so that the parameter
a ¼ ð2� ~x2

cÞ
2=ð8~x2

cÞ has values in the range aA[a0, amax] where
a0E1.4� 10� 3 for U/t¼ 0.8 and n¼ 2/3. As justified in the
Methods section, amax¼ 49/32E1.53. The effect of increasing a at
fixed finite U/t and n from a0 to 1/8 is qualitatively different from
that of further increasing it to amax. As discussed in that section,
the changes in the (k, o) plane weight distribution resulting from
increasing a within the latter interval aA[1/8, amax] are mainly
controlled by the finite–range interactions.

For U/t¼ 0.8, n¼ 2/3 and T¼ 0 the one-electron spectral
function of both the conventional 1D Hubbard model (a¼ a0)
and corresponding model with finite range interactions
(aA[a0,amax]) consists of a (k, o)-plane continuum within which
well-defined singular branch lines emerge. Most of the spectral
weight is located at and near such singular lines. Near them, the
spectral function has a power-law behaviour characterised by
negative k dependent exponents. At TE300 K such singular lines
survive as features displaying cusps. Our general renormalization
procedure leads to a one-electron spectral function expression
that for small deviations (og(k)�o)40 from the finite-energy
spectra og(k) of the g¼ c, c0, s branch lines plotted in Fig. 5d–f
reads, Bðk;oÞ / ðogðkÞ�oÞ~zgðkÞ for aA(a0, amax). The singular
branch lines correspond to the g¼ c, c0, s lines k ranges for which
their exponents ~zgðkÞ are negative. As confirmed and justified in
the Methods section, for U/t¼ 0.8, n¼ 2/3 and t¼ 0.58 eV
there is quantitative agreement with the (k, o)-plane ranges
of the experimentally observed spectral function cusps for

–0.4

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

1D state
1D state 1D state

�=0.80

�=0.75

�=0.70

Au

–0.2 0.0 0.2 0.4 0.6 0.08 0.1 0.12 0.14 –0.08 –0.04 0.00 0.04 0.08

� (eV) � (eV) � (eV)

�0.82

a b c

Figure 4 | Evaluation of the suppression of the density of states at the Fermi level according to TLL theory. The suppression of the density of states of

MTBs close to the Fermi-level compared with the density of states for a regular FL metal (Au) is shown in (a), measured at room temperature (to avoid

CDW transition). The density of states is obtained by plotting the angle integrated photoemission intensity as a function of binding energy o. The log plot in

(b) indicates that the density of states increases39 with o0.8, as is shown in (c). The data are well fit with a¼0.75, but the variation of the fit with the

exponent is small and thus the uncertainty in a is estimated to be as large as ±0.05.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14231 ARTICLE

NATURE COMMUNICATIONS | 8:14231 | DOI: 10.1038/ncomms14231 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


aA[0.75, 0.78]. This is fully consistent with the a experimental
uncertainty range aA[0.75,0.80]. The three g¼ c, c0, s exponents
momentum dependence for both the 1D Hubbard model
with finite-range interactions corresponding to a¼ 0.78 (full
lines) and the conventional 1D Hubbard model for which
a¼ a0E1.4� 10� 3 (dashed-dotted lines) is plotted in (Fig. 5a–c).

Discussion
The agreement of the theoretical calculations with finite range
interactions over the entire (k, o)-plane provides strong evidence
for the assignment of the two spectral branches observed in the
experiments to spin charge separation in a 1D metal. Despite this
agreement, alternative explanations for the photoemission
spectrum should be noted. Strongly asymmetric line shapes in
photoemission spectra have been reported and thus an assign-
ment of the cusps to yet unknown line-shape effects in 1D
materials cannot be entirely excluded. However, the accurate
prediction of the continuum between the cusp lines and the fit of
the c and s branch-line dispersions by the 1D Hubbard model
with finite range interactions makes alternative effects unlikely to
reproduce exactly such spectral features.

Concerning the DOS at the Fermi level, our measurements
clearly show a suppression of the DOS that can be fit with a
power law behaviour. DOS suppression has, however, also
been observed due to final-state pseudogap effects in
nanostructures40,41. While it is difficult to exclude such effects
categorically, the expected 1D nature of the line defects and thus
the breakdown of Fermi-liquid theory requires application of
TLL, as has been applied to other (quasi) 1D systems in the
past6,38,42, to interpret photoemission intensity at the Fermi level.
Certainly, obtaining the same exponent a for the power law
behaviour of TLL from the experimental fit of the DOS and the
spectral features of the 1D Hubbard model with finite range
interactions support the assignment of the DOS suppression at
the Fermi-level to TLL effects.

We have presented a detailed experimental analysis of the
electronic structure of a material line defect by angle resolved
photoemission. High density of twin grain boundaries in epitaxial
monolayer MoSe2 could be analysed by angle resolved photo-
emission spectroscopy. This enabled us to accurately determine
the Fermi surface and demonstrate the CDW observed in this
material is a consequence of Fermi wave vector nesting. Both the
suppression of DOS at the Fermi level as well as broad spectral
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Figure 5 | Exponents momentum dependence and theoretical and experimental spectral lines. (a,b,c) The exponents that control the spectral function

near the c, c0 and s branch lines, respectively, for U/t¼0.8, t¼0.58 eV and electronic density n¼ 2/3 plotted as a function of k for the 1D Hubbard model

with finite-range interactions corresponding to a¼0.78 (full lines) and the conventional 1D Hubbard model for which a0E1.4� 10� 3 (dashed-dotted

lines), respectively. For the former model at a¼0.78 the c0 branch line exponent remains positive for all its k range whereas the ranges for which the c and

s branch lines exponents are negative coincide with the momentum intervals showing ARPES peaks in (e) and (f); (d) The theoretical c, c0 and s branch line

spectra plotted as a function of the momentum k for the 1D Hubbard model with finite-range interactions corresponding to a¼0.78 whose full and dashed

lines refer to momentum ranges with negative and positive exponents, respectively; (e) Energy versus momentum (k//) along the G01 K direction in the

Brillouin zone, plus the same theoretical lines as in (d). The broad spectral line and the spectral continuum between the s and c branch lines apparent in (e)

are consistent with the behaviour of 1D metals and our theoretical model, see Methods section and supplementary Note 2 for details. The results of

applying a curvature procedure to the raw data36 on panel (e) are shown in panel (f), together with the theoretically computed c, c0 and s branch lines.
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features with notable cusps are in agreement with 1D electron
dynamics. While the low-energy spectra are described by TLL, the
dispersion of the cusps in the full energy versus momentum space
in high-energy range could be only accurately reproduced by a
1D Hubbard model with suitable finite range interactions.
Consequently, the cusps could be interpreted as spin- and
charge- separation in these 1D metals. The accurate description of
the experiment by RPDT calculations allows us to go beyond the
low energy restriction of TLL, showing that the exotic 1D physics
is valid for both low- and high-energy, with non-linear band
dispersions and broad momentum values. Unlike other systems
that only exhibit strong 1D anisotropy, the intrinsic line defects in
TMDs have no specific repetition length and can thus be viewed
as true 1D structures. Moreover, isolated twin grain boundaries of
micrometre length have been recently reported in CVD-grown
TMDs31, which can be envisaged as remarkable candidates for
quantum transport measurements on isolated 1D metals.
Furthermore, 2D materials can be gated and this will exert
control of transport properties of these quantum wires.

