24 research outputs found

    Modulating Activity of Vancomycin and Daptomycin on the Expression of Autolysis Cell-Wall Turnover and Membrane Charge Genes in hVISA and VISA Strains

    Get PDF
    Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in hVISA and VISA, can influence their cross-resistance mechanisms promoting VISA behavior in hVISA and enhancing the cell-wall pathways responsible for the intermediate vancomycin resistance in VISA. Daptomycin can also induce a charge repulsion mechanism both in hVISA and VISA increasing the activity of the mprF

    Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming

    Get PDF
    BACKGROUND: Livestock-Associated MRSA (LA-MRSA) belonging to ST398 lineage, common among pigs and other animals, emerged in Central and Northern Europe, becoming a new risk factor for MRSA among farm workers. Strains belonging to ST398 can be responsible for human colonization and infection, mainly in areas with high livestock-farming. The aim of this study was to investigate the occurrence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) human colonization and infections in an area of the Lombardy Region (Italy), the Italian region with the highest density of pig farming. METHODS: In the period March-April 2010, 879 nasal swabs were taken from subjects at admission to a local hospital serving an area of the Lombardy Region devoted to agriculture and farming. In the period March 2010-February 2011, all MRSA strains from community-acquired infection (CAI) observed in the same hospital, were collected. Molecular characterization of the isolates included SCCmec typing, spa typing and multilocus sequence typing (MLST). RESULTS: Out of 879 nasal swabs examined, 9 (1%) yielded MRSA. Five strains were assigned to sequence type (ST)398 (spa t899, 3 isolates; t108 and t2922, 1 isolate each) and were therefore categorized as LA-MRSA. The other 4 isolates were likely of hospital origin. No strains were positive for Panton-Valentine Leukocidin genes. Twenty MRSA isolates were detected from CAI, 17 were from skin and soft-tissue infections and 3 from other infections. An MRSA isolate from otitis externa was t899/ST398 and PVL-negative, hence categorized as LA-MRSA. Four isolates were assigned to t127/ST1. Eight strains were PVL-positive community acquired (CA)-MRSA and belonged to different clones, the most frequent being ST8. CONCLUSIONS: In an area of Italy with high density of pig farming, LA-MRSA is able to colonize the population and rarely to produce infections. Typical CA-MRSA is more common than LA-MRSA among CAI

    Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus

    Full text link

    Bactericidal synergy of lysostaphin in combination with antimicrobial peptides

    No full text
    Drug-resistant staphylococci constitute a serious problem that urgently requires the discovery of new therapeutic agents. There has been a resurgence in interest in using lysostaphin (a specific anti-staphylococcal enzyme) as a treatment for infections caused by these important pathogens. However, bacterial resistance to lysostaphin is a problem, but the use of a combination treatment may surmount this issue. In this present study, using viable counts from suspension incubations, lysostaphin is shown to be synergistically bactericidal in combination with various conventional antimicrobial peptides, the antimicrobial protein bovine lactoferrin, a lantibiotic (nisin), and certain lipopeptides used clinically (colistin, daptomycin and polymyxin B). Combinations that act in synergy are of clinical importance as these reduce the doses of the compounds needed for effective treatments and decrease the chances of resistance being selected. The use of lysostaphin in combination with a peptide may represent a new avenue in tackling drug-resistant staphylococci

    Hippopotamus and livestock grazing:influences on riparian vegetation and facilitation of other herbivores in the Mara Region of Kenya

    Get PDF
    <p>Riparian savanna habitats grazed by hippopotamus or livestock experience seasonal ecological stresses through the depletion of herbaceous vegetation, and are often points of contacts and conflicts between herbivores, humans and their livestock. We investigated how hippopotamus and livestock grazing influence vegetation structure and cover and facilitate other wild herbivores in the Mara region of Kenya. We used 5 km-long transects, each with 13 plots measuring 10 x 10 m(2), and which radiate from rivers in the Masai Mara National Reserve and adjoining community pastoral ranches. For each plot, we measured the height and visually estimated the percent cover of grasses, forbs, shrubs and bare ground, herbivore abundance and species richness. Our results showed that grass height was shortest closest to rivers in both landscapes, increased with increasing distance from rivers in the reserve, but was uniformly short in the pastoral ranches. Shifting mosaics of short grass lawns interspersed with patches of medium to tall grasses occurred within 2.5 km of the rivers in the reserve in areas grazed habitually by hippos. Hence, hippo grazing enhanced the structural heterogeneity of vegetation but livestock grazing had a homogenizing effect in the pastoral ranches. The distribution of biomass and the species richness of other ungulates with distance from rivers followed a quadratic pattern in the reserve, suggesting that hippopotamus grazing attracted more herbivores to the vegetation patches at intermediate distances from rivers in the reserve. However, the distribution of biomass and the species richness of other ungulates followed a linear pattern in the pastoral ranches, implying that herbivores avoided areas grazed heavily by livestock in the pastoral ranches, especially near rivers.</p>

    YvqE and CovRS of Group A <i>Streptococcus</i> Play a Pivotal Role in Viability and Phenotypic Adaptations to Multiple Environmental Stresses

    Get PDF
    <div><p><i>Streptococcus pyogenes</i> (group A <i>Streptococcus</i>, or GAS) is a human pathogen that causes a wide range of diseases. For successful colonization within a variety of host niches, GAS utilizes TCSs to sense and respond to environmental changes and adapts its pathogenic traits accordingly; however, many GAS TCSs and their interactions remain uncharacterized. Here, we elucidated the roles of a poorly characterized TCS, YvqEC, and a well-studied TCS, CovRS, in 2 different GAS strain SSI-1 and JRS4, respectively. Deletion of <i>yvqE</i> and <i>yvqC</i> in JRS4 resulted in lower cell viability and abnormality of cell division when compared to the wild-type strain under standard culture conditions, demonstrating an important role for YvqEC. Furthermore, a double-deletion of <i>yvqEC</i> and <i>covRS</i> in SSI-1 and JRS4 resulted in a significantly impaired ability to survive under various stress conditions, as well as an increased sensitivity to cell wall-targeting antibiotics compared to that observed in either single mutant or wild-type strains suggesting synergistic interactions. Our findings provide new insights into the impact of poorly characterized TCS (YvqEC) and potential synergistic interactions between YvqEC and CovRS and reveal their potential role as novel therapeutic targets against GAS infection.</p></div
    corecore