4 research outputs found

    Plasma-Derived Fibronectin Stimulates Chondrogenic Differentiation of Human Subchondral Cortico-Spongious Progenitor Cells in Late-Stage Osteoarthritis

    No full text
    Migration and chondrogenesis of human subchondral cortico-spongious progenitor cells (SPCs) are the key steps in the repair of microfracture-induced articular cartilage defects. The aim of this study was to evaluate the effect of human plasma-derived fibronectin (Fn) on the chondrogenic differentiation of SPCs, which was isolated from subchondrol cortico-spongious bone of late-stage osteoarthritis (OA) patients. SPCs were isolated and cultured for three passages. Stem cell surface antigens of SPCs were analyzed by flow cytometry. The osteogenic, chondrogenic and adipogenic differentiation potential were detected by histological staining. The chondrogenesis potential of SPCs with or without stimulation of either Fn or BMP-2 were studied by immunochemical staining and gene expression analysis. Cells isolated from subchondral bone presented to be positive for CD44, CD73, CD90, and CD166, and showed high capacity of osteogenic, adipogenic and chondrogenic differentiation, which suggested this cell population to be MSC-like cells. Stimulating with Fn increased the expression of SOX-9, aggrecan, collagen II while decreased the formation of collagen I by immunochemical staining. Gene expression analysis showed similar results. These results suggest that plasma-derived Fn can increase the chondrogenic differentiation of SPCs isolated from late-stage OA and improve cartilage repair after microfracture

    Data from: Enhanced in vitro biocompatibility and osteogenesis of titanium immobilized with dopamine-assisted superparamagnetic Fe3O4 nanoparticles for hBMSCs

    No full text
    Titanium(Ti) is an ideal bone substitute due to its superior bio-compatibilities and remarkable corrosion resistance properties. However, in order to improve the osteoconduction and osteoinduction capacity in clinic applications, different kinds of surface modifications were usually applied for the Ti alloys. In this study, we fabricated a tightly attached PDA-assisted Fe3O4 nanoparticles coating on Ti with magnetic properties, aiming to improve the osteogenesis of the Ti substrates. The PDA-assisted Fe3O4 nanoparticles coatings were characterized by utilizing scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), atom force microscope(AFM), water contact angle measurement. Cell attachment and proliferation rate of the hBMSCs on the Ti surface were significantly improved with the Fe3O4/PDA coating when compared to the pure Ti without coatings. Furthermore, the results of in vitro ALP activity at 7, 14 days and ARS staining at 14 days both showed that Fe3O4/PDA coating on Ti promoted the osteogenic differentiation of hBMSCs. Moreover, hBMSCs co-cultured with the Fe3O4/PDA-coated Ti for about 14 days also exhibited significantly higher mRNA expression level of alkaline phosphatase(ALP), osteocalcin(OCN) and runt-related transcription factor-2(RUNX-2). Our in vitro results revealed that the present PDA-assisted Fe3O4 nanoparticles surface coating would be an innovative method for Ti surface modification and showed great potential for clinical application

    raw data

    No full text
    the raw data of statistics-grap
    corecore