Methods
Sample preparation. Monolayer MoSe2 islands were grown by van der Waals
epitaxy by co-deposition of atomic Se from a hot wall Se-cracker source and
Mo from a mini-e-beam evaporator. The MoS2 single crystal substrate was a
synthetically grown and cleaved in air before introducing into the UHV chamber
where it was outgassed at 300 �C for 4 h before MoSe2 growth. Mo has been
deposited in a selenium rich environment at a substrate temperature of
B300–350 �C. The MoSe2 monolayer was grown slowly with a growth rate of
B0.16 monolayers per hour. While the detailed mechanism for the formation of
MTBs during MBE growth is not completely understood, it has been noted that the
structure shown in Fig. 1a is deficient in chalcogen atoms, i.e. the grain boundary
has a stoichiometry of MoSe embedded in the MoSe2 matrix. Computational
studies have shown that MTBs are thermodynamically favoured over the formation
of high density of individual chalcogen vacancies15 and this may explain their
presence in MBE grown samples. These samples were investigated by RT STM
in a surface analysis chamber connected to the growth chamber. In Addition,
characterization by VT-STM and ARPES were performed by transferring the
grown samples in a vacuum suitcase to the appropriate characterization chambers.
In addition, air-exposed samples were characterised by ARPES. After vacuum

annealing to B300 �C, the ARPES results were indistinguishable to the in vacuum
transferred samples indicating the stability of the material in air against oxidation
and other degradation. The stability of the sample also enables the four-point
transport measurements described below.

ARPES measurements. Micro-ARPES measurements were performed at the
ANTARES beamline at the SOLEIL synchrotron. The beam spot size was
B120 mm. The angular and energy resolution of the beamline at a photon energy of
40 eV are B0.2� and B10 meV, respectively. Most of the data were collected
around the G-point of the second Brillouin zone, corresponding to an emission
angle of 42.5� with respect to the surface normal, for photon energy of 40 eV. Both
left and right circular polarized light, as well as linear polarized light was used. The
photon-incident angle on the sample was normal incidence. For circular polarized
light photoemission from all MTBs is obtained. Emission from a single MTB
direction could be enhanced with linear polarized light and the A-vector parallel to
the surface. For azimuth rotation with the A-vector aligned to the direction of one
MTB enhanced emission from this direction was obtained as shown in Fig. 3c. All
data shown here were obtained at 300 K.

Broadening of the ARPES spectral function and lifetime analysis. As it has
already been reported in previous ARPES studies (see for instance Fig. 5 of ref. 17),
the lifetime of a Fermi-liquid quasi-particle, t(k), can be directly determined from
the width of the peak in the energy distribution curves (EDC), analysing the
ARPES data defined by the spectral weight at fixed k as a function of o, where o is
the energy. Specifically,

1=tðkÞ ¼ Do: ð1Þ

The consistency of a Fermi-liquid picture can be also checked by studying the
momentum distribution curves (MDC), that is, from the momentum width Dk of
the spectral function peak at fixed binding energy, o. As long as the Fermi-liquid
quasi-particle excitation is well defined, (that is, the decay rate is small compared
with the binding energy), the energy bandwidth and momentum width are
related as,

Do ¼ vFDk: ð2Þ

Here vF is the renormalized Fermi velocity, which can be directly measured using
high energy and momentum resolution ARPES. Because of the separation of charge
and spin, one hole (or one electron) is always unstable to decay into two or more
elementary excitations, of which one or more carries its spin and one or more
carries its charge. Then elementary kinematics implies that, at T¼ 0, the spectral
function is nonzero only for negative frequencies such that,

oj j � minðvc; vsÞ kj j; ð3Þ
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where vc and vs are the charge and spin velocity, respectively. This analysis
procedure is described in Fig. 6, where the spectral function particularly at o values
between 0.40 and 0.95 eV shows a continuum, which is valid for all momentum k
values that fit Equation (3). MDC and EDC plots are sensitive to this detachment of
the system with respect to a conventional Fermi-liquid quasi-particle behaviour.

This type of analysis, based on the shape of EDC and MDC plots, is also well
explained by Emery et al. (see Figs 2 and 3 of ref. 5). In Fig. 6 we present the results
of a similar analysis. As it is shown in panels (d) and (e), the MDC and EDC cuts of
the raw data at different binding energies and momentum, respectively, show a
clear enlargement of the lifetime that can be extracted from the ARPES data.
However, this experimental value is just proportional to various interaction
strengths. This approximative methodology of the nature and magnitude of the
present interactions can be improved by using more sophisticate theoretical
approaches as the one reported in the present manuscript.

PDT as starting point of our theoretical method. The method used in our
theoretical analysis of the spin-charge separation observed in the 1D quantum-line
defects of MoSe2 was conceived for that specific goal. It combines the pseudo-
fermion dynamical theory (PDT) for the 1D Hubbard model24,27,37 with a suitable
renormalization procedure.

On the one hand, the 1D Hubbard model range a0A[0,1/8] corresponds to the
intervals KcA[1/2,1] and xc 2 ½1;

ffiffiffi
2
p
� of the TLL charge parameter29,12,43 and the

related parameter xc ¼
ffiffiffiffiffiffiffiffi
2Kc
p

. On the other hand, the range aA[0.75, 0.78] for
which the renormalized theory is found to agree with the experiments implies

that ~Kc ¼ 1þ 2a� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ aÞ

p
and ~xc ¼

ffiffiffiffiffiffiffiffi
2~Kc

p
have values in the ranges

~Kc 2 ½0:20; 0:21� and ~xc 2 ½0:63; 0:65�, respectively. Here ~Kc and ~xc is our notation
for the TTL charge parameter and related parameter, respectively, in the general
case when they may have values within the extended intervals ~Kc 2 ½1=8; 1� and
thus ~xc 2 ½1=2;

ffiffiffi
2
p
�. The minimum values ~Kc ¼ 1=8 and ~xc ¼ 1=2 follow from

corresponding phase-shift allowed ranges. (Below the relation of ~xc to phase shifts
is reported.) The above experimental subinterval ~Kc 2 ½0:20; 0:21� belongs to the
interval ~Kc 2 ½1=8; 1=2� for which the electron finite-range interactions must be
accounted for ref. 29.

In the case of the conventional 1D Hubbard model, the PDT was the first
approach to compute the spectral functions for finite values of U/t near singular
lines at high-energy scales beyond the low-energy TLL limit24. (In the low-energy
limit the PDT recovers the TLL physics37.) After the PDT was introduced for that
integrable model, novel methods that rely on a mobile impurity model (MIM)
approach have been developed to tackle the high-energy physics of both
non-integrable and integrable 1D correlated quantum problems, also beyond the
low-energy TLL limit13,28,44,45. The relation between the PDT and MIM has
been clarified for a simpler model46, both schemes leading to exactly the same
momentum dependent exponents in the spectral functions expressions. Such a
relation applies as well to more complex models. For instance, studies of the 1D
Hubbard model by means of the MIM44,45 lead to exactly the same momentum,
interaction and density dependence as the PDT for the exponents that control the
one-electron removal spectral function near its branch lines.

For integrable models, in our case the 1D Hubbard model, there is a
representation in terms of elementary objects called within the PDT c and s
pseudofermions for which there is only zero-momentum forward-scattering at all
energy scales. The c and s bands momentum values are associated with the
1D Hubbard model exact Bethe-ansatz solution quantum numbers. The c
pseudofermion and the s pseudofermion annihilated under transitions from the N
electron ground state to the N� 1 electron excited states refer to the usual holon
and spinon, respectively12,13,43.

That for the pseudofermions there is only zero-momentum forward-scattering
at all energy scales, follows from the existence of an infinite number of conservation
laws associated with the model integrability47,48. This means that in contrast to the
model underlying electron interactions, the pseudofermions, on scattering off each
other only acquire phase shifts. Hence under their scattering events there is
no energy and no momentum exchange, on the contrary of the more complex
underlying physical particles interactions. In the vicinity of well-defined
(k, o)-plane features called branch lines, the T¼ 0 spectral functions of integrable
1D correlated models are of power-law form with negative momentum dependent
exponents. Such properties apply to all integrable 1D correlated models.

Universality behind our method renormalization procedures. In the case of
non-integrable 1D correlated models, there is no pseudofermion representation for
which there is only zero-momentum forward-scattering at all energy scales. This is
because of the lack of an infinite number of conservation laws. The universality
found in the framework of the MIM for the spectral functions of non-integrable
and integrable 1D models13,28 refers to specific energy scales corresponding to both
the low-energy TLL spectral features and energy windows near the high-energy
non-TLL branch lines singularities. In the vicinity of these lines, the T¼ 0 spectral
functions of non-integrable 1D correlated models are also of power-law form with
negative momentum dependent exponents.

This universality means that at both these energy scales there is for such
models a suitable representation in terms of pseudofermions that undergo only

zero-momentum forward-scattering events and whose phase shifts control the
spectral functions behaviours. Our renormalization scheme for adding electron
finite-range interactions to the 1D Hubbard model and corresponding PDT relies
on this universality. Indeed, the finite-range interactions render the model
non-integrable. However, in the vicinity of the branch lines singularities the
spectral function remains having the same universal behaviour. Our normalization
procedure can be used for any chosen a value in the range aA[a0,amax]. Here
a0A(0,1/8) is the conventional 1D Hubbard model a value for given U/t and
electronic density n values. For the U/t¼ 0.8 and n¼ 2/3 values found within our
description of the 1D quantum-line defects of MoSe2 it reads a0E1.4� 10� 3.
The maximum a value amax¼ 49/32¼ 1.53125 refers through the relation
a ¼ ð1� ~KcÞ2=4~Kc, and thus a ¼ ð2� ~x2

cÞ
2=8~x2

c to the above minimum values
~Kc ¼ 1=8 and ~xc ¼ 1=2.

The renormalization of the conventional 1D Hubbard model used in our
studies refers to some 1D Hamiltonian with the same terms as that model
plus finite-range interaction terms. The latter terms are neither a mere
first-neighbouring V term nor a complete long-range Coulomb potential
extending over all lattice sites. Interestingly, the specific form of the additional
finite-range interaction Hamiltonian terms is not needed for our study. This
follows from the above universality implying that both for the low-energy TLL
limit and energy windows near the high-energy branch lines singularities of the 1D
Hubbard model with finite–range interactions under consideration the relation of a
to the phase shifts remains exactly the same as for the conventional 1D Hubbard
model.

Importantly, the only input parameters of our renormalization procedure are
the effective U and transfer integral t values for which the theoretical branch lines
energy bandwidths match the corresponding experimental bandwidths. Apart from
the 1D quantum-line defects band-filling n¼ 2/3, our approach has no additional
‘fitting parameters’.

The spectra in terms of pseudofermion energy dispersions. Within the PDT
for the 1D Hubbard model24–27, nearly the whole electron removal spectral weight
is in the metallic phase originated by two i¼±1 excitations generated from the
ground state by removal of one c pseudofermion of momentum qA[� 2kF, 2kF]
and one s pseudofermion of momentum q0A[� kF, kF]. The superposition in
the (k, o)-plane of the spectral weights associated with the corresponding two
i¼±1 spectra generates the multi-particle continuum. Such i¼±1 spectra are
of the form,

oðkÞ ¼ ecðqÞþ esðq0Þ � 0

k ¼ � i2kF � q� q0; i ¼ � 1:
ð4Þ

They are two-parametric, as they depend on the two independent c and s bands
momenta q and q0 , respectively. Hence such spectra refer to two-dimensional
domains in the (k, o)-plane. They involve the energy dispersion ec(q) whose c
momentum band interval is qA[�p, p]and whose ground-state c pseudofermion
occupancy is qA[� 2kF, 2kF] and the dispersion es(q0) whose s momentum band
range is q0A[� kF, kF], which is full in the present zero spin-density ground state,
are defined below.

The multi-particle continuum in the one-electron removal spectral function
that results from the superposition of the spectral weights associated with the two
i¼±1 spectra contains three branch lines that display the cusps: two c,i branch
lines and a s branch line. The c,i branch lines result from processes for which the
removed c pseudofermion has momentum in the range qA[� 2kF, 2kF] and the
removed s pseudofermion has momentum q0 ¼ � ikF ¼ � kF. Hence the
excitation physical momentum is k ¼ � ikF � q ¼ � kF � q. The s branch line
results from removal of one c pseudofermion of momentum q ¼ � i2kF ¼ � 2kF.
The removed s pseudofermion has momentum in the interval q0A[� kF, kF].
The physical momentum is then given by k¼ � q0 .

It is convenient to redefine the two c,i branch lines in terms of related c and c0

branch lines. The spectra of the c, c0 , and s branch lines are plotted in Fig. 5d–f for
U/t¼ 0.8, t¼ 0.58 eV and electronic density n¼ 2/3. On the one hand, the c branch
line results from processes relative to the ground state that involve removal of one c
pseudofermion with momentum belonging to the ranges qA[� 2kF, � kF] and
qA[kF, 2kF] and removal of one s pseudofermion with momentum q0 ¼ � ikF for
i¼ sgn{k}. The c branch line spectrum then reads,

ocðkÞ ¼ecð kj j þ kFÞ
k ¼� sgnfkgkF � q 2 ½� kF;kF�:

ð5Þ

On the other hand, the c0 branch line is generated by removal of one c
pseudofermion with momentum belonging to the ranges qA[� 2kF, kF] and
qA[� kF, 2kF] and removal of one s pseudofermion with momentum q0 ¼ � ikF

for i¼ � sgn{k}. Its spectrum is given by,

oc0 ðkÞ ¼ecð kj j � kFÞ
k ¼sgnfkgkF � q 2 ½� 3kF;3kF�:

ð6Þ

The s branch line spectrum reads,

osðkÞ ¼esðkÞ
k ¼� q0 2 ½ � kF; kF�:

ð7Þ
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The dispersions ec(q) and es(q0) appearing in these equations are uniquely
defined by the following equations valid for U/t40 and electronic densities
nA[0, 1],

ecðqÞ ¼�ecðkðqÞÞ for q 2 ½� p;p�
esðq0Þ ¼�esðLðq0ÞÞ for q0 2 ½ � kF; kF�;

�ecðkÞ ¼
Z k

Q
dk
0
2tZcðk

0 Þ for k 2 ½�p; p�

�esðLÞ ¼
Z L

1
dL

0
2tZsðL

0 Þ for L 2 ½�1;1�:

ð8Þ

Here the distributions 2tZc(L) and 2tZs(L) are the unique solutions of coupled
integral equations given in supplementary Equations 1 and 2.

The q and q0 dependence of the dispersions ec(q) and es(q0) occurs through that
of the momentum rapidity function k¼ k(q) for qA[� p, p] and spin rapidity
function L¼L(q0) for q0A[� kF, kF], respectively. Those are defined in terms of
their inverse functions q¼ q(k) for kA[� p, p] and q0 ¼ q0(L) for LA[�N, N]
in supplementary Equations 3 and 4. The distributions 2pr(k) and 2ps(L) in their
expressions are the unique solutions of the coupled integral equations provided in
Supplementary Equations 5 and 6.

Spectral function within the conventional 1D Hubbard model. Within the PDT
for the 1D Hubbard model24–27, the spectral weight distributions are controlled by
the set of phase shifts ±2pFb,b0(q, q0) acquired by the b¼ c and b¼ s
pseudofermions with momentum q upon scattering off each b0 ¼ c and b0 ¼ s
pseudofermion with momentum q0 created (þ ) or annihilated (� ) under the
transitions from the ground state to the excited energy eigenstates. (In contrast to
otherwise in this section, here the momentum values q and q0 are not necessarily
those of c and s pseudofermions, respectively.)

The expressions of the momentum dependent exponents that control the
line shape in the vicinity of the g¼ c, c0 , s branch lines involve phase shifts
whose b¼ c, s pseudofermions have momentum at the corresponding
Fermi points, ±qFc¼±2kF and ±qFs¼±kF. This includes phase shifts
2pFb,b0(iqFb,i0qFb0)¼ � 2pFb,b0(� iqFb,� i0qFb0), where i¼±1, i0 ¼±1, acquired
by such b¼ c, s pseudofermions on scattering off b0 ¼ c,s pseudofermions of
momentum also at Fermi points annihilated under the transitions from the N
electron ground state to the N� 1 excited states. Furthermore, such exponents
expressions also involve phase shifts� 2pFb,c(qFb, q)¼ 2pFb,c(� qFb, � q)
and� 2pFb,s(qFb, q0)¼ 2pFb,s(� qFb, � q0) acquired by the same b¼ c,s
pseudofermions upon scattering off b0 ¼ c and b0 ¼ s pseudofermions of
momentum qA[� 2kF, 2kF] and q0A[� kF, kF], respectively, annihilated under
such transitions.

For energy windows corresponding to small energy deviations (og(k)�o)40
from the high-energy g¼ c, c0, s branch-line spectra oc(k)¼ ec(|k|þ kF) for
kA(� kF,kF), oc0(k)¼ ec(|k|� kF) for kA(� 3kF,3kF) and os(k)¼ es(k) for
kA(� kF,kF), equations 5–7, the electron removal spectral function has within the
PDT the universal form25–27,37,

Bðk;oÞ / ðogðkÞ�oÞzgðkÞ for g¼ c; c0; s: ð9Þ

The exponents in this general expression are for U/t40 and electronic densities
nA[0, 1] given in terms of pseudofermion phase shifts in units of 2p by,

zcðkÞ ¼�
1
2
þ
X
i¼� 1

xc

4
þ sgnfkgFc;cði2kF; qÞ

� �2

k ¼ 2 ½� kF; kF�;
q ¼� sgnfkgkF � k 2 ½� 2kF; � kF�; ½kF; 2kF�;

zc0 ðkÞ ¼�
1
2
þ
X
i¼� 1

xc

4
� sgnfkgFc;cði2kF; qÞ

� �2

k ¼ 2 ½� 3kF; 3kF�;
q ¼sgnfkgkF � k 2 ½� 2kF; kF�; ½ � kF; 2kF�:

zsðkÞ ¼� 1þ
X
i¼� 1

i
2xc
þFc;sði2kF; q0Þ

� �2

k 2 ½� kF; kF� and q0 ¼ � k 2 ½� kF; kF�:

ð10Þ

At zero spin density, the entries of the conformal-field theory dressed-charge
matrix Z and corresponding matrix (Z� 1)T can be alternatively expressed in terms
of pseudofermion phase shifts in units of 2p and of the related parameters xc

and xs, as given supplementary equations 7 and 8, respectively. (Here we use the
dressed-charge matrix definition of ref. 37, which is the transposition of that of
ref. 43.) Conversely, the pseudofermion phase shifts with both momenta at
the Fermi points can be expressed in terms of only the charge TLL parameter
Kc ¼ x2

c=2 and spin TLL parameter Ks ¼ x2
s =2 (ref. 43) and thus of the present

related b¼ c,s parameters xb ¼
ffiffiffiffiffiffiffiffi
2Kb

p
. Specifically,

2pFb;b0 ðiqFb; qFb0 Þ ¼ i2pFb;b0 ðqFb; iqFb0 Þ

¼ pðxb� 1Þ2

xb
for b ¼ b0; i ¼ þ 1;

¼ �
pðx2

b � 1Þ
xb

for b ¼ b0; i ¼ � 1;

¼ ð� iÞdb;s p
2
xb for b 6¼ b0; i ¼ � 1:

ð11Þ

Here b¼ c,s and b0 ¼ c,s.
The two sets of two coupled integral equations, Supplementary equations 1, 2, 5

and 6, respectively, that one must solve to reach the momentum dependence of the
exponents, equation 10, have no simple analytical solution. Within our study, these
equations are solved by exact numerical methods. The exponents found from such
a numerical solution are plotted as a function of the momentum k in Fig. 5a–c
(dashed-dotted lines) for U/t¼ 0.8, t¼ 0.58 eV and electronic density n¼ 2/3.
The c and s exponent expressions in Equation 10 are not valid at the low-energy
limiting values k¼±kF.

In the present zero spin-density case, the spin SU(2) symmetry implies that
the parameter xs appearing in Equation 11 is u independent and reads xs ¼

ffiffiffi
2
p

.
The parameter xc in Equations 10 and 11 is in turn given by xc¼ f(sinQ/u)
where the function f(r) is the unique solution of the integral equation given the
Supplementary Equation 9 whose kernel D(r) is defined in Supplementary
Equation 10. The parameter xc 2 ½1;

ffiffiffi
2
p
� has limiting values xc ¼

ffiffiffi
2
p

for
u-0 and xc¼ 1 for u-N. This is why for the 1D Hubbard model the
exponent in the low-o power law dependence of the electronic density of states
suppression oj ja0 ,

a0 ¼
ð1�KcÞ2

4Kc
¼ ð2� x2

cÞ
2

8x2
c

2 ½0; 1=8�; ð12Þ

has corresponding limiting values a0¼ 0 for u-0 and a0¼ 1/8 for u-N.
The c pseudofermion phase shifts 2pFc, c(i2kF, q) for qA[� 2kF, 2kF] and

2pFc,s(i2kF, q0) for q0A[� kF, kF] that determine the momentum dependence
of the exponents in equation (10) are beyond the reach of the TTL. Such
exponents also involve the s pseudofermion phase shifts 2pFs,c(ikF, q) and
2pFs,s(ikF, q0). Because of the spin SU(2) symmetry, at zero spin density the
latter phase shifts are u independent. They are given in the supplementary
Equations 14 and 15. Their values provided in these equations have been
accounted for in the derivation of the exponents expressions in Equation (10) and
contribute to them.

The c pseudofermion phase shifts explicitly appearing in the
exponents expressions, Equation (10), can be written as 2pFc;c i2kF; qð Þ ¼
2p�Fc;c isinQ=u;sinkðqÞ=uð Þ and 2pFc;s i2kF; q0ð Þ ¼ 2p�Fc;s isinQ=u;Lðq0Þ=uð Þ
where the parameters ±Q¼ k(±2kF) define the c pseudofermion Fermi
points in rapidity space. The corresponding general c pseudofermion phase
shifts are given by 2pFc;c q; q0ð Þ ¼ 2p�Fc;c sinkðqÞ=u; sin kðq0Þ=uð Þ and
2pFc;s q; q0ð Þ ¼ 2p�Fc;s sin kðqÞ=u;Lðq0Þ=uð Þ where the related rapidity
phase shifts 2p�Fc;cðr; r0Þ and 2p�Fc;sðr; r0Þ are the unique solutions of the
integral equations given in the Supplementary Equations 11 and 12. The free
term D0(r) of the former integral equation is provided in Supplementary
Equation 13.

One finds from manipulations of integral equations that the energy dispersions
ec(q) and es(q), equation (8), can be expressed exactly in terms of the c
pseudofermion rapidity phase shifts as follows,

ecðqÞ ¼ e0
cðqÞ� e0

cð2kFÞ;
e0

cðqÞ ¼ � 2tcos kðqÞ

þ t
p

Z Q

�Q
dk2p�Fc;c

sin k
u

;
sin kðqÞ

u

� �
sin k;

ð13Þ

and

esðq0Þ ¼ e0
s ðq0Þ � e0

s ðkFÞ;

e0
s ðq0Þ ¼

t
p

Z Q

�Q
dk2p�Fc;s

sin k
u

;
Lðq0Þ

u

� �
sin k;

ð14Þ

respectively. Here k¼ k(q) and L¼L(q0) are the momentum rapidity function and
spin rapidity function, respectively, considered above.

Description of the finite-range interactions within our method. Below it is
confirmed that except for the effective U value the energy dispersions, equations
(13) and (14), are not affected by the renormalization that accounts for the
short–range interactions. As reported above, the effective value U¼ 0.8t is
determined by the ratio Wh/Ws of the experimentally observed c band (holon) and
s band (spinon) energy bandwidths Wh¼ ec(2kF)� ec(0) and Ws¼ es(kF)� ec(0),
respectively. Indeed, within the 1D Hubbard model the Wh/Ws value only depends
on U/t and the electronic density n. For n¼ 2/3 the agreement with the observed
energy bandwidths is then found to be reached for U/t¼ 0.8.
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However, the renormalization fixes the effective U value yet does not affect t.
This is because of symmetry implying that within the 1D Hubbard model the full c
band energy bandwidth ec(p)� ec(0) is independent of U and n and exactly reads
4t. That energy bandwidth can be written as WhþWc¼ 4t, where for the present
metallic phase the energy bandwidth Wc¼ ec(p)� ec(2kF) is finite. Within our
pseudofermion representation, Wh and Wc are the c band filled and unfilled,
respectively, ground-state Fermi sea energy bandwidths. Again, the value of the
ratio Wh/Wc only depends on U/t and the electronic density n. Accounting for the
Wh/Wc value at U/t¼ 0.8 and n¼ 2/3 together with the exact relation
WhþWc¼ 4t one finds from analysis of Fig. 5d–f that tE0.58 eV for the MoSe2

1D quantum-line defects.
Such defects experimental uncertainty interval aA[0.75, 0.80] of the exponent

that controls the low-o electronic density of states suppression |o|a is outside the
corresponding 1D Hubbard model range, Equation (12). Hence the U¼ 0.8t value
obtained from matching the corresponding ARPES cusps lines spectra with those
of the 1D Hubbard model for electronic density n¼ 2/3 refers to an effective
interaction having contributions both from electron onsite and finite-range
interactions. In addition to the interaction U renormalization, both the parameter
xc and the corresponding c pseudofermion phase shifts 2pFc,b0(i2kF, qFb0) in
equation (11), where b0 ¼ c,s whose expressions involve xc undergo a second
renormalization. It is such that xc is replaced by a parameter ~xc associated with a
values in the range aA(a0,amax).

The universality referring to low-energy values in the vicinity of the
c and s bands Fermi points implies that for the non-integrable model
with finite-range interactions the relation a0 ¼ ð2� x2

cÞ
2=8x2

c given in
Equation (12) remains having the same form for aA[a0,amax] and
~xc 2 ½1=2; xc�, so that,

a ¼ ð2�
~x2

cÞ
2

8~x2
c

; ~xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ 2a� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ aÞ

p� �r
: ð15Þ

(The first equation other mathematical solution, ~xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2aþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ aÞ

p
Þ

q
,

is not physically acceptable.)
On the one hand, the spin SU(2) symmetry imposes that the values of the

U/t-independent parameter xs ¼
ffiffiffi
2
p

and s pseudofermion phase shifts
2pFs,b0(ikF, qFb0) in equation (11) where b0 ¼ c, s remain unchanged for the
model with finite-range interactions. On the other hand, the general relations,
equation (11), are universal so that for that model corresponding to any a value in
the range aA[a0, amax] the c pseudofermion phase shifts 2pFc,b0(i2kF, qFb0) are for
b0 ¼ c, s given by,

2p~Fc;cði2kF; 2kFÞ ¼ i2p~Fc;cð2kF;i2kFÞ

¼ pð~xc � 1Þ2
~xc

for i¼ þ 1;

¼ pð~x2
c � 1Þ
~xc

for i ¼ � 1;

2p~Fc;sði2kF;kFÞ ¼ i2p~Fc;sð2kF;ikFÞ

¼ p
2

~xc for i ¼ � 1:

ð16Þ

The universality on which our scheme relies refers both to the low-energy TLL
limit and to energy windows near the high-energy c, c0 and s branch-lines
singularities. The expression of the exponents that control the spectral function
behaviour at low energy and in the vicinity of such singularities only involves the
phase shifts of c and s pseudofermions with momenta at their Fermi points
q¼±2kF and q0 ¼±kF, respectively. On the one hand, as result in part of
the spin SU(2) symmetry, at zero spin density the general s pseudofermion
phase shifts 2p~Fs;sðq0; qÞ and 2p~Fs;cðq0; qÞ remain unchanged for their
whole momentum intervals. On the other hand, the general phase shifts
2p~Fc;cðq; q0Þ and 2p~Fc;sðq; q0Þ of c pseudofermions whose momenta have
absolute values |q|o2kF inside the c band Fermi sea contribute neither to
the TLL low-energy spectral function expression nor to the high-energy
branch-lines exponents. Consistently, similarly to the s pseudofermion phase shifts
2p~Fs;sðq0; qÞ and 2p~Fs;cðq0; qÞ, they remain unchanged upon increasing a from
a¼ a0.

Hence the main issue here is the renormalization of phase shifts of c
pseudofermions with momenta at the Fermi points, 2p~Fc;cði2kF; qÞ and
2p~Fc;sði2kF; q0Þ for i¼±1. Multiplying 2p~Fc;cði2kF; qÞ and 2p~Fc;sði2kF; q0Þ by the
phase factor� 1 gives the phase shifts acquired by the c pseudofermions of
momenta q¼ i2kF¼±2kF on scattering off one c band hole (holon) created under
a transition to an excited state at any momentum q in the interval qA[� 2kF, 2kF]
and one s band hole (spinon) created at any momentum q0 in the domain
q0A(� kF,kF), respectively. The overall phase-shift renormalization must preserve
the c pseudofermion phase-shifts values given in Equation (16) for (i)
q¼ i2kF¼±2kF and (ii) q0 ¼ ikF¼±kF. Hence it introduces suitable factors
multiplying 2pFc, c(i2kF, q) and 2pFc,s(i2kF, q0). In the case of 2p~Fc;cði2kF; qÞ, this
brings about a singular behaviour at q ¼ � i2kF for a4a0 similar to that in the
s pseudofermion phase shift 2pFs,s(ikF, q0) at q0 ¼ ikF, Supplementary equation 15,
for the conventional 1D Hubbard model, which remains having the same values for
the renormalized model.

The c and s pseudofermion phase shifts of the 1D Hubbard model with electron
finite-range interactions are for the whole range aA[a0, amax] thus of the general form,

2p~Fc;cðq; q0Þ ¼2pFc;cðq; q0Þ for q 6¼ i2kF; i ¼ � 1;

2p~Fc;cði2kF; q0Þ ¼ xcð~xc � 1Þð~xc �ð� 1Þdq0 ;� i2kF Þ
~xcðxc � 1Þðxc �ð� 1Þdq0 ;� i2kF Þ
�2pFc;cði2kF; qÞ for i ¼ � 1;

2p~Fc;sðq; q0Þ ¼2pFc;sðq; q0Þ for q 6¼ i2kF; i ¼ � 1;

2p~Fc;sði2kF;q
0Þ ¼

~xc

xc
2pFc;sði2kF;q

0Þ for i ¼ � 1;

2p~Fs;sðq0;qÞ ¼2pFs;sðq0;qÞ;
2p~Fs;cðq0; qÞ ¼2pFs;cðq0; qÞ:

ð17Þ

Our theoretical results refer to the thermodynamic limit at T¼ 0. In that case
the phase-shifts renormalization, Equation (17), only affects those of the c
pseudofermion scatterers with momentum values ±2kF corresponding to the zero-
energy Fermi level. Note however that the corresponding c and s pseudofermion
scattering centres have momenta qA[� 2kF, 2kF] and q0A[� kF, kF], respectively,
that correspond to a large range of high-energy values. At finite temperature
TE300 K one has that kBTE0.045t where tE0.58 eV is within the present
theoretical description the transfer integral value suitable for the MoSe2 1D
quantum-line defects. The derivation of some of the theoretical expressions
involves a T¼ 0 c band momentum distribution that reads one for |q|o2kF and
zero for 2kFo|q|op. At finite temperature TE300 K, such a distribution is
replaced by a c pseudofermion Fermi-Dirac distribution. This implies for instance
that the q¼±2kF c pseudofermion phase-shift renormalization in Equation (17) is
extended from the zero-energy Fermi level to a small region of energy bandwidth
0.045tE0.026 eV near the c band Fermi points q¼±2kF. This refers to a
corresponding small region with the same energy bandwidth near the physical
Fermi points k¼±kF in Fig. 5d–f. Interestingly, finite-size effects have at T¼ 0 the
similar effect of slightly enhancing the energy bandwidth of the c pseudofermion
phase shifts renormalization, Equation (17), in the very vicinity of the zero-energy
Fermi level. Hence any small finite temperature and/or the system finite size
remove/s the singular behaviour of the phase-shifts renormalization being
restricted to the zero-energy Fermi level.

Fortunately, both the finite size of the MoSe2 1D quantum-line defects and the
experimental temperature E300 K lead though to very small effects, as confirmed
by the quantitative agreement reached between the T¼ 0 theoretical results
associated with the 1D Hubbard model with electron finite-range interactions and
the experimental data. Hence for simplicity in the following we remain using our
T¼ 0 theoretical analysis in terms of that model in the thermodynamic limit.

Spectral function accounting for finite–range interactions. For energy windows
corresponding to small g¼ c, c0 ,s energy deviations (og(k)�o)40 from the
high-energy branch-line spectra og(k) given in equations 5–7, which as confirmed
below remain unchanged upon increasing a from a0, the general form of the
electron removal spectral function, equation 9 and corresponding exponent,
equation 10, prevails for the model with finite-range interactions corresponding to
aA[a0, amax]. Hence for these energy windows that spectral function has the same
universal form as in equation 9,

Bðk;oÞ / ðogðkÞ�oÞ~zgðkÞ for g¼ c; c0; s: ð18Þ

Both within the PDT (a¼ a0) and RPDT (a4a0), most of the one-electron spectral
weight is located in the (k, o)-plane at and near the singular branch lines. Those
refer to the k ranges of the g¼ c, c0 , s branch lines for which the corresponding
exponent ~zgðkÞ in equation 18 is negative. For further information on the validity
of the spectral functions expressions, equations (9) and (18), and the definition of
some quantities used in our theoretical analysis, see Supplementary note 3.

We start by confirming that the c and s pseudofermion energy dispersions in
the expressions of the g¼ c, c0 , s branch-lines spectra og(k), equations 5–7, remain
unchanged. This follows from the behaviour of the phase shifts appearing in these
pseudofermion energy dispersions expressions, equations (13) and (14). In the case
of the conventional 1D Hubbard model, the integral

RQ
�Q dk over the rapidity

momentum k in the integrand rapidity phase shifts 2p�Fc;c sin k=u; sin kðqÞ=uð Þ
and 2p�Fc;s sin k=u;Lðq0Þ=uð Þ of equations (13) and (14) can be transformed
into a momentum integral

R 2kF

� 2kF
dq00 over the whole c band Fermi sea with the

integration momentum q0 0A[� 2kF, 2kF] appearing in corresponding integrand c
pseudofermion phase shifts 2pFc, c(q0 0 , q) and 2pFc,s(q0 0 , q0), respectively.

Under the electron finite-range interactions renormalization, the latter phase
shifts become 2p~Fc;cðq00; qÞ and 2p~Fc;sðq00; q0Þ, respectively, as defined in
Equation (17). As given in that equation, the latter c pseudofermion phase shifts are
only renormalised at the Fermi points, q0 0 ¼±2kF. Hence such phase shifts
renormalized values refer only to the limiting values of the integration

R 2kF

� 2kF
dq00 .

The phase-shift contributions associated with such limiting momentum
values� 2kF andþ 2kF have in the thermodynamic limit vanishing measure
relative to the phase-shift contributions from the range� 2kFoq0 0o2kF inR 2kF

� 2kF
dq00. For |q0 0|o2kF the phase shifts 2p~Fc;cðq00; qÞ and 2p~Fc;sðq00; q0Þ

remain unchanged, see equation (17). Hence the energy dispersions
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ecðqÞ ¼ e0
cðqÞ� e0

cð2kFÞ, equation (13), and esðqÞ ¼ e0
s ðqÞ� e0

s ðkFÞ, equation (14),
remain as well unchanged. The same thus applies to the g¼ c, c0 , s spectra og(k),
equations 5–7, in the spectral function expression, equation (18).

In contrast, one finds from the combined use of equations (10) and (17) that for
the model with finite–range interactions the momentum dependent exponents in
that expression are renormalised. For U/t40, electronic densities nA[0, 1] and
aA[a0, amax] they are given by,

~zcðkÞ ¼�
1
2
þ
X
i¼� 1

~xc

4
þ sgnfkg~Fc;cði2kF;qÞ

 !2

k ¼ 2 ½� kF; kF�;
q ¼� sgnfkgkF � k 2 ½� 2kF;� kF�;½kF;2kF�;

~zc0 ðkÞ ¼�
1
2
þ
X
i¼� 1

~xc

4
� sgnfkg~Fc;cði2kF;qÞ

 !2

k ¼ 2 ½� 3kF;3kF�;
q ¼sgnfkgkF� k 2 ½� 2kF;kF�;½ � kF;2kF�:

~zsðkÞ ¼� 1þ
X
i¼� 1

i
2~xc

þ ~Fc;sði2kF; q0Þ
� �2

k 2 ð� kF;kFÞ and q0 ¼ � k 2 ½� kF;kF�:

ð19Þ

Plotting the momentum dependence of these exponents requires again the use
of exact numerical methods to solve the corresponding sets of coupled integral
equations. The momentum dependences found from that exact numerical solution
are plotted in Fig. 7 as a function of the momentum k for U/t¼ 0.8, t¼ 0.58 eV,
n¼ 2/3 and representative a values a¼ a0E1.4� 10� 3, a¼ 0.70, a¼ 0.7835E0.78
and a¼ 0.85. Their choice is confirmed below to be suitable for the discussion of
the relation between the theoretical results and the observed spectral features.

The physics associated with the a range aA[a0, 1/8] is qualitatively different
from that corresponding to aA[1/8, amax]. Note that at a¼ 1/8 and thus ~xc ¼ 1 the
c pseudofermion phase shift 2p~Fc;cði2kF; qÞ in equation (17) exactly vanishes. This
vanishing marks the transition between the two physical regimes. The c
pseudofermion phase shift 2pFc, c(i2kF, q) of the conventional 1D Hubbard model
also vanishes in the limit of infinity onsite repulsion in which a0¼ 1/8. Increasing a
from a¼ a0 within the interval aA[a0, 1/8] indeed increases the actual onsite
repulsion, which for a4a0 is not associated anymore with the renormalised model
constant effective U value. In addition, it introduces electron finite-range
interactions. On the one hand, in that a interval the effects on the g¼ c, c0 , s
exponents, equation (19), of increasing a are controlled by the increase of the actual
onsite repulsion. On the other hand, as a changes within the interval aA[a0, 1/8]
the fixed effective U value accounts for both effects from the actual onsite
interaction and emerging finite-range interactions. It imposes that the c and s
pseudofermion energy dispersions in equations (13) and (14) remain as for that U
value. This means that the effects of increasing the actual onsite repulsion due to
increasing a are on the matrix elements of the electron annihilation operator
between energy eigenstates that control the branch-lines exponents, equation (19),
and thus the spectral weights.

For U/t¼ 0.8, t¼ 0.58 eV and n¼ 2/3 the c, c0 and s branch-lines exponents,
equation (19), corresponding to a¼ 1/8 are represented in Fig. 7a–c, respectively,
by the dotted lines. The changes in these exponents caused by increasing the a
value from a0 to 1/8 relative to the exponents curves given for the a0E1.4� 10� 3

conventional 1D Hubbard model in that figure are qualitatively similar to those
originated by increasing U/t from 0.8 to infinity within the latter model. Such an
increase also enhances a0 from a0E1.4� 10� 3 to 1/8. The main difference relative

to the conventional 1D Hubbard model is that the c and s pseudofermion energy
dispersions remain unchanged on increasing a. Comparison of the momentum
intervals of the g¼ c, c0 , s branch lines for which the exponents, Equation (19), are
negative for aA(a0,1/8) with those in which there are cusps in the experimental
dispersions of Fig. 5e,f reveals that there is no agreement between theory and
experiments for that a range.

Further increasing a within the interval aA[1/8, amax] corresponds to a different
physics. The changes in the branch-lines exponents, equation (19), are then mainly
due to the increasing effect of the electron finite–range interactions on increasing a.
It leads in general to a corresponding increase of the three g¼ c, c0 , s exponents
~zgðkÞ, equation (19). For U/t¼ 0.8, t¼ 0.58 eV, n¼ 2/3 and both aA[1/8, 0.75] and
aA[0.78, amax] the momentum intervals of the g¼ c, c0 , s branch lines for which
these exponents are negative do not agree to those for which there are cusps in the
MoSe2 1D quantum-line defects measured spectral function. To illustrate the a
dependence of the g¼ c, c0, s branch lines exponents, Equation (19), their k
dependence has been plotted in Fig. 7 for the set of representative a values
a¼ a0E1.4� 10� 3, a¼ 0.70, a¼ 0.7835E0.78 and a¼ 0.85.

The following analysis refers again to the values U/t¼ 0.8, t¼ 0.58 eV and
n¼ 2/3 associated with the MoSe2 1D quantum-line defects. For ao0.75 the
momentum width of the g¼ c0 branch line k range for which its exponent ~zc0 ðkÞ is
negative is larger than that of the experimental dispersion shown in Fig. 5(e),
(f) near the corresponding excitation energyE0.95 meV. On increasing a from
a¼ 0.75, the g¼ c0 branch line momentum width for which ~zc0 ðkÞ is negative
continuously decreases, vanishing at a¼ 0.7835E0.78. Comparison of the
momentum ranges for which the exponents plotted in Fig. 7 are negative with
those in which there are cusps in the experimental dispersions of Fig. 5 (e) e (f)
reveals that there is quantitative agreement for aA[0.75, 0.78]. Further increasing a
from a¼ 0.78 leads to a c branch line momentum width around k¼ 0 in which the
exponent ~zcðkÞ becomes positive. This disagrees with the observation of
experimental cusps near the excitation energyE0.85 meV around k¼ 0 and for
decreasing energy along the c branch line upon further increasing a.

That there is quantitative agreement between theory and the experiments for
aA(0.75,0.78) is fully consistent with the corresponding a uncertainty range
aA[0.75, 0.80] found independently from the DOS suppression experiments.
The momentum dependence of the g¼ c, c0 , s branch lines exponents
corresponding to a¼ 0.78 is represented by full lines in Fig. 5a,c and d for U¼ 0.8t,
t¼ 0.58 eV and electronic density n¼ 2/3.

As for the exponents expressions, Equation (10), those of the c and s branch-
line exponents given in Equation (19) are not valid at the low-energy limiting
values k¼±kF. While in the thermodynamic limit this refers only to k¼±kF, for
the finite-size MoSe2 1D quantum-line defects it may refer to two small low-energy
regions in the vicinity of k¼±kF. Both this property and the positivity of the s
branch exponent for aA(0.75,0.78) in these momentum regions are consistent with
the lack of low-energy cusps in the ARPES data shown in Fig. 5e,f.

We have calculated the k and o dependence of the spectral function expression
of the 1D Hubbard model with finite-range interactions near the c and s branch
lines in the momentum ranges for which they display cusps, Equation (18). If one
goes away from the (k, o)-plane vicinity of these lines, one confirms that both such
a model spectral function and that of the conventional 1D Hubbard model have the
broadening discussed in the Supplementary Note 2.

For a short discussion on whether the RPDT is useful to extract information
beyond that given by the conventional 1D Hubbard model and corresponding PDT
about the physics of quasi-1D metals and a comparison of the PDT and RPDT
theoretical descriptions of the line defects in MoSe2, see Supplementary Note 4.

Data availability. The data sets generated during and/or analysed during the
current study are available from the corresponding authors on reasonable request.
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Figure 7 | Momentum dependence of spectral-function exponents. (a), (b) and (c): The c, c0 and s branch-lines exponents, respectively, defined in

Equation (19) plotted as a function of the momentum k for U/t¼0.8, t¼0.58 eV, n¼ 2/3 and representative a values a¼ a0E1.4� 10� 3, a¼0.70,

a¼0.7835E0.78 and a¼0.85. In addition, the dotted lines refer to a¼ 1/8. As justified in the text, for aA(0.75,0.78) the momentum ranges of the c,

c0 and s branch lines for which such exponents are negative coincide with those showing ARPES peaks in Fig. 5e,f.
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